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Abstract. Common sensory devices for measuring environmental data
are typically heterogeneous, and present strict energy constraints; more-
over, they are likely affected by noise, and their behavior may vary across
time. Bayesian Networks constitute a suitable tool for pre-processing
such data before performing more refined artificial reasoning; the ap-
proach proposed here aims at obtaining the best trade-off between per-
formance and cost, by adapting the operating mode of the underlying
sensory devices. Moreover, self-configuration of the nodes providing the
evidence to the Bayesian network is carried out by means of an on-line
multi-objective optimization.

Keywords: Ambient Intelligence, Bayesian Networks, Multi-objective
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1 Motivations and Related Work

Artificial reasoning in many real world scenarios relies on measurements col-
lected from diverse sensory sources; commonly available devices are typically
affected by noise, and characterized by heterogeneity as regards their energy
requirements; moreover their behavior may vary across time.

One of the application scenarios of artificial intelligence where multi-sensor
data fusion is particularly relevant is Ambient Intelligence (AmI). The AmI
paradigm relies on the capability of sensing the environment, through the de-
ployment of a pervasive and ubiquitous sensory infrastructure, surrounding the
user, for monitoring relevant ambient features. Among these, a high attention is
devoted to context information, such as the users’ presence in monitored areas
or current users’ activities [9,6,2].

In our work, we present a sample scenario of an AmI system devoted to de-
tect users’ presence through a wide set of simple and low-cost devices, possibly
affected by a non negligible degree of uncertainty, as well as devices capable of
measuring environmental features only partially related to the human presence,
and finally a limited set of more precise, though more expensive sensors. In par-
ticular, we suppose that the sensory infrastructure is embodied into a Wireless
Sensor Network (WSN) [1], whose nodes, pervasively deployed in the environ-
ment, are capable of on-board computing functionalities and are characterized
by limited, non-renewable, energy resources.
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In order to estimate the environmental features of interest, while keeping
the sensor nodes operating costs low, we propose a system that fully exploits
the intrinsic statistical dependencies in the available sensory readings and copes
with their inherent uncertainty by performing a multi-sensor data fusion.

Few works in literature propose a real multi-sensor data fusion framework
for Ambient Intelligence. Remarkable exceptions are works presented in [5] and
[7]. The authors of [5] propose a multi-sensor fusion system for integrating het-
erogeneous sensory information in order to perform user activity monitoring.
The authors present a comparison between two probabilistic approaches (Hid-
den Markov Models, and Conditional Random Fields), and point out the ef-
fectiveness of a probabilistic system for activity detection in terms of dealing
with uncertainty. The authors of [7] present an activity recognition approach
reinforced by information about users’ location. The proposed framework uses
a variety of multimodal and unobtrusive wireless sensors integrated into every-
day objects; this sensory infrastructure provides data to an enhanced Bayesian
Network fusion engine able to select the most informative features.

Unlike other works reported in literature, the work presented here focuses on
the dynamic management of the devices providing information to the inference
system, thus allowing to deal with such conflicting goals as energy saving and
accuracy of the outcome. In particular, the proposed system comprises two levels
of reasoning; at the low level a Bayesian network for reasoning on the relevant
environmental feature (such as users’ presence), merges the available sensory
data, while the upper level performs a meta-reasoning on system performance
and cost. This meta-level is able to trade the reliability of the Bayesian network
outcome for the relative cost in terms of consumed energy, in order to steer a
decision about which sensory devices are to be activated or de-activated.

The remainder of the paper is organized as follows. Section 2 presents the
general architecture of the proposed system, while Section 3 details its self-
configuration capability. The self-configuration process is illustrated through a
running example in Section 4 and finally Section 5 reports our conclusions.

2 The Proposed System

One of the requirements characterizing AmI is the availability of a pervasive
sensory infrastructure characterized by a low cost and general as much as pos-
sible. For this reason, often, reasonings about context are not be performed via
specialized sensors, so that the sensed signals will only be partially correlated to
the features of interest.

In order to correctly infer the presence of users from the available sensory
information a Bayesian inference system for multi-sensor data fusion has been
developed. Probabilistic reasoning accounts for the partial correlation between
sensory signals and states, and allows to cope with noisy data. The possibility of
integrating data coming from multiple sensors exploits the redundancy of such
devices deployed throughout the environment.
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Fig. 1. Block diagram for the presence estimate system.

On top of the Bayesian network, a meta-level for self-configuration is im-
plemented, as shown in Figure 1. Such higher level component reasons about
potential trade-offs between the confidence degree of the Bayesian network and
the cost for using the sensory infrastructure. A plan will be produced stating
which sensory devices are to be activated or de-activated.

2.1 The Sensory Infrastructure

The proposed system was developed by taking an existing AmI software archi-
tecture as a reference; the original AmI architecture has been implemented at
our department and is described in [3].

The sensor network used for our AmI architecture is composed by several
heterogeneous devices capable of capturing different physical phenomena. In par-
ticular, here we consider five kinds of sensory technologies: WSN, RFId readers,
door sensors, sensors on actuators and software sensors.

WSN are composed by small computing devices equipped with off-the-shelf
sensors for measuring ambient quantities and with wireless transceivers that
enable data exchange among nearby nodes [1]. Sensor nodes in our AmI archi-
tecture have been deployed in various rooms close to “sensitive” indoor areas:
by the door, by the window, and by the user’s desk.

When considering the specific task of user presence detection, we will consider
in particular the sound sensor, which is able to detect the amount of noise level
in its proximity, thus providing some rough indication about the level of room
occupancy.

Other nodes carry specific sensors, such as RFId readers, in order to perform
basic access control. In the considered scenario, RFId tags are embedded into ID
badges for the department personnel, while RFId readers are installed close to
the main entrance and to each office door; readings from each tag are collected
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via the relative nodes, and forwarded by the WSN to the AmI system, that will
process them and will reason about the presence of users in the different areas
of the department.

Besides being equipped with a RFId reader, each entrance to the building
will also be coupled to a sensor recording its status (i.e. if it is open, closed or
locked), which may be used for monitoring access to the different areas, as well
as for extracting information about the presence of people.

The interaction of users with the actuators may also be captured via ad-
hoc “monitors”; for instance, if the user manually triggers any of the provided
actuators (e.g. the air conditioning, the motorized electric curtains, or the light-
ing systems) via the remote controls or traditional switches, specialized sensors
capture the relative IR or electric signals. Detecting some kind of interaction
provides a reliable indication about the presence of at least one person in the
monitored area.

Finally, a “software sensor” is installed on the users’ personal computers to
keep track of user login and logout, and to monitor their activity on the terminal.
As long as users are actively using their terminal, such sensors will set the value
for the probability of the user to be present to its maximum. On the other hand,
if no activity is detected, the presence of users close to their workstations may
still be inferred via a simple face recognition application, which may be triggered
to refine the probability value of user presence based on a degree of confidence
in the identification process.

2.2 Environmental Modeling through a Bayesian Network

A system aimed at inferring information about a specific environmental feature
based on data coming from multiple sensors may be easily implemented through
a rule-based approach, in cases where the sensory information is not affected by
noise and uncertainty. Otherwise, the reasoning system needs to take uncertainty
into account, as is the case with user’s presence detection based on the sensory
data mentioned earlier. In such cases, Bayesian Network theory [8] may be an
optimal choice for inferring knowledge through a probabilistic process, since it
provides an effective way to deal with the unpredictable ambiguities arising from
the use of multiple sensors [7].

Classical Bayesian networks, however, may only provide a static model for
the environment, which would not be suitable for the proposed scenario; we
therefore chose dynamic Bayesian networks or, more specifically, Markov chains
to implement our model, which thus allow for probabilistic reasoning on dynamic
scenarios, where the estimate of the current system state depends not only on
the instantaneous observations, but also on past states.

Figure 2(a) shows the Bayesian network used to infer probabilistic knowledge
on a given state feature based on a set of input sensory data. Each state feature
affects a set of sensory readings (we indicate each evidence node with Ei), that
can be considered the perceivable manifestation of that state. The connection
between the current state and its sensory manifestation is given by the proba-
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Fig. 2. Structure of a Markov chain for inferring a given state feature starting from a
set of sensory data.

bilistic sensor model P (Ei
t |Xt). Moreover the current state depends on past state

according to a state transition probability P (Xt|Xt−1).
The belief about the specific value of a state variable is the conditional prob-

ability with respect to the whole set of observations from the initial time to the
current time:

Bel(xt) = P (xt|e11, e21, . . . , en
1 , . . . e

1
t , e

2
t , . . . , e

n
t ) = (1)

= P (xt|E1,E2, . . . ,Et) = P (xt|E1:t) .

Due to the simplifications introduced by the Markov assumption, and to the
conditional independence among sensory measurements, once the state induced
by the Bayesian network is known, the belief about the current state can be
inductively defined as follows:

Bel(xt) = η
∏
ei

t

P (ei
t|xt) ·

∑
xt−1

P (xt|xt−1)Bel(xt−1) . (2)

Thanks to these simplifications, at each time step it is sufficient to consider
a reduced set of variables, as shown in Figure 2(b), which results in a reduced
overall computation effort.

3 Implementing Self-configuration

In some circumstances it can be useful to modify the status of the sensory
infrastructure because of particular environmental conditions, or in accordance
with the current system performances. In other words, it is sometimes desirable
to act on the sensory devices by turning them on or off, thus modifying the flow
of information feeding the probabilistic reasoner.

The first scenario occurs when the cost of some of the sensory acquisition
devices increases; such variation may be caused by the enforcement of specific
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energy saving policies aiming to increase the WSN lifetime. In this case, each
sensor may be tagged with a cost in terms of required energy, inversely pro-
portional to its charge level, and it is preferable for the system to do without
these sensory inputs, provided that the performance quality is not affected, or at
least that the degradation is deemed acceptable. As a consequence, it should be
possible to modify the sensory infrastructure status by allowing such devices to
go into a “low consumption” mode, for instance by suspending the sensory data
gathering; normal functioning would be restored only for those devices whose
contribution is crucial for the probabilistic inference engine.

The second scenario occurs when the Bayesian network receives its input
from a greatly reduced set of sensory devices, so that the system is forced to
assign a high degree of uncertainty to the environmental states. In such situ-
ation, the adoption of an additional sensory device, although very expensive,
may contribute to decease the uncertainty degree; therefore, a set of previously
de-activated sensory devices may be switched back to normal functioning, so as
to provide additional information for the inference process.

Following these considerations, and in order to make the system as self-
sufficient as possible, we allow it to autonomously opt to modify the status
of the sensory infrastructure, by suspending or restoring the data flow from
some evidence nodes, in order to get the best trade-off between energy cost and
precision in reasoning.

3.1 Indices for Self-configuration

An extended model of Bayesian network was adopted, where each node is tagged
with additional information. In particular, evidence nodes are tagged with two
additional pieces of information: cost, and operation mode.

The operation mode gives an indication about the state of the sensory devices
associated to the evidence node, i.e. activated or de-activated; for the evidence
node Ei, the operation mode at time instant t is indicated as opi

t.
The cost associated to the evidence nodes is not set within the probabilistic

inference system itself, rather it is set by an energy management subsystem
based on the current state of the sensor nodes. Based on the costs of the evidence
nodes, it is possible to compute the overall cost for a state variable as the sum
of the costs of its connected evidence nodes. Such value represents the total cost
necessary to infer the distribution probability for the state variable, depending
on the currently used sensory information.

Furthermore, assuming that the function for computing the cost of evidence
node Ei

t is indicated by fcost(Ei
t), then the following holds:

cost(Ei
t) =

{
fcost(Ei

t) if opi
t is on ,

0 otherwise ;

cost(Xt) =
∑

Ei
t∈Et

cost(Ei
t) .

(3)
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In order to assess the performance of the current configuration of the Bayesian
network it is useful to extract information about the precision of the probabilistic
reasoning, besides the overall energy cost. An uncertainty index will be used to
measure the intrinsic uncertainty of the a posteriori inferred belief:

uncertainty(Xt)
def
= −

∑
xt

Bel(xt) logBel(xt) . (4)

Even though the definition of the uncertainty index is formally similar to
that of the entropy for variable X, the latter is a function of the a priori proba-
bility distribution, whereas the uncertainty index is a function of the a posteriori
probability distribution.

Indices cost(Xt) and uncertainty(Xt) give indications about the cost and
effectiveness of the probabilistic reasoning about a state variable Xt.

3.2 Adapting the Sensor Network Configuration

In our model, different configurations of the sensory infrastructure may be com-
pletely expressed by indicating the operating mode of each evidence node. The
configuration of the entire sensor network may thus be expressed by a vector:
st = [op0

t , . . . , op
i
t, . . . , op

n
t ].

By monitoring the indices for cost and uncertainty for each state variable,
according to Equations 3 and 4, the system checks whether the uncertainty
index is close to its maximum allowed value and whether the cost index rises
unexpectedly. If one of these two events occurs, a modification of the sensory
infrastructure is triggered.

In order to avoid oscillations in the configuration of the sensor network and
to ensure gradual modifications of its structure, each inference step only enables
atomic actions, i.e. actions operating on one evidence node at a time.

In order to select the action to be performed, a multi-objective selection
system is devised, based on a Pareto-dominance criterion; the aim is to obtain
the best trade-off between cost minimization and uncertainty minimization. As
is evident, the two goals are conflicting and minimizing with respect to costs
only would lead to deactivating all the sensory devices, whereas minimizing with
respect to uncertainty only would lead to activating all of them.

The optimal action is selected with respect to the cost and the hypothetical
uncertainty that the system would have obtained for each alternative configu-
ration of sensory devices, considering the actual sensor readings. For a specific
configuration s we indicate these indices as C(s) and U(s), respectively; they will
be computed by disregarding the evidence nodes corresponding to deactivated
sensory devices in Equations 3 and 2.

When dealing with the conflicting goals of minimizing U(s) and C(s), the
traditional approach of merging them into a single objective function presents
several limitations, mainly because it would require an accurate knowledge of
the different objective functions, either in terms of relative priority or relevance.
On the contrary, we chose to keep two independent objective functions and to
manage them through a multi-objective algorithm.
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Fig. 3. Graphical example of the Pareto-dominance analysis.

We will say that a configuration si Pareto-dominates another configuration
sj if:

C(si) ≤ C(sj) ∧ U(si) ≤ U(sj). (5)

A configuration s∗ is Pareto-optimal if no other solution has better values
for each objective function, that is if the following holds:C(s∗) ≤ C(si)

and
U(s∗) ≤ U(si)

∀i = 1 . . . n . (6)

Figure 3 represents an example of the Pareto-dominance analysis: configura-
tions s1 and s2 belong to the same non-dominated front because C(s1) ≤ C(s2)
and U(s2) ≤ U(s1), while both configurations s1 and s2 dominate configuration
s3; the set of optimal configurations is {s1, s2, s4, s5}.

The Pareto-dominance analysis is performed through the fast non-dominated
sorting procedure proposed in [4], whose complexity is O(mN2), where m is the
number of objective functions (m = 2 in our case) and N is the number of
evidence nodes.

Within the optimal front, the configuration improving the index related to
alarm triggering is chosen; namely if cost(Xt) triggered the alarm, the configu-
ration improving index C(s) is selected, whereas if U(Xt) triggered the alarm,
the configuration improving index U(s) is selected.

4 Running Example

This section describes a running example illustrating how our self-configuring
Bayesian network operates. We will consider a network with one state variable
X, with 2 possible different values, and three evidence nodes E1, E2, E3, taking
3, 2 and 2 values respectively; the network is defined through the conditional
probabilities tables reported in Tables 1 and 2.

Let us assume that the considered state variable is associated to the presence
of the user in her office room and that evidence variables are associated to the
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Fig. 4. Bayesian Network for the running example.

software sensor, to the door-status sensor and to the set of sound sensors (see
Figure 4).

Let us consider an initial a configuration where all three sensors are active;
furthermore let P (X0) =< 0.9, 0.1 > represent the probability distribution for
the state variable at time t = 0 (i.e. P (X0 = 0) = 0.9 and P (X0 = 1) = 0.1).
For the sake of the example we will assume that the cost associated to evidence
variables E1 and E2 will not vary over time and will be equal to cost(E1) =
cost(E2) = 1, whereas the cost associated to evidence variable E3 will linearly
increase over time with unitary coefficient and initial value cost(E3

1) = 1. Finally,
the threshold for the uncertainty index will be set to 0.9.

If the sensory readings at time t = 1 are

[E1
1 , E

2
1 , E

3
1 ] = [1, 0, 1] ,

the corresponding belief for the state variable, computed according to Equa-
tion 2, will be

Bel(X1) =< 0.906, 0.094 > ,

meaning that with high probability the user is not present in the monitored area.
According to Equation 4, this belief distribution results in an uncertainty equal
to U(X1) = 0.451, and the cost index will be cost(X1) = 3. Since the uncertainty
index falls below the threshold, the sensor configuration will not be varied for
the next step.

We now suppose that at the next time instant sensors produce the readings:

[E1
2 , E

2
2 , E

3
2 ] = [2, 1, 1] ,

possibly associated to the user entering the monitored area; the belief on the
state variable will be:

Bel(X2) =< 0.057, 0.943 > .

Table 1. CPT for state transition:
P (Xt|Xt−1).

Xt

0 1

Xt−1
0 0.8 0.2
1 0.2 0.8

Table 2. CPTs for sensor models:
P (E1

t |Xt), P (E2
t |Xt) and P (E3

t |Xt) .

E1
t E2

t E3
t

0 1 2 0 1 0 1

Xt
0 0.5 0.3 0.2 0.9 0.1 0.6 0.4
1 0.1 0.1 0.8 0.4 0.6 0.2 0.8
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s2=[0,1,1] 0.705 3

s3=[1,0,1] 0.830 3

s4=[1,1,0] 0.488 2

Fig. 5. Pareto-dominance analysis of the various configurations of the sensory infras-
tructure at time t = 2. The table on the right shows the indices U(s) and C(s) for the
current configuration at time t = 2, and for the alternative configurations.

The new sensory readings cause a dramatic change in the belief about user’s
presence. The uncertainty index will now amount to U(X2) = 0.315, well below
the threshold; however, the cost of sensor E3 has grown up to cost(E3

2) = 2,
which results in a corresponding increase in the cost of the probabilistic inference
(cost(X2) = 4) not ascribable to additional sensor activations. This condition
triggers the re-configuration process.

During re-configuration, the hypothetical uncertainty is checked against the
costs of the different sensory conditions obtained by toggling the state of one
of the sensors with respect to the current configuration. In our case, the three
possible configurations are (E1, E2), (E1, E3), and (E2, E3), corresponding to
states [1, 1, 0], [1, 0, 1], and [0, 1, 1] respectively. Indices of uncertainty and cost
are computed as explained in Section 3.2, producing the values shown in the
table reported in Figure 5.

The Pareto dominance analysis of the different solutions is shown in Figure 5,
and allows to identify configurations s1, and s4 as belonging to the optimal
front; the former corresponds to the current configuration, whereas the latter
is obtained by de-activating sensors related to evidence node E3. The solution
improving the index that caused the alarm will be chosen within those in the
optimal front; in this case, this will correspond to configuration s4, which allows
to reduce the cost of the BN.

Step t = 3 will start with a new configuration where the considered evidence
node are E1 and E2. Assuming that current sensory readings are

[E1
3 , E

2
3 ] = [2, 1] ,

the belief for the state variable will be

Bel(X3) =< 0.013, 0.987 > ,

meaning that the new sensory readings reinforce the belief about the presence of
the user. The uncertainty index is equal to U(X3) = 0.097, still below the relative
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s U(s) C(s)

s4=[1,1,0] 0.944 2

s5=[0,1,0] 0.571 1

s6=[1,0,0] 0.484 1

s1=[1,1,1] 0.125 6

Fig. 6. Pareto-dominance analysis of the various configurations of the sensory infras-
tructure at time t = 4. The table on the right shows the indices U(s) and C(s) for the
current configuration at time t = 4, and for the alternative configurations.

threshold, and the cost of the sensor relative to E3 increases up to cost(E3
3 = 3),

which however does not affect the cost of the probabilistic inference (cost(X3) =
2). Since all indices fall below the relative thresholds, the configuration will not
vary for the next step.

At time t = 4, we assume that the sensory readings are

[E1
4 , E

2
4 ] = [1, 0] ;

by looking at the CPTs, it is clear that those readings are not the ones with high-
est probability with respect to the user’s presence. This discrepancy produces a
change in the belief, which is however coupled with a high uncertainty:

Bel(X4) =< 0.639, 0.361 > ,

and U(X4) = 0.944. Since the uncertainty index falls over the threshold, the
self-configuration process is triggered again.

The current state is s = [1, 1, 0], so the three possible alternative configura-
tions are [0, 1, 0], [1, 0, 0], and [1, 1, 1], corresponding to activating evidence nodes
(E2), (E1), or (E1, E2, E3) respectively. Now cost(E3

4) = 4, and the indices of
uncertainty and cost are show in the table reported in Figure 6.

A Pareto-dominance analysis of the possible solutions identifies configura-
tions s1 and s6 as belonging to the optimal front, as shown in Figure 6. Within
such front, the solution improving the index that triggered an alarm is chosen,
namely, in this case, s1 which allows to decrease the uncertainty.

In other words, the sensor associated to evidence node E3 is re-activated,
regardless of the high energy cost, since this is the way for the system to gather
the additional information necessary to lower its uncertainty. Such costly re-
activations occur when other currently activated sensors provide information not
matching with the current belief, due to excessive noise or to an actual variation
for the state. In both cases, it is convenient to re-activate a costly sensor just
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for the time necessary to decrease the system uncertainty about the state of the
external world, and then deactivate it again.

5 Conclusions

This paper proposed a Bayesian networks model which includes a meta-level
allowing for dynamic reconfiguration of the sensory infrastructure providing the
evidence for the probabilistic reasoning. The system has been instantiated on
an Ambient Intelligence scenario for the extraction of contextual information
from heterogeneous sensory data. The added meta-level accounts both for the
accuracy of the outcome of the system, and for the cost of using the sensory in-
frastructure. The provided realistic example showed that the proposed approach
is promising in overcoming the difficulties arising from the inherently impreci-
sion of sensory measurements, allowing to obtain a sufficiently precise outcome,
while also minimizing the costs in terms of energy consumption.

Finally, we plan to extend the test set with a real-world scenario, in order to
evaluate the scalability with respect to the number and the heterogeneity of data
sources, and the sensitiveness to the variability of energy consumption functions,
as well as to compare the system performances with other meta-management
strategies.
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