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Cognitive Meta-learning of
Syntactically Inferred Concepts

Salvatore GAGLIO a,b, Giuseppe LO RE a and Marco ORTOLANI a,1
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b ICAR-CNR, Italian National Research Council

Abstract. This paper outlines a proposal for a two-level cognitive architecture re-
producing the process of abstract thinking in human beings. The key idea is the use
of a level devoted to the extraction of compact representation for basic concepts,
with additional syntactic inference carried on at a meta-level, in order to provide
generalization. Higher-level concepts are inferred according to a principle of sim-
plicity, consistent with Kolmogorov complexity, and merged back into the lower
level in order to widen the underlying knowledge base.
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Introduction

One of the most distinctive traits of human intelligence is the ability of recognizing sim-
ilarities across seemingly different contexts; loosely speaking, the core of human under-
standing involves matching observed events to categories, which may represent the gen-
eralization of specific individual instances onto comprehensive representative concepts.
Such mechanisms favor the arising of surprisingly complex behavior in biological sys-
tems, which has been the subject for investigation aimed at devising reliable models for
the human brain, as well as at discovering effective approaches to its automatization.

A striking example of the elaborate operational organization of the brain is repre-
sented, for instance, by the ability of perceiving complex visual scenes, where the sen-
sory perception does not arise as a mere sum of elementary stimuli, but rather as a com-
plex process of transformation of simpler pieces of information [1]. This is well mod-
eled by the Gestalt theory of mind [2], which considers the human brain as a holistic,
parallel machine with self-organizing capabilities; in particular, the essence of the cogni-
tive abilities is the capacity of integrating current perceptive information into a coherent
framework, and to merge new information with past experiences. In [3], for instance, the
issue of measuring the complexity of the human brain is addressed by adopting a uni-
fied approach based on information theory; basically, the idea is to estimate the statisti-
cal mutual information exchanged between different neural areas in order to compute a
complexity measure for neural activity, with high complexity characterizing systems that
are both highly integrated and specialized.

This view naturally fits with the connectionist approach to artificially simulating and
assessing the brain’s functionalities, of which Artificial Neural Networks (ANNs) are the
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Figure 1. Block diagram of the overall system organization.

most notable example. The advantages of using such kind of methods are manifold, as
they provide compact and computationally efficient representations, and appear to match
closely the physiological structure of the brain; however, as noted by [4], a fundamental
epistemological problem for ANNs is that even though an ANN system may have pro-
duced a satisfactory categorization, nonetheless it will likely fail to provide any natural
explanation for that category, thus making it hard to attach a semantic value to it.

In the present work, we advocate the use of an historically alternative approach,
namely the symbolic one, for reproducing some of the brain’s basic functionalities; more
specifically, we aim at modeling its abstraction capability to match sequences of percep-
tual inputs and recognize their underlying syntactic structure, which will be used to ex-
tract a more general pattern representing entire sequences. A remarkable advantage of us-
ing a syntactic approach is the self-explanatory quality of the obtained patterns, and their
intrinsic generative nature. On the other hand such approach has often been regarded as
too rigid, with respect to the dynamics of the process of understanding; for this reason,
we propose to extend the basic pattern recognition structure with a meta-level where syn-
tactically extracted patterns may be aggregated, and novel patterns may emerge thanks to
a guided inference; such higher-level pattern representative may thus be considered the
equivalent of concepts in the human brain. We refer to the cognitivist viewpoint, follow-
ing the considerations expressed by Gärdenfors in [5], in whose opinion meaning needs
to be perceptually grounded; in other words, unlike the realistic approach which claims
that meaning arises from a mapping between the language and the external world, the
mental structures applied in cognitive semantics represent on their own the meaning of
the perceived symbol sequences.

In our approach, the issue of meaning is addressed in terms of operational semantics,
since concepts are identified with computational entities, such as Finite State Automata
(FSA). The internal representation arising from the analysis of perceptions will be struc-
tured by triggering the selection of more general, simpler concepts from the basic syntac-
tic structure recognized at the lower level, and to this purpose we have devised a system,
whose two main constituting parts are represented by the block diagram in Figure 1; in
particular, the backward arrow on the right side of the picture shows how higher-level
concepts are somewhat internalized by being fed back into the lower level.
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We claim that the principle steering the selection of the most representative concepts
ought to be simplicity, according to the well known Occam’s razor principle, which in
our case will be modeled by taking into account the Kolmogorov complexity [6] of the
produced concepts. The aim of the paper is thus to outline the design of a framework
for extracting high-level concepts from sensory perceptions represented by sequences
of symbols, according to a syntactic pattern recognition process, driven by higher-level
inference of novel, more representative concepts. The framework aims to provide explicit
representation of the abstraction process occurring in human brain.

After providing a brief summary on the relevant scientific background, the remainder
of the paper will present an outline of the proposed cognitive architecture.

1. Scientific Context

The brain’s capacity of integrating current perceptive information into a coherent frame-
work, and to merge new information with past experiences is the core of our cognitive
abilities; studies on this topic have fostered the development of the field known as cog-
nitive science, devoted to the formulation of a computational theory of mind.

According to Gärdenfors [4], three levels of representation of knowledge are typi-
cally identified in cognitive science: the associationist (or subsymbolic) level, the con-
ceptual level, and the symbolic level; in fact, most recent literature in machine learn-
ing, has favored associationism, and more specifically, connectionism as opposed to the
earlier attempts to investigate symbolic approaches.

Connectionist systems, such as ANNs, consist of large numbers of simple and highly
interconnected units, which process information in parallel; according to connectionism,
cognitive processes should not be represented by the manipulation of symbols, but rather
by the dynamics of the activity patterns in ANNs.

Such dynamics may be interpreted in terms of the interplay between functional seg-
regation (the possibility for different brain regions to be activated by specific cognitive
tasks or by specific stimuli), and functional integration (the ability to rapidly and co-
herently consolidate diverse signals in order to drive adaptive behavior), as proposed by
the authors of [3]. In order to mediate between the two opposing requirements, the same
authors propose a unified approach based on information theory, aiming at estimating
the statistical mutual information exchanged between different neural areas in order to
compute a complexity measure for neural activity, with high complexity characterizing
systems that are both highly integrated and specialized.

Connectionist approaches are characterized by the effort to model the intrinsic adap-
tiveness of the brain to the diversity of the external stimuli by way of highly dynamic
internal representations. A different view on the same issue comes from the symbolic
approach. According to the seminal article by Newell and Simon [7], “the central tenet of
the symbolic paradigm is that representing and processing information essentially con-
sists of symbol manipulation according to explicit rules.” Even though this may sound
too rigid, it carries the remarkable advantage of directly providing a compact represen-
tation as well as an interpretation of the input; moreover, symbolic analysis may be im-
plemented efficiently since manipulations of symbols are performed regardless of the
semantic content of the symbols. On the other hand, this has been considered a serious
drawback of symbolic systems, also with respect to the issue of symbol grounding.
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Figure 2. Scheme for the syntactic cognitive architecture.

In [8], the authors point out that biological complexity needs evolution to be modeled
reliably, and in spite of its underlying rigidity, the symbolic approach is able to take
into account the intrinsic need for adaptiveness. The internal representations may in this
case be formulated in terms of automata, or Turing machines (TM), and in [9], a general
formulation of an AI system is provided in terms of TMs, which allows to state a precise
formalization of the principles that ought to drive the selection of the “fittest” within a set
of such machine in order to fulfill a given task has been provided, according to a criterion
of simplicity, similar to the renowned Occam’s razor. Basically, an AI system may be
described in terms of an iterative agent with some internal state, which at each step k
acts with output yk on some environment, perceives some input xk from the environment
and updates its internal state. Focusing on the deterministic case, if input and output
are represented by strings, the system can be modeled by a Turing machine (TM) S,
governed by a deterministic policy which determines the reaction to a perception; if the
environment is also computable, it might be analogously modeled by a TM E . As will
be shown in the following, this formulation together with a precise, formalized notion
of complexity may be used to describe a cognitive system with capabilities resembling
human abstract thinking.

2. Inferring Complex Concepts from Sequences of Symbols

Following the theoretical framework outlined by Hutter in [9], we assume here that the
environment from where perceptions are drawn is computable, hence representable as
a Turing machine (TM). We consider sequences of symbols as the sensory input of our
system and we aim to recognize the implicit patterns present in such sequences and to
internalize them both as compact syntactical descriptors, and as more general concepts.

Figure 2 shows a more detailed representation of the syntactic cognitive architecture.
The lower part of the picture shows the ground level, where sequences of symbols are
recognized as what we may regard as pattern primitives, following the scheme of [10].
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Such low-level concept representatives might be hard-coded as primitive concepts in
our system; for the purpose of this discussion, we will assume that the environment is
representable as a TM in one of its simplest forms and for simplicity’s sake, we will
restrict our analysis to the case of regular grammars, so that in fact the representation
for a low-level concept will be a finite state automaton (FSA). FSA offer the twofold
advantage of providing a compact representation for an entire category of perceptions,
as well as an efficient implementation, in terms of memory, and time requirements. More
importantly, automata are self-explanatory, and much more powerful than, for instance,
ANNs in that regard, as they are not mere representatives of a category of samples, but
rather generators.

Simulating human abstract thinking cannot disregard a natural component of evolu-
tion, so our “syntactic pattern base” (i.e. the set of the basic FSA collected so far) can-
not be static; on the contrary it needs to adapt to new samples potentially belonging to
previously unseen sequences, as well as to the emergence of more general sequences,
i.e. more general FSA representing higher-level concepts. In other words, the structure
of the discovery process of new concepts tries to mimic the process of human thinking,
in line with the cognitivist approach.

In our system, the choice of higher-level concepts will be driven by the simplicity
of description; namely, as shown in the figure, we superimpose a meta level to the base
syntactic inference level, and we consider a CONCEPT INFERENCE ENGINE whose purpose
is to analyze low-level concepts as well as raw symbol sequences in order to attempt
a further inference of “better”, more general and more compact representations. At the
meta level, syntactic learning is performed by carrying out grammatical inference on the
lower level perceptions. Syntactic learning consists in the inference of the grammatical
structure presumably underlying the provided samples, a process also known as gram-
mar induction. Successful inference will produce a grammar providing a compact repre-
sentation for class of samples which we basically deem belonging to the same conceptual
category. Some effective methods for grammatical inference are reported in [10]. Basi-
cally, one can proceed by applying a simple inference by enumeration as initially pro-
posed by [11], which relies on a partial ordering of a set of candidate grammars in order
to choose the one better matching the samples. Alternatively, grammars may be inferred
by induction, as suggested by Solomonoff [12]; in this case, the algorithm consists of a
process of deletion/re-insertion of substrings from each string in the sequence in order to
discover the recursive structure of the underlying grammar. Whatever the chosen method,
Fu [10] proposes a general scheme for the grammatical inference process which relies
on the use of the so called Informant, i.e. a complete information sequence drawn from
the original language of the samples, to be used as a guidance for the inference process.

In order to fit the intuitive notion of simplicity of representation into our formaliza-
tion (following the principle of Occam’s razor) a useful concept is that of Kolmogorov
complexity [6], also known as algorithmic entropy. The basic idea is that not only does a
given symbol sequence need to be provided with a simple description, but the tool used
to interpret that sequence (a TM, or an FSA in our case) also needs to be described in
a simple way. We rely on Solomonoff Theorem [12], so that every possible description
is to be formulated in terms of the Universal TM U ; with reference to [9] with slight
simplifications, the notion of complexity of a concept, and consequently of the sequences
it recognizes, might be expressed in terms of the Kolmogorov complexity as follows.
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Let U be the reference universal Turing machine; the Kolmogorov complexity for a
sequence x is defined as the shortest program p, for which U outputs x:

K(x) := min
p

{length(p) : U(p) = x}.

Unfortunately, a straightforward use of K(x) as a metric for complexity is not vi-
able, since it is not a computable function; in our system we instead adopt a heuristic
approach, and measure the complexity of a representation by the number of the states of
the minimal DFA, equivalent to the considered FSA. Moreover, the CONCEPT INFERENCE

ENGINE, at the meta level in Figure 2, is devoted to infer novel representations, based on
previously extracted ones as well as on the original sequences; such new concepts will
however be provided with a description formally similar to those coming from the lower
level, and may thus be merged back into the ground level in order to be consolidated
into the existing knowledge. Such procedure simulates the “hard coding” of newly ac-
quired concepts into the lower level; the whole process may go on with an ever increasing
structured and self-explanatory knowledge base.

3. Final Considerations

The paper presented an initial proposal for a cognitive architecture aiming at simulating
human abstract thinking. Only the basic ideas have been sketched, and each part of the
system needs to be analyzed in more detail, however the general description should con-
vey the broad idea of representing the abstraction process thanks to a meta level where
syntactic inference is performed.

A final note regards the flexibility of the proposed system; first of all, it is worth
noting that we do not restrict long symbol sequences to trigger just one of the basic FSA,
rather they will be recognized by more FSA at once, similarly to what happens to per-
ceptions that may stimulate different concepts in the human brain. Finally, an additional
degree of freedom for the system may be included by allowing for the presence of noisy
samples; a first approach in this direction might be for instance the inclusion of a module
for Bayesian inference of stochastic grammars in the CONCEPT INFERENCE ENGINE.
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