
 

 
NDS LAB - Networking and Distributed Systems 

http://www.dicgim.unipa.it/networks/ 

 

Adaptable data models for scalable ambient intelligence 

scenarios 

A. De Paola, G. Lo Re, F. Milazzo, M. Ortolani 

In Proceedings of the International Conference on Information 

Networking (ICOIN), 2011, pp. 80-85 

Article 

 

Accepted version 

It is advisable to refer to the publisher’s version if you intend to cite 

from the work. 

 

Publisher: IEEE 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb

er=5723138 



Adaptable Data Models for
Scalable Ambient Intelligence Scenarios

Alessandra De Paola, Giuseppe Lo Re, Fabrizio Milazzo and Marco Ortolani
DINFO - Department of Computer Engineering (Univ. of Palermo)

Viale delle Scienze, ed 6. – 90128 Palermo, Italy
Email: {depaola, lore, milazzo, ortolani}@unipa.it

Abstract—In most real-life scenarios for Ambient Intelligence,
the need arises for scalable simulations that provide reliable
sensory data to be used in the preliminary design and test phases.
This works present an approach to modeling data generated by
a hybrid simulator for wireless sensor networks, where virtual
nodes coexist with real ones. We apply our method to real
data available from a public repository and show that we can
compute reliable models for the quantities measured at a given
reference site, and that such models are portable to different
environments, so as to obtain a complete, scalable and reliable
testing environment.

Index Terms—Ambient Intelligence, Hybrid Simulation, Wire-
less Sensor Networks, Environmental Data Modeling.

I. INTRODUCTION AND MOTIVATIONS

Ambient Intelligence is a branch of AI that focuses on
adapting the environmental conditions to maximize the user’s
comfort, and aims to do so transparently by applying meth-
ods and ideas borrowed from such fields as pervasive and
ubiquitous computing. The underlying assumption is the avail-
ability of tools for extensive and timely monitoring of the
environment under observation, as well as the construction of
predictive models that reliably reproduce the behavior of the
physical phenomena of interest. A sensing and communication
infrastructure that is increasingly gaining popularity in this
context is the Wireless Sensor Network (WSN) technology [1],
thanks to its versatility and to the possibility of carrying on
limited computations on board of the nodes.

A common approach to assessing the validity of AmI sys-
tems is to develop a full functional prototype of the intelligent
application, and to actually deploy it into the environment.
This is for instance the solution adopted for iDorm [2], a
prototype for a student dormitory that allows the simulation
of different everyday life activities. AmI applications usually
require the creation of predictive models from sensed data; for
instance, in the Neural Network House [3] a neural network
system was used to forecast future environment state and
users’ occupancy.

The intrinsic drawback of AmI tests based on actual deploy-
ments is that it may prove costly in complex environments,
such as entire buildings; moreover, it does not allow to test
application scalability, nor to evaluate the application behavior
across different configurations.

An alternative approach consists in simulating the whole
control loop, from sensing the physical phenomena of interest,
to performing artificial reasoning, and finally to modifying

the environmental conditions. The Intelligent Home [4], for
instance, is a simulated testbed intended as a support for
the development of multi-agent systems. However, while the
application logic is in general easily reproducible, it is dif-
ficult to capture the runtime overall behavior of the whole
system. Moreover, early detection of design errors, and fine
tuning of critical factors, such as the position and number of
sensor nodes in the various areas of the test site, may avoid
subsequent, presumably expensive, re-deployment.

Here, we specifically consider WSN-based systems which
thus require reliable simulators for the underlying hardware
infrastructure. Although several simulation frameworks exist
for WSNs which provide controlled, and reproducible envi-
ronments for tests, they are not guaranteed to deliver fully
reliable results, especially when the application logic is heavily
sensitive to the actual sensor readings. In order to minimize
the difficulties in porting simulated sensor networks to actually
deployed systems, it may be advisable to use “real code”
simulation tools, that run identical code in simulation and
deployment, such as TOSSIM [5], the TinyOS simulator.
TOSSIM translates hardware interrupts into discrete simulator
events, which are guaranteed to be handled in the correct
order; unfortunately this is not sufficient to provide timing
guarantees. The authors of [6] have recently proposed a
somewhat similar approach that suggests the introduction of
“sensor network checkpoints” between simulation and testbed
so that rollbacks may be executed to restore the network
state to previous conditions. The use of hybrid simulators
has been proposed as a way to generate reliable, and easily
scalable scenarios by the interaction of virtual sensor nodes
with actual ones. The use of simulated nodes allows to limit
the deployment to just a minimal set of real nodes, which may
serve as realistic data model generators to steer the behavior
of their virtual counterpart.

This paper presents a proposal for the creation of effective
models in the context of a hybrid simulation, in order to ease
the design and testing phases of WSN-based AmI applications
controlling large sites, such as entire office buildings. In this
context, scalability is a fundamental requirement with respect
to the number of users and also to the number of sensory
devices and of environments under observation.

We have tested our approach to scalable modeling as an
addition to our hybrid simulator for WSNs, ATOSSIM [7]. The
present work will discuss our method for extracting reliable
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models for data sensed in one specific environment taken as
reference; such models are used as a realistic data source for
virtual nodes; moreover we will show how they can be ported
to different sites so that a complex scenario may be realistically
simulated. Actual deployment of a limited number of sensor
nodes is required only for the reference site, so the approach
is both scalable and cost-effective.

The remainder of the paper is organized as follows. Sec-
tion II presents the basic ideas behind hybrid simulation
for WSNs, Section III describes our technique for adaptable
modeling, Section IV presents experimental results showing
the practical feasibility of our approach, and finally Section V
reports our conclusions.

II. ADDRESSING SCALABILITY THROUGH
HYBRID SIMULATION

Hybrid simulation allows real world entities to interact with
simulated ones, which is extremely useful during the design
of large-scale testbeds for AmI applications. Our goal is the
creation of a virtual testbed for simulating the perceptive
component of an AmI application, whose behavior is strictly
related to the actual trend of the physical quantities; the testbed
will be formed by a hybrid simulated WSN where a limited
set of real nodes is augmented with a larger set of simulated
ones.

The hybrid simulator we propose here is aimed to ease
testing scale-sensitive AmI applications by allowing for virtual
deployment of a large amount of sensor nodes with the
freedom to choose the shape and size for the setting, thus
providing a simple way to test the application behavior in
qualitatively different environments. The adherence to reality
is granted by the inclusion of real nodes, whose sensed data
are used to generate predictive models for the actual physical
quantities; flexibility is also taken into account by adapting
the obtained models to simulate the behavior of virtual nodes.

Our hybrid simulator has been realized as an augmented
version of TOSSIM, but, unlike this, it allows some of the
virtual nodes to be logically bound to real ones; such hybrid
(shadow) nodes represent the projection of real ones into the
simulation and may be regarded as wrappers whose main
purpose is to act as interfaces toward their real counterparts,
while appearing identical to other virtual nodes from the
simulator point of view. The main function of shadow nodes
is to collect sensed data from the real world, and to re-route
communication from virtual nodes to actual ones.

The coexistence of virtual and real nodes in a hybrid
simulation also poses some additional problems; for instance,
it is important that the simulation execution time reliably
mirrors real execution time, especially in order to preserve
causality; some kind of coordination must then be ensured
between virtual and real nodes. Our hybrid simulator provides
acceptable performances in terms of soft real time constraints,
and provides probabilistic end-to-end delay guarantees. Pre-
liminary experiments have been carried on to verify this aspect,
and experimental assessment of our simulator in terms of
timing accuracy may be found in [7].

In the context of an AmI application, the soft real time
constraint is totally acceptable with respect to simulation
reliability. Sensing rates in the order of milliseconds or greater
are generally totally acceptable for sensor nodes for the kind
of physical quantities involved in AmI, so they cannot possibly
interfere with the realism of a simulation run.

III. MODELS AND METAMODELS

The proposed AmI hybrid simulator supports the definition
of models for environment physical quantities to be monitored
by the higher-level AmI application. This allows to simulate
sensory readings in places where no sensory devices are actu-
ally deployed, thus enabling the simulation of environmental
scenarios wider than those actually at researchers’ disposal. It
is necessary for the adopted models to be tunable, so that they
can be instantiated according to real past sensory readings,
and adjusted with respect to on-line incoming ones. They also
need to be sufficiently generic so that they can be applied to
a different monitored area than the one for which they have
been built.

Although the overall hybrid simulation mechanism is
generic and valid regardless of the specific physical quantity,
the particular mathematical model, learning algorithm and
mechanism to port a model from a monitored area to another
need to be selected, also taking into account the typical
observed trends. More specifically, some criteria have to be
met for our approach to produce reliable models:
• for each point in space, sensed data are temporally

correlated so that it is possible to predict future values
with sufficient precision;

• for each time instant, sensed data are spatially correlated,
i.e. sensory readings in a given point can be estimated
from the readings of close sensors;

• for each monitoring area, the temporal and spatial trend
of the considered physical quantity can be derived from
those of a similar, close monitored areas.

The scenario described in this work considers such phys-
ical quantities as temperature, relative humidity, and light
exposure, as they represents typical environmental features
considered by AmI applications. In most indoor environments,
those quantities typically present a periodic pattern, with a
similar trend for all sensor nodes deployed throughout the
monitored area; intuitively, this is a good hint that it may
be feasible to learn mathematical models able to describe and
predict them, and such models may also be reused and applied
to other environments with similar physical characteristics
as the one considered as reference. Clearly, each physical
quantity requires individual modeling, i.e. different models
will be independently derived for temperature, humidity, and
light respectively; in the following, the function representing
one such model will be indicated by f(x, y, t).

The model must be formulated so as to capture information
about the physical location of the sensors as well as potential
temporal correlation over several measurements. This can
be highlighted by explicitly considering a different function
fxi,yi

(t) per each node i, which represents the predictive
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model for the measurements of node i with validity of 24h.
We aim to extract a global model providing measurements for
each point in the reference site in order to “feed” the virtual
sensor nodes with realistic values; we thus have to infer a
function f(x, y, t) defined ∀(x, y) ∈ S from all the fxi,yi

(t)
functions, where S is the reference site.

To this aim, f(x, y, t) may be obtained via simple in-
terpolation of the values predicted by the local fxi,yi(t)
functions. The method chosen for interpolation should possess
the following properties:

1) f(x, y, t) is smooth, i.e. it should be continuous and
belong to class C∞;

2) the interpolated values should fall within the same range
as the values predicted at each point in time.

The first property reflects the fact that the monitored physi-
cal quantities do not naturally present discontinuities in indoor
environments. Even though light exposure may occasionally
contradict this assumption in localized points (spots), this is
usually not particularly relevant to AmI applications; more-
over, strict modeling of this phenomenon would prevent from
formulating a general approach valid for all the considered
physical quantities at the same time.

The second property aims to ensure that f(x, y, t) does not
present extreme values devoid of any physical interpretation;
in particular, the property ensures that no unrealistic values
are generated in points where no sensors are present.

Because of these considerations, we used a normalized
linear combination of the fxi,yi

(t) functions as a spatial
interpolator, as shown by the following equation:

f(x, y, t) =

N∑
i=1

wifxi,yi
(t)

N∑
i=1

wi

, (1)

where the summation is computed over a set of N nearby de-
ployed sensors, wi = e−di , and di =

√
(x− xi)2 + (y − yi)2,

so that each value given by this model is computed by
taking into account all the deployed sensors, but with higher
importance given to the ones closer to the considered point.

Models learnt from past measurements and current mea-
surements are used to construct a predictor of the various
environmental functions. A spatial Interpolator then merges
the different predictor functions through Eq. 1 and builds the
environmental model f(x, y, t).

The next step in our approach consists in determining how
to adapt the environmental models built for one known site
(reference site) to different areas presenting similar character-
istics (target sites), as may be the case for different rooms in
the same office building. A naı̈ve superimposition of a known
model to a different site may not work seamlessly, because
of the differences in shape, size, light exposure and so on
between the reference and the target areas. We assume here,
however, that the considered physical phenomena present some
underlying similarity that is preserved across different sites.

We will show in Section IV that this is indeed the case for
the data considered in our experiments.

In order to port a model from one site to another, it is
necessary to determine the set of geometrical parameters that
characterize the corresponding transformation; it is convenient
to distinguish between two kinds of parameters:
• intrinsic parameters, which control the shape of the model

functions fxi,yi
(t) for the reference site;

• extrinsic parameters, which control how the model com-
puted for the reference site may be mapped onto a
different target site, and basically summarize all the re-
quired geometrical transformations (translations, rotation,
stretching, and so on) on the models.

A. Estimating the Intrinsic Parameters

In our view, intrinsic parameters model the shape of the
environmental functions representing the observed physical
quantities within the area of the reference site. We have chosen
to employ fitting methods based on mixture of Gaussians.

A generic function modeling the readings of sensor i may be
approximated by a series of M Gaussian functions depending
on the previous sensors readings:

fxi,yi(t) =
M−1∑
j=0

wjN (t|µj , σ2
j ), (2)

where the spatial coordinates of sensor i are not explicitly
indicated. A training set of sensory measurements allows to
estimate all the wj , µj , σ2

j , i.e. the intrinsic parameters for
our model of that particular physical quantity, by mean square
error minimization [8].

Our approach also takes into account the natural periodicity
of environmental phenomena, so the model for a given sensor
learnt for a time interval ∆told will be used also as predictor
for time interval ∆tnew after proper scaling and translation:

fnewxi,yi
(t) = α(t)

[
foldxi,yi

(t)− θ(t)
]

+ θ(t). (3)

Having computed the intrinsic parameters of the models of
the sensor, we are able to implement a predictor for each of
them; such predictor should not modify the overall shape of
the underlying environmental function, although at the same
time it should adapt to transient climatic changes (e.g. a rainy
day when the average light exposure is lower than usual, or a
sudden drop in temperature).

Moreover, the reliability of the predictions needs to be
constantly assessed also in order to adapt the behavior of the
sensor nodes; for instance, for the sake of energy saving, the
sensing rate may be lowered and transmissions consequently
reduced when the prediction model is deemed sufficiently
precise, so that it may be provide the required values instead
of actual readings.

In our case, we estimate the parameters for the mixture
of Gaussians through readings collected in the previous time
interval; the pseudocode for iteratively computing the in-
trinsic parameters for the current time interval is shown in
Algorithm 1, where the threshold τ represents the maximum
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Algorithm 1 Incremental estimate of intrinsic parameters.

Parameters initialization:
1: T ← 1 . sensing rate

2: foldx,y (t)←
M−1X
j=0

wjN (t|µj , σ2
j ) . ∆told Gaussian fitting

3: Sr ← ∅, St ← ∅ . daily set of readings and relative time instant
4: read time← t0 . beginning of readings
5: α← 1 . compression
6: θ ← 0 . translation
7: τ ← τ? . prediction error threshold

Read-Prediction cicle:
8: loop
9: while read time > current time not operate end while

10: Sr ← Sr ∪ {z(t)} . update readings set
11: St ← St ∪ {t} . update time set
12: ẑ(t)← α[foldx,y (t)− θ] + θ . prediction at time t
13: if |ẑ(t)− z(t)| < τ then T ← 2 ∗ T
14: else T ← 1

15: end if
16: Sp ← ∅ . initialize prediction set
17: for all t ∈ St do . compute prediction set
18: Sp ← Sp ∪ α[foldx,y (ti)− θ] + θ

19: end for
20: ED(α′, θ′) =

X
z∈Sr,ẑ∈Sp

{zi − ẑi}2 . square error of predictions

21: (α, θ)← argmin
α′,θ′

ED . gradient descent algorithm

22: read time← read time+ T . next reading time
23: end loop

tolerable prediction error, and it must be specific to any given
physical quantity. If the model passes the reliability test (i.e.
τ > τf ), the sensing rate is halved at each iteration, otherwise
it it reset to the default so that the model may be quickly fixed.

B. Estimating the Extrinsic Parameters

Models computed for the reference site must then be
extended to be ported to environments with slightly differ-
ent characteristics. For each of the environmental functions
relative to the considered measurements, we assume that the
value in at least one specific point p = (x, y, t) is known; our
aim is to compute the transformation that maps the coordinate
space of the reference site into a new coordinate space for
the target site; each point p = (x, y, t)′ would then be
mapped onto P = (X,Y, T )′. Such mapping may be formally
defined as P = MSMφp, where MS depends on the scaling
parameters sx and sy relative to the spatial dimensions of the
reference and target sites, while Mφ depends on the parameter
φ controlling the spatial rotation (useful, for instance when
considering different light exposure between the reference and
the target sites).

The overall transformation matrix may thus be written as
M = MSMφ,and the new environmental function for the
target site will thus be given by:

F (P) = β(t) · f(p) = β(t) · f(M−1P), (4)

where the β(t) weight (generally, time-dependent) stretches

Site 1

Site 2

Fig. 1. Maps of the sensor field from Intel Berkeley Research lab [9]; the
highlighted areas are those considered in our experiments.

the transformed function to better fit the target environment,
and needs to be estimated as will be explained in the following.

In order to estimate optimal settings for the extrinsic pa-
rameters we might use a simple, empirical approach, or an
automated method based on the measurement of a small set
of sensory data from the target environment. For the rotation
and scaling parameters the former method was preferred,
as support from the human operator seemed reasonable; the
required effort is minimal and basically consists only in
computing the size and orientation of the target environment,
in order to produce the mapping function.

As regards the estimate of β(t), on the other hand, we
decided to exploit a few sensory readings obtained by placing
in the target environment a minimal set of sensor nodes to be
used as probes. The weight β(t) is a proportionality factor that
fits measurements predicted by the Spatial Interpolator for the
reference environment into the probe measurements sensed in
corresponding points of the target environment, and basically
acts as a time-dependent stretching factor.

The β(t) stretching factor is estimated incrementally. Start-
ing from the measured value FXi,Yi

(t̄) for sensor i in location
(Xi, Yi) at time t̄ in the target environment, and knowing
the mapping matrix M we infer the prediction for the cor-
responding point fxi,yi(t̄) in the reference site. Assuming that
the actual measurement in the target site differs from the
one estimated through this mapping by a stretching factor
β̄ = β(t̄), i.e. FXi,Yi

(t̄) = β̄fxi,yi
(t̄), we estimate β(t)

at various time instants by minimizing the following error
function with respect to β̄:

E(β̄) =
∑
P∈S

{
FXi,Yi

(t̄)− β̄fxi,yi
(t̄)
}2

(5)

where the summation runs over all the probe points P =
(Xi, Yi, t̄)′ in the target region S.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

We tested our approach on real data from the public repos-
itory available from [9], which contains readings collected
from 54 sensors deployed in the Intel Berkeley Research lab
between February 28th and April 5th, 2004, via a network
of Mica2Dot sensor nodes equipped with weather boards
measuring temperature, relative humidity, and light.
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Temperature is measured in degrees Celsius, humidity is
temperature-corrected relative humidity, ranging from 0 to
100%, and light is in Lux (a value of 1 Lux corresponds
to moonlight, 400 Lux to a bright office, and 100,000 Lux
to full sunlight.) For our purposes, we disregarded 2 nodes
with insufficient readings; we analyzed measurements relative
to the readings for dates between Mar, 1 2004 and Mar,
7 2004; moreover, in order to compare different quantities
we normalized the results to their corresponding effective
ranges, namely 18◦C ([17◦C − 35◦C]) for temperature, 70%
([20%−90%]) for relative humidity, and 1600 Lux ([0−1600])
for light.

Figure 1 depicts the actual settings of the nodes, and
highlights the two areas that we chose as representative for
a reference and target sites; although they are part of a bigger
open-space, in the following we will first prove that for our
purposes they may be considered as two separate sites, and
that our hypotheses hold, and then proceed to assess the
performance of our approach to modeling.

A. Hypotheses validation

Considering the readings for the three considered physical
quantities for the 52 nodes in the database, Figure 2 plots
the autocorrelation computed in a time range of 24h and
averaged across 7 days. Each plot in the figure shows, for
the corresponding quantity, a very high value of autocorrela-
tion in the considered time span, which then may be safely
assumed as a base period for temperature, humidity, and light.
Not surprisingly, light shows a greater variance with respect
to both temperature and humidity (whose plots are almost
superimposed and constantly close to 1).

According to the deployment map reported in Figure 1,
we selected some sets of close nodes, which we assume to
represent our basic sites; in order to have the simulation
generalize to a complex scenario, we have assumed that it is
possible to choose one of them as a reference site, over which
we compute our models that will then be ported to similar
sites with no need for additional deployment of sensor nodes.

Here we first validate the assumption that it is possible to
individuate such groups, i.e. that physically close nodes indeed
sense similar values for each quantity they measure.

Figure 3 reports the results of one experiment carried on
the group indicated as “Site 1” (nodes 1, 2, 3, 4); the plots
show that each quantity has a very low standard deviation
(normalized with respect to the range spanned by the values of
each of the considered quantities); note that all values are well
below 10%, meaning that, within that group, sensed values
across nodes are consistently close to each other.

B. Model Validation

Considering the groups of sensor nodes highlighted in
Figure 1, we will now consider “Site 1” as the reference site,
and “Site 2” as the target site; we thus have to show that we
can reliably model the sensory readings within the reference
site, and that such model is portable, i.e. can provide reliable
predictions, to nodes of the target site.

Fig. 2. Autocorrelation for all nodes for temperature, humidity, and light in
a time range of 24h.

We started by building a model for each of the nodes of
“Site 1” as described in Section III-A. Figure 4 shows the
performance of our models as predictors, by plotting the mean
value of the absolute error in the considered time range, also
showing the maximum and minimum values for 3h slots. It is
evident that the performances are satisfactory, as the mean
error is again constantly lower than 10% for temperature,
humidity and light.

In order to assess the validity of our models as estimators
of sensor readings in generic locations within the considered
test site, we used all available nodes in “Site 1” (nodes 1, 2, 3,
4 ) and performed some tests in a “leave-one-out” fashion, i.e.
we built the model with data from N−1 nodes and computed
the error on readings from the N th node. In our case, the tests
were conducted using 3 nodes for training and 1 for testing, for
the same time interval as specified above, where the first day
was used for training. The absolute error (averaged across all
runs of “leave-one-out”) was 0.0238 for temperature, 0.0178
for humidity, and 0.0285 for light.

Finally, we assessed the feasibility of porting the models
to a different site. We assume that the target site has much
fewer actually deployed nodes; in our case, “Site 2” contains
nodes 11, 12 and 13, but only node 11 is considered for
training, whereas nodes 12, and 13 are used for testing;
hence, by using the readings from node 11 as probes, we
adapted our models from “Site 1” to the new environment,
following the method described in Section III-B. Figure 5
shows the estimation errors for all the considered quantities,
for both testing nodes. Again, errors are every low, thus
proving that models computed on “Site 1” and adapted to “Site
2” by using probes from just one node do provide reliable
estimates in the two considered test points. It must be noted,
however, that while errors relative to temperature and humidity
measurements are below 25%, and 10% respectively, errors
for light measurements are considerably higher; this is due
to intrinsically lower correlation for Light, which makes it
harder to port the model from one site to another, and more
importantly, to the fact that the exact topology of “Site 2” was
unavailable to us, so we were not able to fine tune the spatial
rotation parameter φ.

V. CONCLUSION

This work described an approach to modeling data gener-
ated by a hybrid simulator for WSNs in the context of an AmI
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Fig. 3. Assessment of similarity across spatially close measurements.

Fig. 4. Assessment of the model as a predictor.

Fig. 5. Estimation error when porting models to a target site. (The y-axis range for Light is [0, 1], as opposed to [0, 0.25] used for Temp. and Hum.

scenario. We addressed issues related to the assessment of the
produced predictive models, as well as to their generalization
to unknown environments in order to show that it is possible
to generate scalable and reliable simulations for the sensory
layer of an AmI system. Our experiments, conducted on a
publicly available repository, show the validity of the proposed
approach.
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