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Abstract—ICT devices nowadays cannot disregard optimiza-
tions toward energy sustainability. Wireless Sensor Networks,
in particular, are a representative class of a technology where
special care must be given to energy saving, due to the typical
scarcity and non-renewability of their energy sources, in order
to enhance network lifetime. In our work we propose a novel
approach that aims to adaptively control the sampling rate
of wireless sensor nodes using prediction models, so that
environmental phenomena can be consistently modeled while
reducing the required amount of transmissions; the approach
is tested on data available from a public dataset.

Keywords-Wireless Sensor Networks; Predictive Models; En-
ergy Saving.

I. INTRODUCTION AND MOTIVATIONS

In the past few years, the increasing social awareness
about the negative impact on the environment deriving from
the mere use of ICT equipment has boosted the research
on methodologies and algorithms for optimizing the energy
consumption of the involved devices. For instance, as men-
tioned in [1], the Internet alone is responsible for a consump-
tion amounting to ∼74 TeraWatts hours (TWh) per year,
only in the USA. This figure might be significantly reduced
by careful application of power management methods, but
the issue is seldom properly addressed during the design
phase of commonly available systems. Both the potential
repercussions to the surrounding environment, and the lack
of proper use of the available resources are thus likely
disregarded. The goal of any energy sustainable system
is thus twofold, and ought to encompass both an outer
optimization (considering the global expected outcome), and
inner optimization (regarding the optimal utilization of the
basic system components).

Both aspects are especially emphasized whenever
resource-constrained devices are involved, as is the case,
for instance, of Wireless Sensor Networks (WSNs), which
we will specifically consider in this paper. In the past
few years, WSN technology has grown into one of the
most promising tools for collecting data and extracting
information from remote or hostile sites [2]. Wireless sensors
nodes are comparable to fully functional computers, in that
they are not just able to collect measurements of physical
quantities, but also to perform limited computations; the
most remarkable difference between them and traditional
computing devices is represented by their limited power

supply (typically, batteries).
An interesting usage scenario for WSNs regards the

design of energy efficient buildings [3], [4], where they
represent the perceptive component of a complex system
aimed at reducing the overall energy impact, and represents
a typical use of such tool for outer optimization. At the same
time, an effective usage of such technology cannot disregard
the inner optimization of the energy sources available to
each of the sensor nodes; for instance, even when renewable
energy sources are available, they may not be constantly
accessible (e.g. solar cells at nighttime), so effective re-
source allocation, such as adaptive load balancing, must be
enforced [5].

Our work specifically aims at extending the network
lifetime by enforcing careful usage of the energy resources
available to nodes. In [6] the main sources of energy
consumption in wireless sensor nodes are identified in
the sensing, processing, and communication components;
moreover, it has been shown that the transceiver represents
the major drain, especially as compared to the CPU [7].
Besides implementing efficient MAC protocols including
duty cycle techniques for turning on the radio only when
strictly necessary [8], energy efficiency may thus be achieved
by exploiting the inherent spatial and temporal redundancy
in data. Such physical quantities as temperature, humidity,
and pressure typically exhibit smooth variations, and change
slowly over time [9], so that the node computational capa-
bilities may be profitably used to extract predictive models
for avoiding unnecessary sensing.

The main idea of our work consists in exploiting the
temporal redundancy of measured physical quantities in
order to compute predictive models, allowing to adaptively
set the sensing rate of the nodes, and consequently reduce the
overall amount of required transmissions. Our method has
been tested on real measurements obtained from a publicly
available repository containing data collected in an indoor
environment, for which our underlying hypotheses hold.
We assume that the wireless sensor network is arranged
according to a hierarchical, cluster-based structure, where
nodes forward sensed data towards their representative clus-
ter head, which models the trend of the physical quantities by
performing an on-line fitting through a mixture of Gaussians;
models are kept up-to-date by ensuring that the error falls be-
low a pre-defined threshold. We prove the energy efficiency
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of the proposed method by showing that the overall number
of required sensory readings may be reduced with respect
to a non adaptive sampling, without negatively affecting
reliability.

II. RELATED WORKS

Optimizing energy consumption in wireless sensor net-
works is a widely studied issue, and the authors of [10]
propose a taxonomy of various approaches presented in
recent literature, dividing them into three main categories:
duty cycling, mobility-based, and data-driven.

Duty cycling approaches specifically target the optimiza-
tion of the networking subsystem, mainly focusing on the
implementation of efficient algorithms for controlling the
sleep/wakeup schedule of the radio transceiver; such ap-
proaches are typically not specifically concerned with the
data sensed by nodes.

The second category is represented by mobility-based
approaches, which allow for the implementation of higher-
level techniques, such as load balancing, data muling, or
energy harvesting; however, they impose strict requirements
on the needed hardware.

Finally, data-driven approaches are more tightly bound to
the intrinsic nature of sensed data; they often rely on the
predictability of the monitored physical quantities, which
are thus reliably representable through mathematical mod-
els. Such approaches are particularly relevant to the topic
discussed in this paper.

The authors of [11] propose a method exploiting the
correlation of data sensed by close nodes in order to build
predictive models. In their system, nearby nodes are grouped
into clusters, and it is assumed that the cluster head acts as
a representative for all nodes within its group. The intrinsic
spatial correlation of data allows some of the nodes to go
into a sleep state, while the cluster head keeps on sensing;
the role of representative is routinely taken up by all nodes
within the group. During its turn, each cluster head also
computes a predictive model for data, which will be shared
within its cluster, and used instead of actual sensing as long
as it is deemed reliable. Such technique results in an overall
reduction of the required transmissions.

In [12], an autoregressive model is built using sensor read-
ings. Initially, readings are collected until a buffer is filled;
successively, each node computes a model for the sensed
data and transmits only the model parameters back to the
base station, thus effectively implementing a compression of
data. The model is constantly checked for reliability against
new readings; if a sufficiently large number of readings is
recognized to fall behind a tolerance threshold within a given
time window, the model is invalidated and recomputed by
filling the buffer with fresh readings. However, if the read-
ings are recognized as outliers, they are simply discarded,
and the model will still be valid.

Figure 1. Categorization of data-driven approaches, according to [10];
shadowed ellipses highlight the methods exploited in our work.

Finally, the authors of [13] suggest to avoid the exchange
of models through the network, by computing two separate
predictors on the source and the sink node. Synchroniza-
tion of such models is obtained by a minimal information
exchange, consisting in the set of readings not satisfying a
user-defined threshold, that signals the unreliability of the
model computed at the source.

Unlike the previous methods, our proposal completely
avoids the need of building a prediction model on sensor
nodes, and delegates the whole computational burden to the
cluster head. Sensor nodes are just required to sense the en-
vironmental phenomena with an adaptive sampling rate, thus
reducing both the the number of necessary computations and
of transmissions toward the cluster head. Reliability of the
computed model is checked whenever new data are received
by the cluster head, which will set the sampling rate of the
source nodes accordingly (by decreasing it, if the model is
reliable, and increasing it, otherwise).

III. PREDICTION MODELS FOR ENERGY SAVING

This section describes the method devised for reducing the
energy consumption of a wireless sensor network for envi-
ronmental monitoring by exploiting the temporal redundancy
inherent to the measured physical quantities. According to
the taxonomy proposed in [10], the main contributions of our
work may be classified as data reduction through prediction
with algorithmic approach, and efficient data acquisition
through adaptive sampling as shown in Figure 1.

Typical sensor nodes measure physical quantities which
depend on several and possibly complex environmental
interactions, and may be represented through analytical or
empirical models. The former capture the result of the
interactions by considering a large number of environmental
variables, but their main drawbacks are the difficulty of
generalization for a different physical phenomena, and their
mathematical complexity which negatively impacts their
computational viability. Alternatively, an empirical formula-
tion may be given in order to model the considered physical
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Figure 2. Example of a star topology cluster, highlighting the nature of
the communications between the cluster head and each of the nodes.

phenomenon. Unlike the previous case, physical quantities
are modeled by analyzing mathematical properties of their
measured trends (e.g. periodicity, correlation, and so on)
over a given amount of time, rather than studying their
physical nature in order to predict future values.

In our work, we assume that the sensor network is
organized according to a cluster-based topology, as depicted
by Figure 2, where leaf nodes forward sensed data towards
their representative cluster head, which in turn computes a
model for the considered physical quantity, and sets the
sampling rate for each of its children nodes in order to
keep the model reliable over time. Moreover, we assume
that the role of cluster head is assigned to more power-
ful wireless sensor nodes, the so-called micro-servers (e.g.
Stargate nodes), which are typically equipped with larger
amounts of memory, and offer more computational power.
Given the characteristics of the considered quantities, we
expect that some kind of periodicity is loosely present in
data, so we only assume that the overall “shape” of the
function representing a physical quantity is preserved over
time.

Let f(t) represent the trend of any observed physical
quantity, defined over a time period ∆t. Such function
can be derived by data fitting, which in our case was
approximated by a Gaussian mixture, as described by the
following equation:

f(t) =
M−1∑
j=0

wjN (t|µj , σ2
j ), (1)

where mean µj , variance σj , and weight wj are computed
for each of the M Gaussian functions, through the Expec-
tation Maximization algorithm [14].

According to the natural periodicity of the physical
phenomena, we assume that the observed data are highly
autocorrelated; the trend of f(t) predicted for time interval
∆tnew will thus be correlated to the one observed over a past
time interval ∆told. This can be expressed through a general

shape-preserving transformation, given by the equation:

fnew(t) = α
[
fold(t)− θ

]
+ θ, (2)

where α and θ represent scaling and translation parameters
of the transformation, respectively.

Parameters α and θ can be computed for a new time
interval ∆tnew by considering a new observation set Snew,
and a model fold(t) for a past time interval ∆told, through
least squares optimization:

argmin
α,θ

∑
t∈∆tnew

[fnew(α, θ, t)− Snew(t)]2. (3)

The entire model is therefore computed and updated on
the cluster head through an iterative algorithm that accepts
as input a fitting model fold(t) for the observed set in a past
time interval ∆told, and computes the new model fnew(t)
in an on-line fashion. The raw samples gathered from the
sensor nodes are iteratively processed at the cluster head to
refine the estimated values of α and θ.

Moreover, in order to reduce the overall energy consump-
tion, the algorithm adaptively controls the sampling rate of
the sensor node by decreasing it when the absolute difference
between prediction and actual measurement is lower than a
given threshold, and increasing it otherwise. Such behavior
makes the sampling process faster when the estimated model
is not sufficiently reliable; on the other hand, sensor nodes
are allowed to save energy (relative to sensing, and network
transmissions) because the sampling period is reduced. Intu-
itively, the fact that the model becomes less reliable may be
due to the presence of sudden bursts of high-frequency data
(noise, or sudden variations) which should trigger a greater
accuracy for the model itself.

The iterative algorithm starts by initializing all the neces-
sary variables:

θ ← 0, α← 1, T ← 1, R← ∅,

where T is the factor controlling the sampling rate, and R
is the set of the current sensory readings.

The core of the algorithm consists of a read-prediction
loop; at each step, the value of the prediction at time t
is computed by the cluster head according to Equation 2
by using the current values of α and θ. Meanwhile, sensor
nodes in the same cluster keep collecting samples of the
environmental quantities at their current rate, and send them
toward the cluster head, where they are appended to the
set R of the current sensory readings, causing the deletion
of the oldest ones. The accuracy of the prediction model
is tested by comparing the latest measurement with the
corresponding prediction. If the absolute difference is lower
than a pre-defined threshold, the sampling rate is increased
by doubling the controlling factor (T ← 2 · T ); otherwise,
the model needs to be adapted to potentially fast variations
in the monitored physical phenomenon, so the sampling rate
is reset (T ← 1).
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Figure 3. The plots show the average trends for temperature, humidity,
and light for a representative set of nodes of the Intel Berkeley Research
Lab; the rough periodicity of such patterns is clearly visible.

Regardless of the threshold, whenever a sensory reading is
received by the cluster head, the transformation parameters
are updated via a gradient descent algorithm starting from
the latest estimates, according to Equation 3.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

In order to assess the approach described in the previous
Section, we carried out a set of experiments using real
data collected by Mica2-dot sensor nodes, and contained
in the public database available from [15]. The reference
environment is the Intel Berkeley Research Lab, containing
54 sensor nodes able to sense typical physical quantities:
temperature, relative humidity, and light exposure. The mea-
sured values range from 17 to 25◦C for temperature, from
20 to 90% for relative humidity, and from 0 to 1800 Lux
for light exposure; the observations were carried out over
a time period spanning several days, between February, 28
2004 and April, 5 2004; the sampling rate of each node was
about 31s.

In this work we considered a time interval of nine
days, from February, 29 2004 to March, 8 2004, and pre-
processed the database in order to get rid of incomplete or
clearly erroneous measurements (quasi-dead battery being
a conspicuous source of error). We preliminary observed
that all of these physical quantities show periodical patterns,
as is evident by looking at Figure 3, which represents
the underlying hypothesis for our work. The validity of
such consideration has been experimentally confirmed by
checking that the monitored quantities did present intrinsic
redundancy, as shown by the autocorrelation plots reported
in our previous work [16]; namely, both temperature and
humidity present autocorrelation higher than 0.9, while for
light is is higher than 0.75.

The size of the Intel Berkeley Research Lab is about
30×40m2. In order to assess the precision of our prediction
model, we need to consider clusters of nearby nodes, whose
measurements are temporally correlated. An accurate study

Figure 4. Location of the sensor nodes deployed at the Intel Berkeley
Research Lab [15]; rectangles highlight the areas identified for our exper-
iments.

reported in [17] identified five areas, where the measured
quantities show high spatial correlation, so we chose to use
the same layout for the experiments in this work. In the
following we verify the validity of our assumptions, and
show that the application of our algorithm has good potential
for energy saving, in the hypothetical scenario, where each
area is managed by a cluster head directly connected to each
of the original nodes, as shown in Figure 4.

A. Predictive models validation

In order to obtain uniform comparison for our experi-
mental results, we chose to normalize our metrics (mean,
variance and maximum absolute prediction error), with
respect to the previously mentioned ranges of each physical
quantity. Each of the cluster heads depicted in Figure 4
is assumed to run the previously described algorithm for
computing a prediction model for its nodes; the threshold
used to invalidate the model depending on the tolerable
prediction error was set to 5% for our experiments, and the
periodicity of each physical quantity was assumed to be 24
hours.

The reliability of the produced predictive models has been
assessed by computing the mean absolute error for each area
and for each physical quantity. Figure 5 plots the the mean
absolute prediction error for the test area 1 for temperature,
humidity, and light, respectively; other areas show analogous
trends. The values of the mean absolute error for all areas are
reported in Table I, while Table II reports the variance and
Table III the maximum. It is worth noting that the mean
prediction error is very low in all cases (about 1%); in
addition the largest variance is observed for light in area
4, but it is still not very high (2.25%); moreover, peaks of
error only occur occasionally and remain localized to very
few time instants, with the maximum amounting to ∼6% for
light in areas 1 and 4.

B. Energy saving assessment

The approach described in Section III, and the cluster-
based topology that we assume superimposed on the con-
sidered sensor field allow us to quantify the outcome of the
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(a) (b) (c)

Figure 5. Mean absolute error for temperature, relative humidity and light exposure in Area 1. In order to compute the average, time slots of 4 hours
have been used.

Table I
MEAN ABS ERROR (%)

Area Temperature Light Humidity
1 1.1655 1.3488 0.7961
2 1.2774 1.3560 0.7841
3 0.8318 0.6638 0.5042
4 1.3511 1.6086 0.7658
5 1.1695 1.0098 0.6317

Table II
VARIANCE OF ABS ERROR (%2)

Area Temperature Light Humidity
1 0.4523 1.5805 0.2814
2 0.4762 1.1046 0.2273
3 0.3420 0.2408 0.1134
4 0.3441 2.2556 0.1784
5 0.3698 0.5470 0.1255

Table III
MAX ABS ERROR (%)

Area Temperature Light Humidity
1 2.7521 6.4209 3.0874
2 2.9180 4.4249 1.8914
3 2.0053 1.9667 1.6625
4 2.5279 6.4697 1.6638
5 2.4300 2.7350 1.4039

proposed algorithm in terms of energy saving. In particular,
we estimate the reduction of the overall required sensing and
transmissions across all nodes with respect to the original
set of raw data.

In order to avoid large prediction errors, we set an upper
bound for the sampling rate equal to 8 minutes, whereas
the basic sampling rate is slightly over 30 seconds; this
results into a sampling frequency ranging from a minimum
value of 2, 1 · 10−3Hz up to a maximum of 33, 3 · 10−3Hz.
Figure 6 plots the mean sampling frequency for area 1, for all
considered quantities, and Tables IV and V show mean and
variance of sampling frequency for each area, respectively.
The largest values for the sampling rate (i.e. 4.31 ·10−3Hz)
occur for light, due to the intrinsic nature of such physical
quantity, which exhibits lower autocorrelation than temper-
ature and humidity. Nonetheless, such value represents a
significant improvement as compared to the basic sampling
rate of 33, 3·10−3Hz, meaning that, on average, only ∼12%
samples are needed with respect to the maximum frequency.
Temperature and humidity sampling rates are quite close to
the minimum sampling rate of 2.1 · 10−3Hz, thanks to the
higher autocorrelation characteristic of these quantities.

In order to quantify the impact of the proposed approach
in terms of energy saving, we compared the number of
necessary transmissions with respect to the basic approach
where each node plainly forwards its samples to the collect-
ing station at the basic, fixed sampling rate.

Table VI shows the percentage of measurements actually
needed by our algorithm in order to produce models that are
deemed reliable, with respect to the thresholds defined for
the prediction error.

We note that the number of samples needed in the worst
case amounts to 8.5% for temperature, 6.8% for relative

humidity and 12% for light, which is the environmental
quantities with higher variance. Energy saving on transmis-
sion and sensing is thus greater than 88% in all cases.

V. CONCLUSION AND FUTURE WORKS

This work presented a novel approach aimed to implement
energy saving in Wireless Sensor Networks. The use of
prediction models for physical quantities allowed to reduce
energy consumption of sensor nodes, by adaptively tuning
their sampling rate. Experiments carried out on real data
showed encouraging results; in particular with a prediction
error threshold set to 5%, an overall energy saving amount-
ing to ∼90% was obtained. Furthermore our approach
allowed us to use a much lower sampling rate than what
chosen for the original configuration, while still achieving
fully acceptable performances in terms of reliability.

On-going work is being carried out in order to further
improve the proposed method. In particular, the behavior of
the method needs some refinement in presence of specific
data patterns, namely when low-frequency data is followed
by high-frequency data. Currently, a high-frequency burst is
detected by the base station upon receipt of data from its
children; however the transmission of sensor nodes may be
scheduled too late, so that the high frequency burst is missed.
Such misbehavior can be addressed by computing some kind
of frequency measure locally on a sensor node, which is
thus allowed to individually decide whether to transmit data
before the scheduled time, in order to warn the base station
about the fast changes of the environment. Such solution
would cause an over-sensing, and might be of interest only
with low-power sensors.

Further experiments are also being devised in order to
provide an accurate comparison between our method and
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(a) (b) (c)

Figure 6. Sampling rate for temperature, humidity and light exposure in Area 1. In order to compute the average, time slots of 4 hours have been used.

Table IV
MEAN SAMPLING RATE (Hz · 10−3)

Area Temperature Light Humidity
1 2.8120 3.3790 2.3340
2 2.9020 3.5690 2.3450
3 2.4870 2.4760 2.2910
4 2.8650 4.3120 2.2990
5 2.7100 3.1110 2.2660

Table V
VARIANCE OF SAMPLING RATE (Hz2 · 10−6)

Area Temperature Light Humidity
1 1.0220 2.4120 0.0580
2 1.2170 2.8990 0.0570
3 0.1990 0.2050 0.0210
4 0.5040 9.1260 0.0380
5 0.3900 1.6400 0.0280

Table VI
FRACTION OF USED SAMPLES (%)

Area Temperature Light Humidity
1 8.1602 9.8903 6.7943
2 8.5154 10.2800 6.7686
3 7.2849 7.2331 6.5291
4 8.2898 12.7218 6.6528
5 7.9044 9.2566 6.6027

non naı̈ve solutions presented in literature; we will make
additional experiments taking into account non-fixed accu-
racy on predictors, in order to infer the connection between
energy consumption and model accuracy, and to evaluate the
strength of our work with respect to the state of the art.
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