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Abstract—The design of a wireless sensor network is a chal-
lenging task due to its intrinsically application-specific nature.
Although a typical choice for testing such kind of networks
requires devising ad-hoc testbeds, this is often impractical as
it depends on expensive, and hard to maintain deployment of
nodes. On the other hand, simulation is a valuable option, as
long as the actual functioning conditions are reliably modeled,
and carefully replicated.

The present work describes a framework for supporting the
user in early design and testing of a wireless sensor network
with an augmented version of TOSSIM, the de-facto standard
for simulators, that allows merging actual and virtual nodes
seamlessly interacting with each other; the proposed tool does
not require any special modification to the original simulation
code, but it allows contemporary execution of code in actual,
and virtual nodes, as well as simulation of nodes executing
different application logics. The reported experimental results
will also show how soft-real time constraints are guaranteed
for the augmented simulation.
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I. INTRODUCTION

The design of a Wireless Sensor Network (WSN) is a very
application-specific task, especially due to the peculiarity
of the considered deployment environment; for instance,
besides traditional monitoring tasks, recent literature also
reports more advanced experimentations on such hostile
environments as underground, or underwater [1]–[3]. In
such cases, nodes need to be equipped with specialized
sensors, thus increasing their individual cost; moreover,
reliable predictive models for data correlation, or radio
propagation are seldom available, so that algorithms for
such functionalities as packet routing, data gathering and in-
network data processing cannot be effectively designed and
tuned. A thorough preliminary test phase is thus necessary,
either by means of specifically crafted testbeds, or via
reliable simulations.

Although a few “general-purpose” testbeds have been
proposed in the past, such as MoteLab [4], WSN applica-
tions must be tested on a large scale, and under complex
and varying conditions in order to capture a sufficiently
wide range of interactions, both among nodes, and with the
environment. However, the deployment of a large number
of nodes in hostile environments could become prohibitively
expensive and practically unfeasible because of maintenance

costs. Simulations can address those issues by providing
controlled, reproducible environments, and specialized soft-
ware tools for monitoring and debugging, so that the actual
deployment of nodes may be delayed till after algorithms
have been thoroughly tested; however they may not deliver
fully reliable results, especially due to over-simplistic as-
sumptions about the physical channels, and the node radio
models. In order to avoid these shortcomings, the authors
of [5] recommend that simulation and model designers
run the same code both in simulated and in real systems,
so as to allow for easier comparison about experimental
and simulation results; furthermore, it is advisable that the
simulation framework provide a range of models for the
physical and data-link layer, to be tested with a wide range
of parameters, and finally that real-world characteristics are
taken into account. Recent approaches toward the design
of more realistic simulation environments have suggested
the use of hybrid tools enabling the interaction of virtual
nodes with actual ones; on one hand, the use of simulated
nodes allows for the generation of easily scalable scenarios,
while nodes deployed in the real sensor field are used as a
complement, in order to generate realistic data models and
to steer the behavior of their virtual counterpart.

Our preliminary experiments on this topic [6] showed us
the feasibility of such approach, and encouraged us to pursue
further research. In this paper we describe the design of a
framework for hybrid simulation of wireless sensor networks
that exploits the models constructed from data sensed by a
minimal deployment of actual nodes in order to integrate
and validate the simulation; in particular, we address the
simulation of nodes of the commonly available mote family,
and we extend the functionalities of TOSSIM [7], their de-
facto standard simulator. Our framework does not require
any modification to the simulation code, and allows for
contemporary execution of code both in actual and virtual
nodes, as well as for simulation of nodes executing different
application logics.

One of the key challenges when trying to deliver such
kind of realistic simulations is how to ensure fidelity, in
terms of ability to reproduce the same behavior both in
virtual and real nodes, and accuracy of timing. Unlike
“pure” simulators, where simulation time does not neces-
sarily need to be strictly correlated to actual time as long
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as correct sequencing is maintained, the hybrid approach
requires coordination among virtual and real nodes. The
reported experimental results will show that our framework
achieves acceptable performances in terms of soft real-
time constraints, by providing probabilistic end-to-end delay
guarantees.

The remainder of the paper is organized as follows.
Section II summarizes the main issues to be addressed
when designing realistic WSN simulators, and outlines other
relevant works; Section III describes our approach, while
Section IV presents an assessment scenario and the related
experimental results; finally, Section V reports our conclu-
sions, and describes our on-going work.

II. ISSUES IN WSN SIMULATION

Traditional techniques for performance assessment of
wired and wireless networks usually rely on analytical meth-
ods, but in the case of WSNs a growing interest has been
directed toward simulation tools, due to the peculiar nature
of such networks, including the well-known constraints
on available energy resources on nodes, and their tight
interaction with the surrounding environment, as well as the
fact that many research problems in this field are still open.
Scalability, extensibility, ease of simulation design, and
reliability are desirable features for quick prototyping, and
assessment, before actual deployment; moreover, in order
to reduce the complexity of modeling the environment and
its influence on the system, and to minimize the difficulties
in porting simulated sensor networks to actually deployed
systems, it may be advisable to use “real code” simulation
tools, that run identical code in simulation and deployment.

Many different approaches to WSN simulation have al-
ready been presented in literature, starting with extensions to
generic network simulators, such as SensorSim [8], an event-
driven simulator built on top of ns-2, that introduces the
concept of sensor function model and of a power model for
a sensor node. The former implements the node’s application
logic, whereas the latter simulates the hardware, as regards
for instance the consumed or produced energy (for radio,
and batteries, respectively).

Following a different philosophy, SENSE (SEnsor Net-
work Simulator and Emulator) [9] shows a component-
oriented architecture, and is a discrete event simulator,
like ShoX [10]; both are specifically designed to provide
extensibility and reusability of modules, but do not allow to
directly transfer simulation code into real nodes as they rely
on general-purpose languages such as C++ and Java.

SENS [11] (Sensor, Environment and Network Simula-
tor), and NetTopo [12] also have modular architectures; the
former is noteworthy in that it embeds a mechanism for
modeling the physical environment thus allowing to capture
the influence of the environment on signal propagation,
whereas the latter exploits the integration between the simu-
lated environment, and real testbeds. Such hybrid simulation

is however unidirectional since real nodes cannot receive
messages from simulated ones.

Scalability issues are effectively addressed in DiSens [13]
by relying on a distributed-memory parallel cluster system;
its approach to simulation, however, is intrinsically different
from what discussed here since simulated applications are
forced to rely on the emulation of different kinds of sensor
hardware.

We rather chose to follow the “real code” approach
that provides the key capability to quickly switch between
simulation and deployment, and ensures a close correspon-
dence of simulation code to code executed in real nodes.
Its most notable example is probably TOSSIM [7], the
TinyOS simulator; TOSSIM translates hardware interrupts
into discrete simulator events, which are guaranteed to be
handled in the correct order; unfortunately this is not suffi-
cient to provide timing guarantees. TimeTOSSIM [14] is an
extension that aims to provide source code-level instruments
in order to assess simulation timing; in particular, it resolves
the conflicts due to the simultaneity of simulated events by
interfering with the TOSSIM scheduler, and prioritizing its
queue.

The authors of [15] have recently proposed a somewhat
similar approach that suggests the introduction of “sensor
network checkpoints” between simulation and testbed to
store the state of the simulation so that its execution may be
deterministically repeated, or that rollbacks may be executed
to restore the network state to previous conditions.

Finally, a hybrid approach to simulation is proposed
in [16], whose authors augment the simulation environment
by means of transparent addition of actual nodes. The
interaction between the two kinds of nodes is implemented
via specialized nodes acting as intermediary, and the overall
approach shares many similarities with what we propose
here. The authors of [16] aim to provide fidelity by dis-
tributing the computational load of the simulation process;
in order to do so, they re-implement many of the core
components of the simulator, such as the radio model,
and the battery model. Our approach differs in that it is
based on the bare TOSSIM simulator, and the introduced
modifications are totally transparent to the users, so that
they may be immediately able to test their existing code.
Moreover, we intend to exploit the presence of actual nodes
in the simulation to construct predictive models from their
sensed data, to be used to tune the behavior of virtual nodes,
thus increasing simulation realism.

III. A HYBRID APPROACH TO WSN SIMULATION

We implemented our hybrid WSN simulator as part of a
comprehensive framework for the creation, management and
visualization of test scenarios. The basic structure of our tool
is shown in Figure 1.

Our framework has been implemented in Java, and it
may be used with any system where the TinyOS toolchain
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Figure 1. High-level representation of structure of the simulation framework.

can be installed; its GUI allows to create and manage a
simulation scenario by setting the nodes positions on the
virtual sensor field, managing their links, and customize
nodes behavior. Once the virtual network is set up, the actual
simulation process is handed over to an augmented version
of TOSSIM (“ATOSSIM”), that has been customized in
order to introduce the notion of shadow nodes, i.e. wrappers
whose main purpose is to act as interfaces toward their real
counterparts, while appearing identical to other virtual nodes
from the simulator point of view. The main function of
shadow nodes is thus to collect sensed data from the real
world, and to re-route communication from virtual nodes to
actual ones.

The typical application scenario we are considering here
consists of a minority of actual nodes immersed into a larger
virtual network; this may be the case during the develop-
ment of non traditional applications, such as for instance
underground environmental monitoring, where sensor nodes
may easily have high individual cost, and a predictive model
for their behavior is typically difficult to obtain. Moreover,
experience suggests that in a complex WSN it is unlikely that
all nodes run the same application logic; this typically occurs
when nodes establish some kind of hierarchical relationship
(e.g. in cluster-based networks), or more simply when the
base station has to perform some specific operation before
forwarding sensed data to the storage computer.

This characteristic is impossible to simulate with a tool
like traditional TOSSIM; our framework, on the other hand,
exploits shadow nodes also to simulate nodes that run
code different than the main application, thus implementing
a sub-application behavior, seamlessly integrated into the
simulation. This is obtained by having several instances of
the simulator running, each with its own message receiver;
all the instances are coordinated by the application gateway,
while one “main” instance of the simulator is devoted to

coordinate virtual and shadow nodes.
Finally, the framework functionalities may be specialized

or extended via the provided plugin subsystem. Utility
plugins have been developed to implement common WSN
tools for debugging and visualization purposes, as well
as to provide simulation management tools, to allow for
the creation of data models from real data, and finally to
implement assessment tools.

A. Ensuring Soft Real-time Behavior: Timing Issues

In order to ensure correct coordination among virtual,
shadow, and actual nodes, simulation timing must be con-
strained to satisfy at least soft real-time guarantees; in our
architecture this functionality is provided by the application
gateway. According to the TinyOS architecture, an applica-
tion contains a scheduler used to hold the events generated
by the application components. TOSSIM is a discrete event
simulator, and it follows the same pattern: whenever a
virtual node fires an event, this is labeled with the current
simulation time and appended to the scheduler, together with
the corresponding event handler; the specified actions will
be executed upon selection by the scheduler according a
non-preemptive, FIFO scheduling policy.

Simultaneous events are handled by TOSSIM by updating
the simulation time only for the first event, and leaving
it unchanged until the last one is processed. For instance,
while managing reception events for nodes that share a
common neighboring sender, the simulation time does not
advance while all those events are handled. The TOSSIM
time model may thus be heavily influenced by the number
of simulated nodes: if only one simulated node is present,
the simulation time will flow smoothly; on the other hand,
if the simulation includes several nodes, the occurrence of
several simultaneous events, albeit for different nodes, will
prevent the simulation time from advancing while they are
processed.
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Figure 2. Event scheduling in simulation (a), according to standard TOSSIM processing (b), and with our modifications to ensure timeliness (c).

In the classical TOSSIM timing model, simulation time is
totally decoupled from real time, and simulation is executed
at maximum hardware speed, compatibly with available
resources; for instance, Figure 2a depicts two simultaneous
simulated events, followed by another event, after some
idle time. Event execution duration is not relevant in “sim-
ulation time”, but Figure 2b shows how the three events
are actually handled by the simulation host processor, that
simply enqueues them, and processes them one at a time.
Sequencing of events is preserved, but in our scenario, this
would pose a problem for the interaction between virtual
and actual nodes, whose events would likely take longer
to process because of their slower processors. Meeting soft
real time constraints implies binding simulation timing to
real timing, measured via the system clock; for instance, in
order to match simulation time with real time for Event3
in Figure 2c, a “padding” delay must be artificially added,
computed as the difference between the time when the event
is selected by the scheduler and the time stored in the
event handler descriptor. In other cases, however, the time
spent for handling previous events causes subsequent ones
to be delayed (as for Event2 in Figure 2c). Unlike TOSSIM,
our simulator thus uses separate threads for event queue
management and for simulation time updating; in particular
we make use of the nanosleep() Unix system call in order to
obtain 10µs refresh time for this thread. If the event handler
processing time is low on average, and if simultaneous
execution of simulated events does not frequently occur,
then soft real time constraints may be met; unfortunately,
as pointed out in [17], simulation execution time may even
be double than real time in the worst case.

B. Simulating Different Applications in the Same Test Run

As already mentioned, all nodes in a simulated network
in TOSSIM are bound to execute the same application, so
if different behaviors are needed, the programmer needs
to resort to conditional instructions to be executed by the
differing nodes only; since dynamic memory allocation is
not allowed, this will deprive the majority of nodes of part
of their available memory; as a consequence, the behavior
of the simulated network will not reliably mirror that of the
future deployment.

A typical application, however, is based on the interaction
between a limited number of nodes with specialized tasks
and the majority of nodes sharing the same behavior. Our
framework thus allows several instances of the simulator
to run at the same time; the main instance will run the
code for the majority of nodes, whereas each other instance
will run a different application for each of the specialized
nodes. The different instances may communicate via shared
memory, and synchronization is guaranteed by the time
updating thread, that accepts modifications only from the
main simulator instance.

C. Interaction between Virtual and Actual Nodes

Our framework allows for bi-directional message ex-
change among virtual and actual sensor nodes, thanks to
the presence of shadow nodes that act as a bridge between
the two worlds. This may be exploited in order to tune the
behavior of virtual nodes, and to make them as realistic as
possible; in particular they may simulate sensing of data
thanks to the information obtained from real nodes.

Although introducing actual data into a simulation usually
requires constructing statistical models, after a considerable
amount of data is preliminarily stored, which is usually very
time consuming. Our approach instead aims to exploit the
potential spatial and time correlation among data sensed
by actual nodes in order to build a model for the whole
network starting from these sparse data. In particular, plugins
have been developed that construct regression models for
temperature data by using kernel based methods, such as
radial basis functions.

IV. ASSESSMENT OF THE PROPOSED APPROACH

This Section presents some of the experiments that have
been carried on in order to evaluate our hybrid simulator; in
particular a few scenarios will be analyzed in order to assess
the effectiveness of the interactions between ATOSSIM, the
central framework and the real nodes.

All tests have been conducted on a PC with an AMD
TurionTM64 processor, Mobile Technology MK-36 (2.0
GHz), with 2 GB RAM. The operating system was a
Linux distribution, namely Ubuntu with the 2.6.24-19-
generic (x86 64) kernel; we used TinyOS version 2.1. For
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Figure 3. Simulation results

(a) (b) (c)

Figure 4. Average Simulation RTT. (a) RTT for two real nodes, 1 hop away; (b) RTT for virtual node to real node, 1 hop away; (c) RTT for main
application node to sub-application node, 1 hop away.

actual nodes, we chose the common TelosB motes, that
mount a Texas Instrument MSP430 microprocessor and a
Chipcon CC2420 radio chip; such nodes do not need a
separate programmer, and are also equipped with embedded
sensors; experiments were carried on by directly connecting
them to the PC through their USB interface.

First of all, we wanted to assess the capability of our
framework to provide soft real-time simulation, i.e. we want
to measure how close is simulation processing time to real
processing time. We considered topologies with a number
of nodes ranging from 10 to 100, deployed according to
a uniform random distribution, and used the BlinkToRadio
application, i.e. a simple demo application that triggers

periodic message sending from each node. The message
sending period for the application was set to τ = 1s, and
we measured the interval between the times at which two
consecutive sending events are popped out of the manage-
ment queue and processed. In the ideal case, this should be
equal to τ , and the difference represents the timing error
due to simulation overhead. Figures 3a-3c show the error
for topologies with 10, 25, and 50 nodes respectively. Each
point was computed as an average among the nodes in the
topology, and across 5 different runs.

Figure 3d plots the error as a function of the number of
nodes in the network; in our implementation a number of
nodes higher than 50 causes a noticeable error, likely wors-
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Figure 5. Decoupling the RTT components for two single hop scenarios involving virtual nodes.

ened by the intrinsic non parallel nature of the underlying
TOSSIM simulator.

In order to obtain a useful comparison, we reproduced
some of the experiments reported in [16]; in particular, we
consider the communications between two nodes running
different applications. We measured the RTT of a transmis-
sion between a virtual node in the main simulation applica-
tion and an actual node, as well as the RTT between the main
simulation application, and another simulation application.
Figure 4a represents the base case, and shows how RTT
varies for the communication between two real nodes; the
histograms show that the most frequently occurring RTT
is slightly higher than 20ms. The same code used for real
nodes is also used to repeat the experiments with the virtual
topology, and Figure 4c shows the distribution of average
RTT on a single hop (main application to sub-application,
both with virtual nodes). Finally, Figure 4b shows the
same measurement, but this time regarding the virtual-actual
communication. The three distributions present a similar
shape, although the highest frequency RTT in cases (b) and
(c) is consistently higher that the base case. It is worth
noting that we had to modify the CSMA/CA mechanism
used by TOSSIM as it implemented a backoff strategy that
forced nodes to randomly delay their initial transmission;
this produced an almost uniformly spread distribution for the
RTT values, corresponding to a very high variance (this only
regarded the initial transmission; the backoff mechanism for
collision recovery was not modified).

Figure 5 is meant to provide some insight on the cause
of higher RTT values for simulation than in the real case;
in fact, when we divide the total average delay into its
components (i.e. the routing delay, RDavg and the event
handling time, HTavg) we notice that the second component
is predominant. This means that the main source of delay is
due to TOSSIM event handling, whereas the time spent bu
our framework for routing purposes is minimal. The “routing
delay” between a virtual and a real node is on average
19.67ms, while in the case of two virtual nodes belonging

to different applications this is 2.58ms.

V. CONCLUSION AND ON-GOING WORK

We presented here a hybrid simulation framework that ex-
ploits the interaction between virtual and actual sensor nodes
in order to provide reliable simulation. We have showed how
the resulting simulator has promising characteristics in terms
of soft real time requirements; together with the possibility
of running the same code both in simulation and in the
deployed nodes, we believe that the presented tool might
represent a valuable support during WSN prototyping.

Our current research aims to investigate a way to further
improve the performance of our tool, and we believe that the
main issue to be addressed relies in the intrinsically sequen-
tial nature of the underlying simulator, so we are currently
investigating on possible parallelization techniques.

Moreover, we want investigate the potentialities of the
presented approach as regards its use as a model generator,
with particular regard to the exploitation of hidden correla-
tions among actual sensed data.
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