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Abstract. Wireless Sensor Networks (WSN) are increasingly gaining
popularity as a tool for environmental monitoring, however ensuring the
reliability of their operation is not trivial, and faulty sensors are not
uncommon; moreover, the deployment environment may influence the
correct functioning of a sensor node, which might thus be mistakenly
classified as damaged. In this paper we propose a probabilistic algorithm
to detect a faulty node considering its sensed data, and the surrounding
environmental conditions. The algorithm was tested with a real dataset
acquired in a work environment, characterized by the presence of actua-
tors that also affect the actual trend of the monitored physical quantities.

Keywords: Autonomic Computing; Probabilistic Reasoning; Wireless
Sensor Networks.

1 Introduction
Wireless Sensor Networks (WSNs) are composed of a set of interconnected de-
vices equipped with sensors for measuring various physical quantities [1] and as
such, they may be used in AI systems for acquiring knowledge about an appli-
cation domain; clearly, it is important that they are not affected by faults. The
present work describes a probabilistic approach for the detection of such anoma-
lies in WSN by exploiting statistical information extracted from data gathered
by the nodes themselves. The present work extends our previous work [2], and
it aims at modeling the overall behavior of a sensor node, as well as the external
factors potentially affecting its operations by a Bayesian network, so that belief
propagation may be used to infer the overall health status of the node.

2 Related Work
The topic of anomaly detection for WSN has already been addressed in current
literature, but many works fail to consider peculiar characteristics that may lead
to a wrong anomaly detection. In [3] an approach for identifying regions of faulty
sensor nodes is presented, with good performance for large faulty sets, but which
focuses only on hardware faults. Our approach is not sensitive to the nature of the
faults, and the probability of a correct diagnosis is independent of the amount
of nodes. In [4] a method for detecting faulty sensor nodes is presented. The
method uses Principal Component Analysis (PCA), and wavelet decomposition
for analyzing historical data for small-scale WSNs. The faulty sensor nodes can
be detected by extracting high-frequency coefficients of wavelet decomposition,
but the presence of actuators is not considered, which may alter the outcome
of the proposed algorithm. In [5], the authors address potential errors in sensor
measurements due to faults, and develop a distributed Bayesian algorithm for
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2 Probabilistic Anomaly Detection for WSNs

(a) (b)

Fig. 1. (a) A Bayesian network, highlighting message passing between two showing
hidden and observed nodes. (b) The proposed Bayesian network.

detecting and correcting such faults. They present a sample scenario where sen-
sors detect concentrations of some chemical agent may exceed some pre-defined
threshold, and propose a Bayesian approach based on the assumption that mea-
surement errors due to faulty equipment are likely to be uncorrelated, whereas
environmental measurements are spatially correlated. A similar assumption is
used in our work, although our application domain is different, and our approach
is applicable to generic off-the-shelf sensors, and takes the specific operational
context into account.

3 Detecting Anomalies in Wireless Sensor Nodes
In order to assess the operational good standing of a sensor node we represent
its behavior through a Bayesian network (BN) able to model the influence of
external factors. The target application domain is an indoor environment; the
WSN nodes are supposed to be powered by non renewable energy sources and
the user is allowed to influence the environment by operating actuators.

3.1 Modeling Sensor Nodes Behavior

We are interested in modeling the behavior of each sensor node by way of a
BN capturing the influence of the surrounding environmental conditions over
the sensors on board of the node using the belief propagation (BP) [6] to infer
on graphical models expressed by the BN. We refer to the rightmost BN in
Figure 1(a) to introduce the theoretical grounds; let S indicate the set of nodes
of the BN, with |S| = s. Each variable can assume a discrete number of states,
and we will indicate one of the different states of node i as xi. To compute the
message between hidden nodes j and i, let Hj and Bj indicate the sets of hidden
and observed variables connected to node j; in the depicted case Hj = {v, w},
and Bj = {q, r}, with Hj , Bj ⊂ S, at the end the messages are of the form:

mji(xi)←
∑
b∈Bj

φj(xj , xb)ψji(xj , xi) ·
∏

k∈Ngh(j)\i

mkj(xj) (1)

where φj(xj , xb) and ψji(xj , xi) represent the potential functions between pairs
of variables of the graphical model. The former controls the relationship between
observed and hidden variables, whereas the latter controls the relationship among
hidden variables of the graphical model. Ngh(j) represents the set of neighbors
of node j. The “belief” xi assumed by node i is expressed as follows:

bi(xi) =
1

zi
φi(xi, yi) ·

∏
k∈Ngh(j)

mki(xi) (2)
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where zi is a normalization factor. Finally, we consider that the values of the vari-
ables in the model may change over time, so the beliefs are actually re-computed
for each instant. Figure 1(a) shows the relationship between two instances of the
model at consecutive time instants; a message will also be exchanged between
two consecutive instances of node i, and represents an estimate of the state node
i will assume at time t, computed at time t− 1.

3.2 Specializing the Model for Indoor Environmental Monitoring

Figure 1(b) shows the structure of the BN we used in our context. Each sensor
node is assumed to be equipped with three sensors for measuring light expo-
sure, temperature and relative humidity, respectively, and its operating status
is modeled as a binary stochastic variable. Variable N represents the health
status of a sensor nodes, and it has to be ultimately inferred; in our model it
is influenced by variables L, H, and T which represent the estimators of the
operating status of the three on-board sensors. Each of them models the sta-
tus of the corresponding sensor also taking into account the operating context,
which in our case is represented by the surrounding environmental conditions,
as well as the potential influence of actuators over the readings of each sensor.
Variables EL, EH , and ET represent the raw estimators of the health status of
the three sensor with respect to their surrounding environment, and they are
computed via the technique described in our previous work [2], that labels a
healthy sensor as Good, and a faulty sensor as Damaged. Variables AL, AH ,
and AT model the influence of the actuators for light, humidity and temperature
respectively. The probabilities associated with such variables are computed with
respect to the acquired readings; if the actuator is turned on, the probabilities
are computed on the fly by applying Gaussian regression that allows to estimate
p(xN = Good |xAT

= On). Whenever the actuator is turned off, we assume a
uniform distribution for the corresponding variable. Finally, the operating sta-
tus of a sensor node is also influenced by the charge level of its battery; our
model captures it through variable B using an approach based in the correlation
computed between a node having low power and one with sufficient power.

3.3 Inferring the Health Status of an Environmental Sensor Node

As previously mentioned, the overall health status of a sensor node is inferred by
computing the belief bN(t)(xN ) of the corresponding node N in the BN; in our
scenario xN is a 2-dimensional vector containing the probabilities associated to
the two labels, Good and Damaged. As the model evolves over time, it takes on
a configuration depending on the acquired measurements as well as on external
perturbing factors. Eventually, the belief about xN at time t will indicate which
of the two possible states is the correct inference for the operating status of the
sensor node. In our model, variables EL, EH , ET , AL, AH , AT , B are the observed
variable, whereas variables N,L,H, T are hidden. The marginal probability of
the hidden variable Nt, in particular is estimated via BP, by applying Equation 2,
which in the specific case becomes:

bN(t)(xN ) =
1

zN
φt(xN , xB) ·

∏
j∈{H,L,T,Nt−1}

mjN (xN ) (3)
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4 Probabilistic Anomaly Detection for WSNs

where φt(xN , xB) is the probability P (N |B), whereas messages are computed
by Equation 1. As shown in Equation 3, the state of node N at time t requires
a message from node Nt−1; we assume that such message is null for N0.

4 Experimental Results
In order to assess the performance of our method we set up a typical work
environment, and we deployed 5 sensor nodes. The setting also included an
actuator that influences temperature and humidity, and an artificial lighting.
For our experiments, we collected a dataset acquired during the period rang-
ing from March, 24th to April, 14th 2011. The sampling period of each node
is 3 minutes; each of the following test scenarios considered an overall time
span of 24 hours. Due to its central location, node 5 has been specifically
considered as representative for the evaluation of the performance of the pro-
posed algorithm; as will be shown, the influence of all kinds of actuators is
more noticeable as compared to the remaining nodes. Three sample scenar-
ios are presented follow to better explain the performance of our approach.
The performance of the proposed approach was quantified by computing two
metrics: the accuracy, measuring the reliability of the classifier with respect to
the detection of Good and Damaged nodes, and the precision, which specif-
ically considers the detection of faulty node; they are computed as follows:

Ac =
Tn+ Tp

Tp+ Fn+ Fp+ Tn
(4) Pr =

Tp

Tp+ Fp
(5)

where Tp measures the amount of nodes whose health status is Good and
are actually detected as such (i.e. true positives), Fp measures the amount of
nodes whose health status is Good, but are erroneously detected as Damaged
(i.e. false positives), and analogously for the two remaining parameters.

4.1 Scenario 1: Dataset influenced by actuators

In this scenario, the BN processes data influenced solely by the action of the
actuators, it identifies data where such influence is relevant, and succeeds in
classifying the relative sensors as healthy, even when the underlying MRF-based
classifier would trigger an alarm.Our BN-based classifier provides better perfor-
mance thanks to the additional information extracted from the environmental
context, like that the actuators are turned-on. The outcome of the proposed
algorithm is shown in the topmost plot of Figure 2(a); the three other plots in
the same Figure show the status of the individual sensors for humidity, temper-
ature, and light as computed by the MRF-based algorithm. The reported plots
specifically consider node 5. Figure 2(a) highlights that the proposed algorithm
outperforms the basic MRF-based classifier. The performance of this scenario is
reported in the first row of Table 1.

4.2 Scenario 2: Dataset influenced by a simulated fault

In this scenario, the dataset corrupted by an artificial error only is processed.
Figure 3 shows the original dataset; the dotted rectangle highlights the presence
of errors. In this case the accuracy value for the proposed algorithm is lower
than the classifier based on the MRF, due to a transition phase necessary for
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(a) (b)

Fig. 2. (a) Environmental information accounted in the Bayesian classifier, the errors
of classification are committed by the classifiers MRF based; (b) Progress of belief of
the node 5 during the errors occurred in its sensors, the last three charts indicate the
period which the error occur respectively on the sensor of temperature, humidity, and
light.

(a) (b)

Fig. 3. (a) Real dataset perturbed by a Gaussian error: (a): temperature; (b): humidity.

the algorithm to converge on the exact state. In the first plot of Figure 2(b), the
evolution of the belief about state Good for node 5 is shown. In the others plots,
the dotted rectangle surrounds the interval containing the errors for the sensors,
which are thus regarded as Damaged. The transition is due to the fact that the
network is time dependent, so that the previous state of a node influences the
estimation of next value (through message passing). Just for this scenario the
performance is shown in the second row of the Table 1.

4.3 Scenario 3: Dataset influenced by actuators and a simulated
error

In this scenario, the dataset used is influenced by the action of the actuators,
and by an artificial error. As in the first scenario, classifier accounts for the
environmental information in its reasoning, and correctly identifies the action of
the actuators, but similarly to the second scenario, it singles out the artificial
error. The first plot in Figure 4(a) shows the evolution of the belief when the
artificial errors occurred on the sensors, and that the belief of the node decreases
only in the proximity of errors, so that the status of the node switching toward
Damaged value as shown in the first plot of Figure 4(b). The other plots of
Figure 4(b) show that the MRF-based classifier approximately identifies the
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(a) (b)

Fig. 4. (a) Real dataset of humidity perturbed by the air conditioner and by a fault.
(b) Dynamics of the estimate of the status for the classifiers in scenario 3.

Table 1. Performance summary of the experimental scenarios.

BN Classifier
MRF-based Classifiers

T H L
Ac[%] Pr[%] Ac[%] Pr[%] Ac[%] Pr[%] Ac[%] Pr[%]

Scenario 1 89 90 77 78 63 64 63 63
Scenario 2 70 93 88 99 78 87 – –
Scenario 3 78 78 52 51 50 42 80 77

faulty sensor, signaling the error for a longer time than the Bayesian classifier,
which detects the error upon its occurrence. On the third row of Table 1, the
performance of both kind of classifiers are presented for this scenario.

5 Conclusion
In this paper we proposed a Bayesian classifier for the health status of sensor
nodes for environmental monitoring considering the external factors that sur-
rounding a node, like actuators. A possible future use of the our work might be
in a wider and more complex architecture, such as an autonomic system.
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