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Abstract—Detecting element failures is a relevant issue in
distributed systems. A fault tolerant system needs to detect
a failure and recover from it promptly. In fact, traditional
approaches to fault tolerance are usually not completely free from
errors during the failure detection phase; a good failure detector
is thus a very important component of them to minimize these
errors. In this paper we present a failure detector able to monitor
both asynchronous and synchronous elements of a distributed
system by exchanging messages with the monitored elements.
In order to assess the health status of monitored elements our
failure detector relies on a simple query/ACK mechanism, which
however requires a reliable timeout estimate in order to properly
set the monitoring interval. To this purpose our failure detector
uses the history of past estimates to compute new values for
both quantities. The model proposed here introduces a new
label to tag monitored elements, besides those used in traditional
failures detectors. To evaluate this work, we compared it with
two other algorithms by computing performance metrics, such
as specificity and sensitivity, and by considering the number of
required control packets. We also compared the performance of
the failure detectors by computing their detection time.

I. INTRODUCTION

Network interfaces are nowadays commonly available in
virtually all computing devices, ranging from complex indus-
trial equipments to simple appliances for home automation;
besides mere data exchange, they may be fruitfully exploited
for remote administration tasks, such as for instance system-
wide monitoring of remote elements. The failure detector is
an essential part of the monitoring subsystem and typical
requirements include prompt failure detection and timely error
reporting to the system administrator.

In a distributed system, the QUERY/ACK method is a basic
mechanism to monitor an element, and it is characterized by
two parameters: the monitoring interval and the timeout.The
monitoring interval is the time elapsed between two checks,
whereas the timeout is the time spent by the failure detector
waiting for a response message from a monitored element.
Computing accurate values for the two previous parameters
may be very challenging, because of variations in both the
network state and in the workload of each monitored element.

Chandra and Toueg [1] defined the basic concepts for
unreliable failure detectors; those may incur into errors about
the health status of a monitored element especially due to
variations in the system workload. The same authors define
possible tags for an element as: alive or suspected.
An element will be tagged as alive if the failure detector
receives a response to a control message within the timeout

value. Otherwise, it is suspected, implying that the failure
detector believes that the monitored element has crashed.

Furthermore, we can distinguish between two types of
elements with respect to their activity. Periodic elements are
characterized by a cyclic job; for instance, they may gather en-
vironmental data at fixed time intervals. On the other hand, the
activity of non periodic elements is modeled via asynchronous
events: for instance they may be only triggered on demand.
One of the tasks of a failure detector is to estimate the timeout
and the monitoring interval, so as adapt to the workload
of any element; however this may be very challenging in
the asynchronous scenario. This work is aimed to address
generic scenarios, possibly including both kinds of elements.
For instance, in an asynchronous scenario where an element
has not been used in a long time, the failure detector would
adapt to a low workload; however, the element could later
be checked while its workload is high, which would surely
affect the response time of the element and would have the
failure detector erroneously generate premature timeout events,
resulting in incorrect labeling of the element as suspected.

The approach proposed here aims to avoid this kind of
premature deductions. If the failure detector checks an element
during a high workload, our approach forces the element to
signal its status to the detector, which would label it by using a
novel tag (busy), specifically introduced here to this purpose;
the timeout and the monitoring interval are computed by using
a statistical approach that takes into account the history of past
estimates.

This paper is organized as follows. The next Section
presents the related works; in Section III we present the details
of our work, namely the model used for the detector and the
approach to estimating the timeout and monitoring time. In
Section IV, the algorithm proposed is compared with the works
presented in [2] e [3]. The last Section presents our conclusion.

II. RELATED WORKS

The authors of [1] classify failure detectors according to two
features: completeness and accuracy. Completeness character-
izes the failure detector capability of suspecting every faulty
process. Accuracy characterizes the failure detector capability
of avoiding to label correct processes as supected.

In [4] two strategies for implementing a failure detector
are presented, namely the hear-beat (or push) model, and
the interrogation (or pull) model. In the former model, the
monitored element periodically sends a heartbeat message to
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the failure detector. If the failure detector receives the message
within a specific time, the status of the monitored element is
alive, otherwise it is suspected. In the latter model, it
is the failure detector that periodically sends a message to
the monitored elements. If the element replies to the failure
detector then its status is alive, otherwise it is suspected.

Another model has been presented in [5], called dual model.
This model combines the advantages of both the previous
models; as in the pull model, the failure detector sends a
message to an element, which however replies as described
in the push model. The failure detector tags an element as
suspected if a reply is missing twice consecutively.

The authors of [1] also define a taxonomy for classifying
fault detectors with respect to completeness and accuracy; in
particular, they define:
• strong completeness: eventually every process that

crashes is permanently suspected by every correct pro-
cess;

• eventual weak accuracy: there is a time after which some
correct process is never suspected by any correct process.

In this taxonomy, our approach may be classified as even-
tually strong (�S).

The following works show different failure detectors based
on Chandra e Toueg’s considerations. In [2] a failure detector,
named ADAPTATION, that implements the dual model is
presented. It uses two algorithms to adapt the timeout and the
monitoring time to the actual workload of the system using the
history of past values. The estimate is based on an empirical
approach.

In [6] a failure detector based on the heart-beat model is
presented, which however does not rely on a centralized failure
manager. Each element has an instance of the failure detector.
The novelty of this approach is that the failure detector is used
only if the failure actually occurs. Two types of messages
are used: the application message and the control message.
The first one is used for data exchange, whereas the second
one is used to discover the status of other elements. If the
elements are communicating through an application message,
control messages are not used. Only in case of communication
problems, the failure detector uses a control message.

The authors of [3] presents DPCP (Discard Past Consider
Present), which is applied both to the push and pull model.
The algorithm calculates the timeout and the monitoring time,
and those values are controlled by the frequency of fault
monitoring messages. It is worth noting that increasing the
monitoring frequency, the algorithm adapts the timeout to the
system workload; moreover applying the algorithm to the push
model fewer timeout false events are produced. DPCP does
not use a particular technique for estimating the timeout; the
results of the experiments are proven by running the algorithm
with different values of monitoring interval and the history of
previously samples is not considered.

In [7] the authors present a failure detector that implements
the heart-beat strategy. This work introduces an estimator for
the arrival time of messages, and an adaptor of QoS with
respect to the needs of the application. This algorithm is based

on all-to-all communication, where an element periodically
broadcasts a heart-beat message via IP-Multicast. The algo-
rithm is formed by two layers. In the first the arrival time
of heart-beat message is calculated, and the algorithm finds a
tradeoff between the number of false timeout events and the
precision in the detection of a failure. In the second layer the
timeout moderator is introduced. This value is incremented
when a timeout event occurs.

In [8] a failure detector based on the previous algorithm
is described, and similarly to the previous approach, the
arrival time of heartbeat messages is estimated. The difference
between the two works lies in the estimator of that parameter.

All the mentioned works implement similar approaches to
failure detection in that elements are allowed only two statuses;
we intend to propose here a variant of the traditional approach,
by introducing a new label to refine the diagnosis of the status
of an element, as will be explained in the following.

III. THE PROPOSED FAILURE DETECTOR: FDAE

Our work aims to detect potential failures in a distributed
system, and considers its composing elements, or processes,
as communicating through a QUERY/ACK mechanism. Fol-
lowing the traditional approach, we assume a reliable and
secure communication channel for message exchange among
elements, so that the only possible reason why a message does
not reach its intended destination is that the receiving element
has crashed.

The strategy adopted in this work extends the dual-model
presented in [5], and also adopted in [2]. In our model after two
missing replies to check messages, the suspected element is
excluded from the list of elements to be checked later; however
a suspected element that later becomes alive again will be
recognized by the failure detector during a discovery phase
that would restore the normal control loop.

In an actual application scenario, elements would act as
service providers for the users, so that it is crucial that they
are always alive, and we can distinguish the two mentioned
kinds of elements: those which periodically execute a task,
and those which are only occasionally triggered; we thus
need a monitoring system to promptly detect potential element
failures. We describe the system model in the following
subsection using the same mathematical notation as in [7]
and [6].

System Model

The system is composed of a finite set Π of elements
Π={p1, p2, ..., pn} monitored by a failure detector q. Each
monitored element has a unique id and it may rely on other
elements to complete its primary activity. The failure detector
keeps a model qpi

for each monitored element. We introduced
in the model a variable 4w, it keeps the time spent by each
element for its activity.

We want to specifically address the case when an element is
checked while it is carrying on a time-consuming task, as this
might lead the failure detector to generate false timeout events
following one of the traditional approaches, and consequently
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Algorithm 1 Discovery
(1) begin thread Sender
(2) sendDiscoveryMsg();
(3) setNextDiscoveryT ime(discoveryT ime);
(4) sleep(discoveryT ime);
(5) end
(7) begin thread Receiver
(8) element p = ReadElement();
(9) p.status = alive;

(10) thread Check Element(p);
(11) end

label the element as suspected. In the considered scenario,
this might happen because the reply of such element would
likely be slower than the one of a low-workload element. In
oder to avoid premature timeouts, and to minimize the number
of false failures detections, the tag busy has been introduced,
and its use is as follows.

The Failure Detection Algorithm

The failure detection algorithm proposed here is composed
of two phases:
• discovery: where the failure detector looks for the element

to monitor;
• check: where the failure detector assesses the status of a

monitored element.
The discovery phase, presented in Algorithm 1, is performed
during the initialization of the system, when the failure detec-
tor q sends a multicast discovery message via the sendDiscov-
eryMsg() function in order to identify all the elements installed
in the distributed system. A generic element pi receives the
discovery message and replies to the failure detector q by
sending its id. The id stores the element network address,
and will be used by q during the check phase to access pi.
Upon reception of pi’s id, q will create the corresponding
model qpi

. This is a periodic phase, this needs to update
the list of elements attached to the distributed system, and
discover new elements. This phase implements a plug and play
protocol. The discovery phase is repeated with a period equal
to discoveryTime (it is important to note that the discovery
time is different from the monitoring interval), and each
element found in this phase is tagged as alive. The errors
of evaluation made by the failure detector are repaired thanks
to the periodicity of this phase. In fact, if q tags pi as
suspected in two subsequent check phases, the element is
no longer checked. If pi is not really suspected, it could be
attached to q in the next discovery phase, and its label will be
again alive. In this case, where the failure detector makes
mistake, the pi element will remain suspected for a max
of 2 ∗ discoveryT ime.

Algorithm 2 illustrates the check phase. Here the main job
of the failure detector q is to check the status of an element
pi. Through the function controlMsgTo(element), presented in
Algorithm 3, q starts a QUERY/ACK session to perform the

Algorithm 2 Check
(1) begin thread Check Element(element p)
(3) test = controlMsgTo(p)
(5) if (test.event == alive)
(6) p.timeout = SetNextT imeout(p.rtt);
(7) p.status = test.event;
(8) p.testDelay = SetNextTestDelay();

(10) else if (test.event == busy)
(11) p.timeout = SetNextT imeout();
(12) p.status = test.event;
(13) p.testDelay =
(14) SetNextTestDelay(p.workingDelay);
(16) else if (test.event == suspected)
(17) p.timeout = SetNextT imeout();
(18) p.status = test.event;
(19) p.testDelay = SetNextTestDelay();
(20) fi
(21) end
(23) sleep(p.testDelay);
(24) end

Algorithm 3 Send Control Message
(1) begin controlMsgTo(element p)
(2) test e = null;
(4) try{
(5) rttSession = timestamp(now);
(6) connectTo(p);
(7) event = waitingEvent(p.rtt);
(8) if (event == alive)
(9) rttSession = timestamp(now)− rttSession;

(10) test e.rtt = rttSession;
(11) test e.status = event.status;
(12) test e.workingDelay = event.workingDelay;
(13) else if (event == suspected)
(14) test e.status = event.status;
(15) fi
(17) }catch(busy exception)
(18) {
(19) test e.status = busy;
(20) }
(21) return test;
(22) end

check, and depending an the return value it tags q as alive,
busy, or suspected; afterwards, q goes into a sleep state.

The traditional approach is shown in Figure 1. The failure
detector q tags an element pi as alive after receiving a reply
to check message within the timeout value. It computes the
round trip time (rtt), and estimates the values for the timeout
and interval time for next check session. In our solution, the
element includes an average value for its 4w into the reply
message.
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Fig. 1. Messages sequence: alive

Fig. 2. Messages sequence: busy

Figure 2 presents the case where the new tag busy is used.
When q wants to check pi but this is carrying on some time
consuming task, it breaks the checking phase generating a busy
exception; q catches it and suspends the check tagging pi as
busy. The failure detector in this case sets the next monitoring
interval based on 4w, because it expects to receive the reply
to check message before that time, in this case q tags pi again
as alive. If q does not receive an answer from pi, it starts the
second check; if during it the status is again busy then q tags
pi as suspected, and it is excluded from the next check
phase. In the scenario where the result of the first check is
suspected, the failure detector does not set the monitoring
interval based on 4w, as presented in Figure 3. The excluded
elements can be re-checked from the failure detector thanks
to discovery phase, already discussed.

In this work we introduce an estimator for the timeout
and the monitoring interval. The estimator is implemented for
elements with unsynchronized clocks. We estimate the arrival
time and the timeout using a statistical approach, and we
compute the safety margin dynamically. The failure detector
is modeled to be used a over long period of time, so that
it needs to adapt at run-time to variations of workload of
monitored elements and in network bandwidth. The rtt is
measured only when the status of element is alive. If the
element is busy or suspected the reply to check message
is missing, so the rtt value cannot be properly measured.
In the present work the rtt is used to compute the timeout
and the monitoring interval. The first one depends directly
on state of the element, while the second is computed from
first, considering the 4w. Our estimation follows the same

Fig. 3. Messages sequence: suspected

principles followed for the assessment of the timeout in the
TCP protocol, presented in [9]. Before estimating the timeout
and the monitoring interval, the estimated round trip time
(ertt) is computed using the Exponential Mobile Average
(EMA) considering a window w of samples; Simple Mobile
Average (SMA)is used to compute the first w values of ertt:

ertti(ertt, w) = SMAi(rtt, w) =
∑w−1

j=1
rtti−j

w

for the following values the formula below is used:

ertti(rtti, w) = ertti−1 + k ∗ (rtti − ertti−1)

the estimate may be tuned by acting on the k parameter, which
allows recent samples to weigh more than past ones. The
parameters is set as follows:

k = 2
w+1

Finally, the value of timeout is computed by increasing to
ertt estimate with safety margin 4σ , which varies based on
the status of an element, as specified below;

timeout = ertti+4σ ∗
{ Ca if status = alive

Cb if status = busy
Cs if status = suspected

where 4σ(i) = β ∗ 4σ(i−1) + (1− β) ∗ ‖ertt− rtt∗‖
and the coefficients of Ca, Cb, and Cs are respectively set to
4.2, 4.0, and 3.8; they are empirically chosen.

To compute the monitoring interval we used the value of
the timeout, correcting by adding the previous ertt to give it
a safety margin.

monitoring interval = timeout+ ertt+{
4w if status = busy

0 if status = suspected ∨ alive

IV. EVALUATION OF FAILURE DETECTION

The present Section deals with the evaluation of our pre-
viously described approach to failure detection in terms of
assessing the classification of the status of each monitored
element. On one hand, we would like to minimize the number
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Fig. 4. TD : Detection Time

of false negative detections, so that most failures are correctly
discovered; on the other hand, the number of false positive
detections must also be kept low since a false alarm on a
healthy element would trigger an expensive and unnecessary
mechanism of failure repair. Any element in our experimental
scenario is characterized by an unpredictable workload, which
makes the estimation of appropriate values for the timeout and
monitoring interval difficult; overestimating such quantities
would result in delaying failure detection, whereas underes-
timating them may possibly lead to false detections. In [10],
the authors present the metric to evaluate the speed of failure
detectors, which is the time elapsed from the moment when
an element pi crashes to the time when the failure detector
starts suspecting it permanently, as shown Figure 4; this time
is called detection time (TD).

In order to assess the behavior of our failure detector, and
to compare it with other approaches proposed in literature, we
consider two parameters, namely specificity, and sensitivity;
moreover, in order to get some insight on the performance of
FDAE, we consider its impact on the network load, by mea-
suring the number of required control packets. The two former
indices are statistical measures of the reliability of a classifier;
in particular, sensitivity measures the ratio between the number
of elements correctly labeled as healthy and the total number
of elements labeled healthy; specificity analogously measures
the proportion of elements correctly labeled as faulty.

In our experimental setting, the failure detector q and all
monitored elements pi reside on different computers connected
via a LAN; we systematically generate failures on the pi’s
and log the behavior of q. We consider two representative
scenarios: in the former one, an element pi carries on a
periodic task, resembling the typical process for acquiring
environmental data, whereas in the latter we consider a non
periodic task, varying both in duration and in the time of
occurrence, similar to the one of a process controlling some
mechanical device (e.g. an RFId device for access control).
We artificially add short random failures in both cases.

For the periodic element, we set an alive period of 120 s,
followed by a busy phase of 2 s; while assessing algorithms
that do not consider the busy tag, we assume a period of
122 s for a comprehensive alive phase. As regards the
non periodic element the duration of the alive phase is in
the range 1 − 120 s, while the busy one lasts between 5 s
and 10 s. In both cases, failures occur randomly according
to a uniform distribution with a probability of 0.2, and their

TABLE I
PERIODIC SCENARIO

DPCP ADAPTATION FDAE
sensitivity 0.96 0.91 0.96
specificity 0.97 0.49 0.95
# ctrl pkts 109,558 7,020 4,430

TABLE II
NON PERIODIC SCENARIO

DPCP ADAPTATION FDAE
sensitivity 0.95 0.90 0.96
specificity 0.96 0.36 0.93
# ctrl pkts 113,081 8,552 4,089

duration varies in the range 10 − 15 s. Each experiment has
been repeated 10 times and its duration was 20 m; during each
run, FDAE was executed together with instances of the DCPC
and ADAPTATION algorithms, for comparison.

In our context, specificity measures the percentage of cor-
rectly detected failures, and is defined as:

specificity =
#true failures

#true failures+ #erroneous failures

Sensitivity indicates the percentage of correctly detected
healthy elements, and is defined as:

sensitivity =
#true healthy

#true healthy + #erroneous healthy

Table I and Table II show the average values measured
during the experiments for all three algorithms.

We can see that both FDAE and DPCP outperform ADAP-
TATION in the periodic scenario, thanks to their capability
to adapt to the periodicity of the element workload; both
those algorithms present few detection errors, however in this
scenario our approach uses fewer control packets as compared
to the DPCP algorithm.

On the other hand, in the non periodic scenario the three
algorithms present similar values of sensitivity; however con-
sidering the specificity, our approach present a better tradeoff
between the number of packets used to monitor an element
and the performance metric.

The number of packets is used to highlight the overhead
that each protocol imposes on the use of the bandwidth;
FDAE outperforms the other algorithms in this respect. More
specifically, our experiments allowed us to notice that, while
the number of packets sent when an element is alive is
comparable for all algorithms, FDAE heavily reduces the
number of packet sent during the busy period. Our failure
detector does not repeatedly check the element, but it just
simply waits for a potential reply (see Figure 3); finally,
our adopted policy allows the element to signal when it
busy period ends so that in the suspected case it sends
a maximum of two packets. Considering the same scenarios,
we measured TD for each of the implemented algorithms; the
results are shown in Table III. These values emphasize the
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TABLE III
SPEED OF FAILURE DETECTORS

DPCP ADAPTATION FDAE
detection time (ms) 7.10 49.20 4.76

speed of our algorithm as compared to the two other reference
algorithms. It is worth noting that FDAE outperforms both
DCPC and ADAPTATION, and only DCPC gets closer to our
algorithm, although it requires a much larger number of control
packets, as discussed before.

V. CONCLUSION

Monitoring systems rely mainly on the reactivity of the
failure detector. Our work shows a failure detector whose
difference with the traditional approaches consists in precise
identification of an uncertain status of a monitored element,
due to its workload, via the introduction of a new tag.

Additionally, our implementation allows easy installation of
additional elements in the system, thanks to its discovery phase
that allows for their recognition at run-time. Our experiments
proved that our approach has significative performance with
respect to other state-of-the-art algorithms, as shown by the
analysis of proper performance metrics.

We intend to pursue further research on this topic, possibly
using this algorithm as the basis for a self-healing component
of an autonomic system.
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