» UNIVERSITA Q
gj& 2 DEGLI STUDI ND S"
DI PALERMO

HETWCRE NG AND CINTEITED WWET1E

]’)Iss\\“{S RESEARCH GROUP

A TRNG exploiting multi-source physical data

Article

Accepted version

V. Gaglio, A. De Paola, M. Ortolani, G. Lo Re

In Proceedings of the 6th ACM workshop on QoS and security for
wireless and mobile networks, 2010, pp. 82-89

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: ACM

http://dl.acm.org/citation.cfm?id=1868630.1868646

NDS LAB - Networking and Distributed Systems
http://www.dicgim.unipa.it/networks/

A TRNG Exploiting Multi-Source Physical Data

Vincenzo Gaglio

vincenzo.gaglio@gmail.com

Marco Ortolani.
ortolani@unipa.it

Alessandra De Paola
depaola@unipa.it

Giuseppe Lo Re
lore@unipa.it

Department of Computer Engineering
University of Palermo
Viale delle Scienze, ed 6. - 90128 Palermo, Italy

ABSTRACT

In recent years, the considerable progress of miniaturiza-
tion and the consequent increase of the efficiency of digital
circuits has allowed a great diffusion of the wireless sensor
network technology. This has led to the growth of appli-
cations and protocols for applying these networks to several
scenarios, such as the military one, where it is essential to de-
ploy security protocols in order to prevent opponents from
accessing the information exchanged among sensor nodes.
This paper analyzes security issues of data processed by the
WSN and describes a system able to generate sequences of
random numbers, which can be used by security algorithms
and protocols. The proposed True Random Number Gener-
ator (TRNG) exploits measurements obtained from sensor
nodes, in order to allow every node to produce random data
upon request, without involving a trusted third party. The
proposed TRNG behavior has been tested by carrying out
the NIST tests, and the obtained experimental results indi-
cate the high degree of randomness of the produced numbers.

Categories and Subject Descriptors

G.3 [Mathematics of Computing]: Probability and Statis-
tics—Random number generation

General Terms

Algorithms, Experimentation, Measurement, Security, Ver-
ification

Keywords

Wireless Sensor Networks, Random Number Generator, Net-
work Security

1. INTRODUCTION

One of the most challenging issues in wireless sensor net-
works research field concerns security. Securing applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Q2S8Winet’10, October 20-21, 2010, Bodrum, Turkey.

Copyright 2010 ACM 978-1-4503-0275-3/10/10 ...$10.00.

based on sensor networks may boost their use in several
areas, first of all the military one. Different technologies
have been developed to achieve this target, but these at-
tempts have been hindered by the difficulty in generating
and distributing session keys or public and private key pairs
necessary for encryption algorithms.

The Identity-Based Encryption (IBE) [7] is a possible so-
lution for this issue. Such system makes use of the node
identifier (node ID) as public key, thus avoiding the expen-
sive operations needed for key generation and distribution.
In this case, the key exchange protocol requires the genera-
tion of one or more session keys needed for two entities that
intend to communicate, and uses completely random “nonce”
values during the distribution phase. The keys/nonce could
be precomputed and sent to the nodes involved in message
exchange; otherwise nodes could compute the necessary in-
formation when needed, thus avoiding security issues about
key management and distribution. Authors of [4] propose
TinySec, the first link layer security architecture for wire-
less sensor networks. This security system is based on the
use of a block cipher, RC5 or Skipjack, with a Cipher Block
Chaining encryption scheme. In this case the manufacturer
could store the key and the initialization vector on the sen-
sor node; this would lead to remarkable risks since an op-
ponent could obtain this information and decrypt all data
exchanged between sensor nodes, as it is sufficient to know
the information inserted by the manufacturer.

Another possible solution is to use one of the publicly
available sequences of random numbers. However they rep-
resent a very limited source as compared to the potential
requirements of an application. An opponent can also easly
obtain these numbers by knowing the data set being used;
this represents a great risk for the security of applications
based on it.

A valuable alternative consists in allowing each sensor
to use a “secret” information obtained through a true ran-
dom number generator. Most existing generators are devices
based on microscopic phenomena such as thermal noise, pho-
toelectric effect or other quantum phenomena. Intel devel-
oped a chip for sampling thermal noise by amplifying the
voltage measured on a resistor [3]. A Bell Labs group pro-
duced a technique based on response time variations of the
requests read from a hard drive sector [2]. These techniques
ensure security of a large number of applications, which of-
ten use random bit sequences as keys for the symmetric en-
cryption algorithms. Instead of computing the sequence of
random numbers and sending results to the sensor nodes, an

alternative approach is to allow each node to autonomously
compute the necessary security information.

In [1] Francillon et al. present TinyRNG, a Cryptographic
Pseudo-Random Number Generator for wireless sensor net-
works. Their generator uses the transmission bit errors as
the source of randomness. Due to their unpredictability,
these errors are difficult to observe and to be manipulated
by an opponent. The generator output depends on its initial
state, assigned through an initial secret key, whose value is
set in order to tune the behavior of all remote nodes consti-
tuiting the WSN. This seed is generated by a central work-
station, which exposes the whole system to possible attacks
by an opponent trying to guess the secret key.

We propose a True Random Number Generator which uses
a non-deterministic source to produce randomness, namely
the physical quantities measured by the sensor nodes. This
system produces sequences of random numbers using the
information about temperature, humidity and light expo-
sure detected by the sensor nodes. This mechanism exploits
common off-the-shelf sensor network technology and does
not require any dedicated hardware. Moreover, the absence
of any secret seed, generated in a centralized way, decreases
potential system vulnerabilities.

We evaluated our system performance by using the tests
presented in NIST Special Publication 800-22rev1 [8], in or-
der to detect possible non-randomness in the produced se-
quences. Test execution provides encouraging results, allow-
ing us to conclude that, with high probability, the generated
sequences are truly random.

The rest of this paper is organized as follows. Section 2
introduces the concepts related to the random number gen-
eration and techniques used for testing and correcting an ex-
isting generator. Sections 3 and 4 give a detailed description
of the proposed random number generator and its integra-
tion with a tool previously developed at our Department for
hybrid WSN simulation [5]. Section 5 presents the statistical
tests used for system validation, and analyzes the obtained
results in comparison with another well-established TRNG.
Finally, in Section 6, we discuss future developments of our
approach.

2. RANDOM NUMBER GENERATION

Security of many cryptographic systems is based on the
generation of unpredictable quantities. These random num-
bers play a key role in both symmetric encryption, and pub-
lic key cryptography. For instance, the value produced by
a random number generator can be used as keystream for
the One-Time Pad cipher, or as secret key of DES algo-
rithm or else as “nonce” value used for mutual authentication
schemes. In all these cases, the exploited values should be
random so that the probability of selecting a given value is
small enough to prevent opponents from guessing the num-
ber. For example, suppose that an encryption algorithm
uses 256 keys; if a secret key k is selected using a true ran-
dom number generator, an opponent will be forced to try on
average 2°° keys before finding the correct key [10]. Instead,
if the key k is selected by choosing 16 random secret bits,
expanded to 56 using a well known function f, then it will
be sufficient for the opponent to try only 2'° values.

Typically, instead of truly random numbers, applications
use sequences of pseudo-random numbers that are in fact
obtained through a deterministic procedure using a small
set of initial values, called “seeds”. These numbers resemble

those generated by truly random processes with respect to
their statistical characteristics, although they can be easily
reproduced starting from the knowledge of the initial seeds.

2.1 True Random Number Generators

A True Random Number Generator (TRNG) uses a non-
deterministic source for producing the necessary random-
ness. These generators are based on stochastic sources in-
fluenced by unpredictable natural processes. However, the
devices used for the random numbers production are often
prone to errors or failures. Thus, it is necessary to periodi-
cally perform statistical tests in order to verify the goodness
of the generator.

Numbers produced by a TRNG can be used straightaway
or they can be fed into a pseudo-random number genera-
tor; for direct use, it is necessary to meet specific criteria of
randomness, measured by applying statistical tests, in order
to determine whether the source is truly random or not [8].
Some physical processes can produce correlated and biased
bits; for this reason a de-skewing technique could be used,
in order to correct erroneous bits produced by a “faulty”
generator. For instance, let us consider a sequence of bits
which are uncorrelated but biased, where the probability of
producing a bit 0.is p. It is possible to combine group of
bits in order to reduce the bias effect; in this example it is
enough to group bits in pairs, thus obtaining the symbols
00, 01, 10, 11, associated to probability values respectively
equal to p?, p(1 — p), (1 —p)p, (1 —p)?. In order to obtain
a source of information in which symbols are equiprobable,
it is sufficient to discard 00 and 11 and to transform the 10
and 01 respectively into 1 and 0. The resulting sequence
will contain unbiased and uncorrelated bits. In general, a
practical method for de-skewing is to process the bit stream
with a cryptographic hash function like MD5 or SHA-1.

We list below some physical processes used for random
number generation:

e Time interval between the emission of two particles
during radioactive decay or the emanation of photons
in a semiconductor;

e Frequency instability of an oscillator;

e Air turbulence inside the disk’s enclosure causing fluc-
tuations in time required for readings;

e Thermal noise produced by a semiconductor;

e Atmospheric noise, detected by a radio receiver at-
tached to a workstation;

e Sound detected from a microphone;
e System clock;
e Time spent during keystrokes or mouse movements;

e System load and/or network statistics.

It should be noted that generators based on the phenomena
listed above may be observed or manipulated by an oppo-
nent.

BS TRUE
— Main RANDOM
: \\ Component NUMBER
_. P GENERATOR
o=
1 e * Thread 1
Thread 2
A Data Encrypt
Rando
Collector = Manager Nul;b:— Thread 3
Deskewing == Prepr » MAC » Writer
HMAC CMAC B
_.’ Thread n l

Figure 2: Block diagram of the proposed system.

3. THE PROPOSED TRNG

The proposed true random number generator exploits mea-
surements gathered by nodes of a wireless sensor network
in order to produce random numbers on board and on de-
mand. These features allow to avoid storing and transmit-
ting sensitive information, thus reducing vulnerabilities in
the network. The system can also coexist with other appli-
cations running within the WSN, which use the information
about temperature, humidity and light exposure in order
to perform their task. Sensory measurements derive from
a physical process that can be considered as a stochastic
source and that is characterized by a suitable entropy level.
In particular, the considered information sources, namely
temperature, humidity and light exposure sensors, present
a value of entropy per bit equal to 0.54, 0.71 and 0.66. Sen-
sory measurements are the seeds of a process whose goal is
to perform de-skewing and to add diffusion and confusion,
in order to improve the statistical profile of the produced
number sequence.

This process is based on hash functions and Message Au-
thentication Code (MAC) algorithms. The former scatter
the statistical structure of the input into large-range statis-
tics of the output; this goal is achieved by increasing the
number of input digits that affect a single output value. Just
as an example, let us consider the following naive hash func-
tion:

t—1

2= (&= 2); (1)

=0
Sensory Random
Dat . Number
_aa’ Deskewing =——» Preprocessing ——p MAC ﬂ;—

Figure 1: Process flow: from sensory data to random
numbers.

where the resulting value z; at time ¢ is produced by exploit-
ing all the previous received values x; withi =0,1,2,....t—1.
MAC algorithms, on the other hand, allow to increase con-
fusion in the produced output, by making the relationship
between the input and output statistics as complex as pos-
sible; this goal is achieved by applying a strong substitution
algorithm [9)].

We developed and tested this system using a wireless sen-
sor network formed by TelosB motes. The only necessary
requirement for this WSN is the presence of at least two
sensor nodes: one for sampling sensory data and forwarding
them to the other, and the second node acting as Base Sta-
tion, and processing gathered data in order to produce the
random number sequence. The Base Station processes re-
ceived data by using a de-skewing technique, and applying a
pre-processing phase whose purpose is to remove redundant
information and obtain the randomness degree required for
the generator; the results thus obtained are then passed to a
MAC algorithm, whose task is to further shuffle bits for in-
creasing diffusion and confusion over the data. This process
flow is shown in Figure 1.

The Base Station core is designed according to the multi-
thread paradigm, where a main thread is responsible for
coordinating a thread pool, in which each one is responsi-
ble for measurements processing related to a specific mote
of the network (see Figure 2). The DataCollector module
addresses the gathering, de-skewing, and pre-processing of
raw data received from sensor nodes. The result produced
by the preprocessing phase is then inserted within a win-
dow buffer, containing all the sensory information that will
be processed by the MAC algorithm. The EncryptManager
module manages data encryption using the MAC Encoder,
with the required key and initialization vector. Once the
generation process is completed, the RandomNumber Writer
module passes the produced random number to the oppor-
tune application.

The proposed system allows users to customize the TRNG
behavior by tuning the preprocessing and MAC phases.

The main goal of the preprocessing phase is the improve-
ment of the statistical profile of the sequence of values, by

increasing the conditional independence of a value with re-
spect to the previous ones. To achieve this goal we do not
consider the direct output of the entropy source, rather dur-
ing this phase we extract the small and unpredictable vari-
ations among consecutive sensory readings.

This preprocessing phase can be tuned by selecting one
out of three available techniques: XOR, MSE or Residuals.
The first method consists of performing an exclusive dis-
junction between “unique” data present within each packet.
Every data block consists of M sensory measurements, each
occurring multiple times within the same packet. In our
implementation the value of M is set to 10. Each measure-
ment is identified by a string of 8 or 16 bits depending on
the type of sensor used: temperature sensors produce binary
sequences of 16 bits, whereas light sensors whose output is
of 8 bits. If the message contains M distinct sensory mea-
surements z; with 0 < i < M —1, then the system computes
the resulting bit string Yxor as:

Yxor = Xo ® X1 ® Xa...... D Xaro1. 2)

The second preprocessing method is based on the compu-
tation of the Mean Square Error (MSE) on the average of
received sensory measurements. The global mean at time
tn, can be obtained by dividing the sum of the average val-
ues computed on each packet (mean;, with 0 <k < N —1),
by the number of messages received so far:

Eg:_olmeanti

global_mean;, = —N (3)

with
yMOrX; .
o 2 ()
where X is the i-th measurement present within the packet
received at time t¢r and meany, is the mean computed on
the packet. Computing the global mean does not introduce
a significant delay in the random number generation, but
only a small initial latency due to filling the buffer of mean,
values.
After determining the global mean, the system will esti-
mate a Mean Square Error, using the following equation:

meany, =

YMIY(X; — global-meany ,)*

. 5
I (5)

The third and last preprocessing technique relies on the
computing of residuals associated with each measurement
X, according to the following equation:

Yrmse =

Yres = (Xi — global_meany), (6)

where the global_mean;, is computed as in equation 3.
Numbers produced by the preprocessing phase are stored
in a window buffer used to keep track of past values. The En-
cryptManager component of each thread computes a MAC
over data inside the buffer, and the resulting output repre-
sents the random value produced by the system. The size
of the buffer is one of the system parameters which can be
set by users. It is worth noting that a large buffer allows
users to keep track of a larger amount of past measurements
and consequently it could contain a greater variety of values.
This increases the randomness of the system at the cost of
an increment of the system load. Data input in the window
buffer is performed according to a first-in-first-out policy: a
new value is put on the last free position obtained after a left
shift of the buffer, thus removing the oldest measurement.

In order to customize the MAC phase, the proposed sys-
tem allows users to select one out of two different MAC
algorithms based on hash functions and block ciphers, re-
spectively:

e HMAC (keyed-Hash Message Authentication Code)
with either SHA-512 (Secure Hash Algorithm) or MD5
(Message Digest Algorithm 5);

e CMAC (Cipher-based Message Authentication Code),

choosing between three symmetric encryption algorithms,

DES (Data Encryption Standard), 3DES (Triple Data
Encryption Standard), and AES (Advanced Encryp-
tion Standard), as block cipher.

The MAC is computed on the WindowBuffer using a dif-
ferent key for each received message. The method used for
computing the key varies according to the different types
of MAC and the relative encryption algorithm. The key
used for CMAC with DES changes for each iteration and
its value is the sum modulo 2% of the previously computed
MAC codes. The current value is stored within a register
which is updated after receiving each packet (see Figure 3).

K
Window CMAC
Buffer (DES)
o Register

Figure 3: CMAC computation on the WindowBuffer
using the register value as key.

Triple DES is another mode of DES operation. It takes
three 64-bit keys, for an overall key length of 192 bits. Our
CMAC uses 3DES with two 64-bit keys, exploiting the same
key for the first and third 3DES keys. The keys used during
each time step t¢; are given by the values of the register at
the two previous times, ki, , and k¢, ,:

MAth = E(kti—w D(kti—l ’ E(kti—Q) buffer)))v (7)

where buf fer is the content of the window buffer at cur-
rent time step ¢;.

When the selected MAC algorithm is HMAC or CMAC
with AES, the key has exactly the same value of the MAC
code computed in the previous step.

4. HYBRID SIMULATION FOR WSN

In order to assess the statistical properties of the proposed
TRNG, a set of simulations were performed using the hybrid
simulator for WSN [5], developed at our lab as an extension
of the well known TOSSIM [6], with the aim of support-
ing the development of a wide range of applications whose
outcome is highly dependent on the peculiarities of the con-
sidered deployment environment. The hybrid simulation al-
lows the interaction between real and simulated nodes, and

thus the setting-up of simulation scenarios in which a small
number of real nodes are interspersed into a larger virtual
network.

The use of simulated nodes allows for the generation of
easily scalable scenarios, while nodes deployed in the real
sensor field are used as a complement, in order to gener-
ate realistic data models and to steer the behavior of their
virtual counterpart. The hybrid simulator exploits realistic
models of the data obtained from real nodes, in order to
manage the behavior of simulated ones; thus experimental
evaluation of the proposed TRNG achieves more plausible
results than those given by exploiting only purely mathe-
matical models.

In order to integrate the random number generator with
our simulator, we expanded it with a specific plugin for
TRNG offering the following functionalities:

e Selection of the motes used for generating random se-
quences (TelosB, MicaZ or other sensor nodes);

e Choice of the sensor type offered by the hardware plat-
form selected in the previous step (temperature, hu-
midity or light exposure for a TelosB mote);

e Parameter setting for the random number generator.

Furthermore, users can specify the following input param-
eters, in order to tune the TRNG behavior:

e (Collector Type: the preprocessing technique to be used
for collecting data (XOR, MSE or Residuals);

o Window size: the size of the window buffer;

o MAC Type: the MAC algorithm used for random se-
quences generation (HMAC or CMAC);

e FEncoding Type: the encryption technique adopted by
the MAC algorithm specified at the previous step (DES,
3DES or AES with CMAC, SHA-512 or MD5 with
HMAC);

e Num of bits: maximum number of bits produced by
the system.

5. EXPERIMENTAL RESULTS

Several tests can be applied to a number sequence in or-
der to verify the randomness of its terms. These tests check
for the presence of a specific pattern within the sequence
and produce a statistical value which is then compared to a
critical threshold; if the result exceeds this threshold, then
the sequence may rightfully be considered random. In order
to validate our random number generator we used the NIST
(National Institute of Standards and Technology) suite [§]
containing 15 statistical tests; each of which uses a different
technique for identifying a possible case of non-randomness
in the input sequences. These tests were developed in order
to evaluate randomness of binary sequences having arbitrary
length, produced by both pseudo-random and true-random
number generators, based on software and hardware imple-
mentation, respectively.

The NIST suite contains the following tests:

e Frequency (Monobit), whose purpose is to check whether
the number of ones and zeros in a sequence are ap-
proximately the same as would be expected for a truly
random sequence;

Frequency within a block, identical to the previous ex-
cept for the definition of a fixed block size, M, limiting
the computation;

Runs, determines whether the number of “runs” of ones
and zeros of various lengths is as expected for a random
sequence, where a “run” is an uninterrupted sequence
of identical bits;

Longest Run of ones in a block, checks whether the
length of the longest run of ones within the tested se-
quence is consistent with the length of the longest run
of ones that would be expected in a random sequence;

Binary Matrix Rank Test, computes the rank of dis-
joint sub-matrices of the entire sequence in order to
check for linear dependence among fixed length sub-
strings belonging to the original sequence;

Discrete Fourier Transform, uses peak heights in the
Discrete Fourier Transform of the sequence in order to
detect periodic features in processed data;

Non-overlapping template Matching, determines whether
a generator produce too many occurrences of a given
aperiodic pattern;

Overlapping Template Matching, identical to the pre-
vious except for the pattern detection phase where the
window slides only one bit before resuming the search;

Maurer’s “Universal Statistical”, checks whether or not
the sequence can be significantly compressed without
loss of information, so determining an eventual non-
randomness for high compression ratio;

Linear Complexity, uses a linear feedback shift register
(LFSR) in order to check for randomness in a data set:
random sequences are characterized by longer LFSRs;

Serial, determine whether the number of occurrences
of m-bit overlapping patterns is approximately the same
as would be expected for a random sequence;

Approximate Entropy, as for the previous test, the pur-
pose is to compare the frequency of overlapping blocks
of two consecutive lengths (m and m+1) against the
expected result for a random sequence;

Cumulative Sums, computes cumulative sum of ad-
justed (-1, +1) digits in the sequence and compares
obtained result with that of a random sequence (which
should be near zero);

Random FExcursions Test, computes several cumulative
sums of input sequence and determines if the number
of visits to a particular state (-4,-3,-2,-1 and +1,4+2,
+3,+4) deviates from what one would expect for a
random sequence;

Random FExcursions Variant, identical to the previous
except for the number of states used, eighteen instead
of nine.

5.1 Randomness Evaluation

NIST tests are defined on the basis of some general as-
sumptions that can be made about random binary sequences:

1. Bits are generated according to a uniform distribution;
that is, at any point of a sequence the probability of
a 0 or 1 is equal to % This means that the expected
number of 0 values within the sequence of length n is
equal to 3;

2. Test results remain consistent while varying the scale;
that is, a test can be applied to any number of subse-
quences extracted randomly from the main sequence;
if such a sequence is random, then any extracted sub-
sequence will also be random;

3. Test results remain consistent while varying the seeds:
the generator must produce random sequences even if
starting values change.

NIST statistical tests use the incomplete gamma function,
igamc, and the complementary error function, erfc, for com-
puting reference values on data set:

oo

2 [
erfe(z) = ﬁ/ du; (8)

z

igamc(a, x) = %a)/e*ttafldt; (9)
0

where I'(a) = [e """ 'dt.
0

Each test processes binary data and estimates input pa-
rameters of the functions listed above. The output value
(also called P-value), is then compared to a threshold value,
and if this P-value falls below this threshold then the se-
quence fails the randomicity test; in our experimental set-
ting the threshold value is set to 0.01. Otherwise, for the
chosen test, a sequence satisfies the required property of
randomness. Analysis of test results is performed through
a double check. First of all it is required to compute the
ratio of sequences satisfying a statistical test; then the uni-
formity of the P-values distribution is checked. If both these
approaches fail in producing conclusive results, further tests
should be conducted on different samples of the generator,
in order to distinguish a “statistical anomaly” from a clear
evidence of non-randomness.

The ratio of sequences passing a test can be computed
by dividing the number of trusted bit strings by the total
amount of processed sequences:

) num_of_trusted_sequences
ratio =

10
num_o f_sequences (10)
The acceptable range for ratio values is computed accord-
ing to the following formula:
1—
ratio > p — 3 u, (11)
m
where p = (1 — threshold) = 0.99 and m is the number
of processed sequences. For instance, if m = 10, then the

portion of sequences passing a test should be greater than
0.895607.

Uniformity of P-values distribution may be determined
via the application of an incomplete gamma function to the
P-values (i.e. a P-value of the P-values). The interval be-
tween 0 and 1 is initially divided into 10 sub-intervals, then
system counts the number of P-values lying within each sub-
interval, thus obtaining a histogram of P-values. The follow-
ing equations are then used in order to compute the resulting
overall P-value:

10 m\2
F-mn
xr=y BB (12)
i=1 10
P-value = igamc(9/2, X*/2), (13)

where F; is the number of P-values lying in sub-interval 4
and m is the sequence size. If the obtained value is greater
then 0.0001, then the set of P-values can be considered uni-
formly distributed.

5.2 Test Execution

Tests from the NIST suite were executed on sequences
produced by our TRNG; for the sake of this set of experi-
ments we actually deployed a limited set of TelosB nodes,
and integrated them with additional simulated nodes in or-
der to form a larger hybrid WSN. Actual nodes will provide
the users with a choice of on-board sensors to be used for the
generation process; this choice will affect the performances
of the generator depending on the entropy of the selected in-
formation sources. Tested sequences were obtained by vary-
ing the input parameters, such as the preprocessing tech-
nique and the encryption methods. Experimental results
show that the proposed TRNG passes all submitted tests,
both with respect to uniformity and to ratio, with values
much higher than the thresholds, that in our experimental
setting are set to 0.0001 and 0.895607 values respectively.

In order to verify system robustness when using light ex-
posure sensors, we executed several tests at regular intervals.
In particular, the system was set to perform a test, wait for
completion and restart its execution, every hour; in this way
the behavior of the proposed TRGN has been tested with
different ambient light intensity values and across multiple
days. Figure 4 shows the trend of P-values obtained from
the Frequency Test during a whole day, and shows that the
proposed generator exhibits good properties of randomness
also during the night, using the “noise” received from light
sensors, as each P-value is greater than 0.0001.

In order to evaluate the behavior of the proposed TRNG,
we propose a comparative analysis with respect to the Quan-
tum Random Bit Generator (QRBG) [11], a well known
TRNG, based on the photonic emission in semiconductors
and on the subsequent detection by a photoelectric effect.
In this process photons are casually observed, independently
from each other. Timing information of detected photons is
used for generating random data.

In order to compare the performance of the proposed
TRNG with QRBG, we produced 100 sequences, each com-
posed by 1,000,000 bits. According to equation 11, a test
is rightly considered passed if the ratio of trusted sequences
is greater than 0.960150. As shown in Table 1, experimen-
tal results are similar to those produced by QRBG, with
the two notable exceptions where our TNRG outperforms
QRBG. In particular, we observe that the sequences pro-
duced by our generator pass all the statistical tests, unlike

Table 1: Comparison between the proposed TRNG and the Quantum Random Bit Generator.

STATISTICAL TEST Proposed System QRBG
P-VALUE | PROPORTION | P-VALUE | PROPORTION
Frequency 0.616305 0.9900 0.816537 0.9600
BlockFrequency 0.058984 1.0000 0.637119 0.9900
CumulativeSums 0.739918 0.9700 0.897763 0.9500 *
Runs 0.474986 0.9700 0.366918 0.9900
LongestRun 0.045675 0.9900 0.816537 1.0000
Rank 0.455937 0.9900 0.595549 0.9900
FFT 0.030806 1.0000 0.080519 1.0000
NonOverlapT 0.935716 1.0000 0.494392 0.9500 *
OverlappingT 0.224821 0.9800 0.171867 1.0000
Universal 0.816537 0.9900 0.030806 0.9900
ApproximateEntr 0.162606 0.9800 0.437274 0.9800
RandomExcursions 0.637119 1.0000 0.334538 0.9992
RandomExcurVar 0.706149 0.9844 0.080519 0.9831
Serial 0.851383 0.9700 0.595549 0.9800
LinearComplexity 0.897763 0.9900 0.213309 0.9800
Fragquency of-concept security application for WSN in order to show

1,00000
P-value
(log scale)
0,10000
V "~ 0,066882
0,035174

0,01000

0,00100

threshold

0,00010 e

0,00001
1 2 3 42 5 & 7 8 9 10 Y 14 15 16 17 ‘18 IR 22 23 24

Figure 4: Trend of P-values over a day, computed
by the Frequency Test, for a TRNG that uses only
light exposure sensors.

QRBG whose output is not suitable for the CumulativeSums
and NonOQuerlapping Template tests.

Based on these results, we can conclude that the behavior
of the proposed system completely satisfies the statistical
properties required by a True Random Number Generator.

6. CONCLUSION AND FUTURE WORK

This paper addressed the issue of producing true random
number sequences to be used for security applications for
wireless sensor networks. The proposed approach exploits
readings of physical quantities performed by on-board sen-
sors, as sources of randomness. In order to assess the good-
ness of the proposed method we tested the generated se-
quences through well-established test suites, such as those
provided by NIST. Reported experiments show encouraging
results about the statistical profile of the generated random
numbers.

We are currently working on the development of a proof-

that no additional computational overhead is caused by our
TRNG that may interfere with pre-existing applications.

7. REFERENCES

[1] A. Francillon, C. Castelluccia, and P. INRIA.
TinyRNG: A cryptographic random number generator
for wireless sensors network nodes. In Modeling and
Optimization in Mobile, Ad Hoc and Wireless
Networks and Workshops, 2007. WiOpt 2007. 5th
International Symposium on, pages 1-7. Citeseer,
2007.

[2] M. Jakobsson, E. Shriver, B. Hillyer, and A. Juels. A
practical secure physical random bit generator. In
Proceedings of the 5th ACM Conference on Computer
and Communications Security, page 111. ACM,
November 1998.

[3] B. Jun and P. Kocher. The Intel random number
generator. Cryptography Research Inc. white paper,
April 1999.

[4] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link
layer security architecture for wireless sensor
networks. In Proceedings of the 2nd international
conference on Embedded networked sensor systems,
pages 162-175. ACM, November 2004.

[5] A. Lalomia, G. L. Re, and M. Ortolani. A hybrid

framework for soft real-time wsn simulation. In 13th

IEEE/ACM International Symposium on Distributed

Simulation and Real Time Applications, October 2009.

P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:

Accurate and scalable simulation of entire tinyos

applications. In the First ACM Conference on

Embedded Networked Sensor Systems (SenSys 2003).

ACM, November 2003.

[7] L. B. Oliveira, D. Aranha, E. Morais, F. Daguano,

J. Lopez, and R. Dahab. Tinytate: Identity-based

6

[9]
[10]

[11]

encryption for sensor networks. website:
http://eprint.iacr.org/2007/020.pdf, 2007.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker,
S. Leigh, M. Levenson, M. Vangel, D. Banks,

A. Heckert, J. Dray, and S. Vo. A statistical test suite
for random and pseudorandom number generators for
cryptographic applications. Storming Media, 2001.

C. Shannon. Communication theory of secrecy
systems. MD Computing, 15(1):57-64, 1998.

W. Stallings. Cryptography and Network Security (4th
Edition). Prentice Hall, 2006.

M. Stipéevi¢ and B. Rogina. Quantum random
number generator based on photonic emission in
semiconductors. Review of Scientific Instruments,
78:045104, 2007.

	0064_COP
	0064_DRAFT

