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Abstract—In many distributed systems, the possibility to
adapt the behavior of the involved resources in response to
unforeseen failures is an important requirement in order to
significantly reduce the costs of management. Autonomous
detection of faulty entities, however, is often a challenging
task, especially when no direct human intervention is possible,
as is the case for many scenarios involving Wireless Sensor
Networks (WSNs), which usually operate in inaccessible and
hostile environments. This paper presents an unsupervised
approach for identifying faulty sensor nodes within a WSN.
The proposed algorithm uses a probabilistic approach based
on Markov Random Fields, requiring exclusively an analysis of
the sensor readings, thus avoiding additional control overhead.
In particular, abnormal behavior of a sensor node will be
inferred by analyzing the spatiotemporal correlation of its data
with respect to its neighborhood. The algorithm is tested on
a public dataset, over which different classes of faults were
artificially superimposed.

Keywords-Autonomic Computing; Markov Random Fields;
Wireless Sensor Networks.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are nowadays increas-
ingly gaining popularity, also in challenging scenarios such
as pollution control, intrusion detection, healthcare monitor-
ing [1]. Although such considerations clearly show that it
is mandatory to achieve a high degree of robustness, and
tolerance to unpredictable faults, such goals are somewhat
conflicting with the typical constraints of WSNs, which
usually operate in hostile environments, and are supposed
to require as little manual intervention as possible.

The general topic of self management, and self healing
in complex systems has been addressed in the context
of Autonomic Computing [2], [3], whose main goal is
the development of simple, and clever software tools for
automating all the administrative tasks that are so far del-
egated to skilled personnel, in order to reduce the overall
maintenance costs of the system.

Our work presents an algorithm for modeling the behavior
of sensor nodes, whose main task consists in monitoring
typical indoor environmental quantities, in order to detect
potential faults, and our approach will rely exclusively on
the analysis of sensed data, with no additional control
overhead. The proposed algorithm considers each sensor

Figure 1. Representation of a group of sensors as nodes of a MRF; the
health status of each sensor si is represented by an observable variable yi,
and a hidden variable xi.

on board of the nodes as the generator of a stochastic
variable, whose value is to be reliably estimated. Assuming
that the considered physical quantities are correlated both
in time and in space, our aim is to detect a faulty sensor
node (i.e. one whose sensors behave as outliers with respect
to its neighboring nodes) through an approach based on
probabilistic graphical models, namely Markov Random
Fields (MRF) [4], [5]. To this aim, groups of nearby sensors
are represented as nodes of an undirected graph, as shown in
Figure 1; starting with an approximation of the health status
of each sensor, our method will provide a more reliable
estimate for the same status.

Unlike other works, our approach specifically attempts
to minimize the additional required control overhead, since
it purely relies on the analysis of sensed data. Although
a simpler version of our algorithm might run directly on
the host where all data is collected, we will show that in
fact only local information about the neighborhood of a
node is necessary in order to infer its health status, so that
it is straightforward to devise a distributed version of the
algorithm running remotely within a cluster of nodes.

The remainder of the paper is organized as follows. Sec-
tion II briefly presents some other works about autonomic
approaches to WSN management, and to probabilistic data
analysis in a WSN context. In Section III, we present the
details of our work. Section IV shows some experimental
results on a widely known public dataset; finally, Section V
contains some concluding remarks.

II. RELATED WORK

The concept of Autonomic Computing proposed by IBM
in 2003 [2] has since inspired many authors, who have
applied the autonomic approach to various scenarios. For
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instance, the authors of [3] survey several projects of auto-
nomic systems, including a WSN-based system specifically
targeting the power management issue; in [6], a comprehen-
sive autonomic approach for a WSN-based application is
presented, where the authors discuss an intrusion detection
scenario.

For the purpose of the present work, we specifically focus
on monitoring wireless sensor nodes in order to provide
failure detection [7]. The failure detectors presented in
literature fall into two main categories: the ones directly
exploiting the sensed data in order to assess the status of
the monitored element, and those that rely on some other
external control mechanism. For instance, in [8], the authors
present a failure detector based on data mining, able to detect
faults in an electric power system, whereas [9] presents a
failure detector based on a handshake mechanism evaluating
the delays of messages exchanged between the monitored
and the managed element.

In our work, we adopt the former approach, and we aim
to assess the health status of a sensor node, exclusively
by analyzing the sensor readings; in detail, we will use a
probabilistic approach to estimate the status of our moni-
tored element. Similar approaches have been presented in
literature, with a focus on different application scenarios.
In [10], a stochastic recursive identification algorithm is
presented which can be implemented in a fully distributed
and scalable manner within the network. The authors demon-
strate that it consumes modest resources as compared to a
centralized estimator, while still being stable, unbiased, and
asymptotically efficient; in the considered scenario, sensors
classify the presence or absence of an effluent released from
a chemical plant into a river. In [5] a framework for dis-
tributed signal processing in sensor network environments is
discussed, in which sensor nodes collect noisy readings, and
classify them by using a Markov Random Field; unlike our
approach, however, the authors propose a static calibration
of the necessary MRF parameters.

In [11] MRFs are used to identify the most relevant
collected data, in order to implement an algorithm for ag-
gregation of large amounts of data originating from diverse
sources; unlike our approach, however, the possibility of
anomalies introduced by faulty sensors is not taken into
account.

Finally, the authors of [12] present an efficient collabora-
tive sensor-fault detection (CSFD) scheme, where the health
status of a sensor node is inferred via a homogeneity test.
Similarly to our work, CSFD implements a probabilistic
approach, although it relies on specific control messages thus
causing additional overhead, not required by our approach.

III. IDENTIFYING FAULTY SENSORS THROUGH MRF

This Section presents the proposed method for assessing
the health status of a sensor node; specifically, we intend
to infer the general functioning of a node by analyzing the

data produced by the individual sensors on board of the
node itself. We use a probabilistic approach based on a
particular instance of graphical models, namely the Markov
Random Fields (MRF) [4], [5], in order to classify each
sensor according to a binary label representing its state in
terms of spatial correlation with respect to sensors for the
same physical quantity, on board of nearby nodes. MRFs are
a mathematical tool that allows to exploit spatial information
in a classification process, where the considered stochastic
variables are assumed to have Markov properties, and have
been widely used in the classification of data from spatial
databases [13]. MRFs allow to reduce a global model of
a wide dataset into an equivalent model based only on the
local properties of data.

Our approach is based on the assumption that sensory
measurements collected by nearby nodes are similar to each
other, due to the intrinsic nature of the considered physical
quantities; such similar measurements are then expected to
show sufficiently high spatial statistical correlation when
all sensors are correctly functioning. We will classify the
health status of each sensor obeying this rule as GOOD, and
otherwise we will assume that sensor to be DAMAGED.

In the present work we are considering data collected
through a WSN; for the sake of simplicity, we will fo-
cus here on a single physical environmental quantity. Let
S = {s1, . . . , sn} denote the set of sensors located in the
considered area, and let us represent the health status of
each sensor by means of two stochastic binary variables:
Yi, representing its observable health status at a given
moment, and Xi, representing its estimated (hidden) status.
Intuitively, the former represent the (possibly imprecise)
information about a sensor status that can be computed based
on the collected measurements, whereas the latter represents
the true status, which may not be directly derived from
the physical evidence. Our aim is to provide a reasonable
initialization for all the Yi; the values for the corresponding
Xi will be inferred by minimizing a globally-defined entropy
function.

In order to build the MRF for the considered physical
quantity we will work on the undirected graph representing
the corresponding sensors; the set of vertices is clearly S,
and we will assume that an edge between any two sensors
exists if they are “sufficiently close”; the precise definition
of closeness is heavily dependent on the chosen scenario; in
our case, it will be detailed in Section IV.

We will start by defining a clique Csi
⊆ S, which will

contain the sensors that most influence the behavior of si.
If csi

indicates the spatial coordinates of sensor si, a
clique of size ωsi

and composed of sensors distant at most
ϑsi

from si will be defined as:

Csi
= {s1, s2, . . . , sωsi

: ‖csj
− csi

‖ ≤ ϑsi

∧ ‖csj
− csk

‖ ≤ ϑsi
,

∀j, k = 1, . . . , sωsi
}
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where ‖ · ‖ defines the Euclidean distance.
In order for such a clique to exist, we need to determine

ϑsi
: Csi

6= ∅.
In the context of MRFs, the concept of a clique is useful in

that the probability, conditioned by the variables for all the
other sensors in the field, that the health status of a sensor
is Xi = xi actually depends only on the sensors within its
own clique, as expressed by the following equation:

p(xi | {xj}sj∈S−{si}) = p(xi | {xj}sj∈Csi
). (1)

Each of the hidden variables will also depend on its
respective observable variable; in order to provide a mean-
ingful initialization for each of the latter, we introduce the
notion of temporal correlation into our method. In detail, we
make the additional assumption that nearby sensors are to
show similar trends for their respective measurements across
reasonably small time periods.

For each of the sensors in the clique of si we will thus
consider the window W (sj) containing the last w readings,
where w is dynamically adapted to the considered scenario,
as will be explained in Section IV. In order to carry out the
computations, we assigned the values -1 and +1 to the labels
DAMAGED and GOOD respectively, so we will initialize the
observable variable for si as follows:

Yi =

{
−1 (DAMAGED) if avgCorr(si) ≤ 0.3,

1 (GOOD) otherwise; (2)

where avgCorr(si) represents the average correlation
between the samples sensed by si and those of each of the
other sensors in its clique, computed as follows:

avgCorr(si) =

∑
sj∈Csi

corr(W (si),W (sj))

|Csi
|

(3)

We are assuming that a weak correlation (expressed by the
0.3 threshold, according to the Pearson coefficient) denotes
an abnormal behavior for the sensor, or in other words, a
damaged status.

The estimated health status of a sensor si is however
represented by its hidden variable Xi; we can make use of
the Hammersley-Clifford theorem [4] in order to express the
probability density function according to the well-known
Markov-Gibbs equivalence, as in the following equation:

p(xi, yi) =
1
Z

exp{−E(xi, yi)
Ti

} (4)

where Z is the partition function used for normalization,
which may be computed as follows:

Z =
∑
i

exp{−E(xi, yi)
Ti

} (5)

and E(xi, yi) is a Hamiltonian function which represents
the energy of the MRF, following the concept of Ising
Model [14], and may be computed as follows:

E(x,y) = −β
∑
i,j

xixj − η
∑
i

xiyi + h
∑
i

xi. (6)

In Equation 6, x and y are the sets of all the hidden and
observable variables respectively; β and η, are the coupling
parameters weights between the random variables of the
field; namely, the former influences the interaction among
“nearby” hidden variables, whereas the latter controls the
relationship between each hidden variable and its observable
variable; the last parameter, h, weighs the previous status of
the hidden variables.

We want to find out the values for the hidden variables
that, given the chosen initial conditions for the observable
variables, have the highest probability to minimize the
energy function. To this aim we use the algorithm known as
Iterated Conditional Mode (ICM) proposed by Besag [15],
i.e. a deterministic algorithm which maximizes local condi-
tional probabilities sequentially. It uses the greedy strategy in
the iterative local maximization to approximate the maximal
joint probability of a Markov Random Field. In our case,
the ICM sequentially converges to a local maximum of the
conditional probability of p(xi | yi, {xj}sj∈Csi

).
We solved the system of equations using the Lagrange

multipliers, after imposing the constraint β2 + η2 + h2 = 1,
similarly to what suggested by [16], where an optimization
technique to automatically select a set of control parameters
for a MRF is presented. In our method, such parameters are
recomputed at each iteration in order to increase adaptability.

Finally, we need to compute the value for the Ti parame-
ter, which represents the temperature of the Boltzmann dis-
tribution. Since maximum variation for the energy, computed
as in Equation 6, occurs when a single variable is surrounded
by variables of the opposite sign (e.g., a DAMAGED sensor
within a clique of GOOD sensors) we will use the following
formula for Ti:

Ti =
var(Exi

)
eθi

(7)

where var(Exi
) is the variance of the energy relative to

the latest w readings of sensor si, and the parameter θi is
computed as:

θi =

{
θD if xi = DAMAGED,
θG if xi = GOOD; (8)

with θD < θG, so that the DAMAGED label is preferred in
case of higher variance.

The algorithm may thus be summarized by the following
steps, representing one iteration of the ICM method:

For each sensor si:
1) consider the sensor si and its clique Csi

;
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Figure 2. Map of the sensor field from Intel Berkeley Research Lab [17],
highlighting regions of correlated sensor readings.

2) compute the value of its observable variable yi accord-
ing to Equation 2;

3) compute the parameters β, η, h of the energy function;
4) compute the value xi that currently maximizes Equa-

tion 4.
At the end of all iterations each sensor is labeled accord-

ing to the latest xi.

IV. EXPERIMENTS

In order to assess the validity of our method, we used
a publicly available dataset provided by the Intel Berkeley
Research Lab [17], which contains readings collected from
54 sensors between February 28th and April 5th, 2004,
via a network of Mica2Dot sensor nodes equipped with
weather boards measuring temperature, relative humidity,
and ambient light. The authors of [18] report that such data
do show significant spatial correlation, and they accordingly
divided the nodes into 5 main regions as shown in Figure 2.

We tested our algorithm on the readings relative to
temperature for a period of 6 days (from March 1st to
March 6th, 2004), and considering only 45 sensors, after
eliminating those with an insufficient number of readings
or falling out of the mentioned regions. In order to build
the topology of the MRF for our scenario, we constructed
a clique for each sensor, formed at least by four neighbors
located within the same regions. Finally, we grouped the
considered samples into time slots of 15 minutes, and taking
the average value as representative of each slot, in order
to disregard the differences in sampling times for various
sensors; this resulted in 570 available samples for each
sensor.

In order to test our algorithm, we superimposed different
artificially created faults to a subset of the available sensors.
A general classification of potential faults is reported in [19];
for our purposes, the actual cause of the fault is not relevant,
and rather only the actual resulting trend of the considered
quantity over time needs to be taken into account, so
we consider here two types of faults (namely, continuous,
and discontinuous faults) obtained by aggregating some of
the original classes. Continuous faults occur for the entire
duration of the experiment; for instance, a sensor can simply

produce a constant output, or the sensor readings may
happen to be altered by Gaussian noise. Discontinuous faults
occur at specific time intervals only; we assume that in those
intervals the faulty sensors produce a constant output, while
returning to normal functioning otherwise. Discontinuous
faults are characterized by two parameters: the duration of
the fault, and the total number of its occurrences during the
experiment.

We assessed the approach by computing two performance
metrics for each experiment: sensitivity (Se) and specificity
(Sp). Sensitivity measures the ability of the algorithm, in
a particular test, to detect a faulty sensor when it really
is, while specificity analogously applies to healthy sensors.
They are computed as follows:

Se =
Tp

Tp+ Fn
, (9)

Sp =
Tn

Tn+ Fp
; (10)

where the Tp parameter measures the amount of sensors
whose health status is DAMAGED and are actually detected
as such (i.e. true positives), the Fp parameter measures the
amount of sensors whose health status is GOOD, but are
erroneously detected as DAMAGED (i.e. false positives), and
analogously for the two remaining parameters.

In order to assess our algorithm, we corrupted 5% of the
total available sensors by applying one of the previously
mentioned faults at a time; “faulty” sensors were chosen
randomly, according to a uniform distribution. We executed
each experiment 10 times, and computed the average values
for specificity and sensitivity.

Our method needs the preliminary setting of two param-
eters, as explained in Section III: the initial size for the
window storing the last w samples for each sensor, and the
value indicating the maximum number of allowed iterations
for the ICM maximization process. The value of w will
be dynamically adapted during each run; namely, it will
be linearly increased after each fault detection, and reset to
the initial value w0 when the sensor status becomes GOOD
again; in our experiments we set w0 to 4. The maximum
number of iterations was set to 10.

Figure 3(a) shows the plots representing the trend for
temperature measured by healthy sensors, and artificially
faulty ones in one run of our algorithm, when consider-
ing continuous faults (i.e. we assumed that faulty nodes
continuously reported a constant value of 18◦C corrupted
by white noise, with a small variance of 1◦C). The three
plots reported in Figure 3(b) show the true health status
for one of the faulty nodes (constantly DAMAGED in this
case), the detected status according to our algorithm, and
the corresponding trend for the energy function, as computed
according to Equation 6. The first column of Table I shows
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(a) (b)
Figure 3. (a) Sample of the real dataset, with 5% of the nodes corrupted by continuous constant fault. (b) Plots showing how the algorithm detects the
health status for a faulty sensor.

Table I
CONTINUOUS FAULTS

Constant Gaussian N (µ = 0, σ = σ∗)
σ∗ n/a 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

Specificity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sensitivity 0.98 0.044 0.41 0.48 0.80 0.85 0.66 0.97 0.93 0.98 0.97

the resulting performance metrics, which are unsurprisingly
good, considering the easily recognizable fault type.

The other type of continuous fault we considered was a
Gaussian error added to a subset of the sensors; in particular
we corrupted their original readings with a Gaussian with
0 mean, and increasing variance. The remaining part of
Table I contains the values of the corresponding performance
metrics; we can see that sensitivity tends to 1 with increasing
values for the variance. It is worth noting that significant
values for sensitivity occur when the variance is greater than
1.6◦C, i.e. faulty sensors are correctly detected as soon as the
additional error may be distinguished from natural, intrinsic
variations of the considered quantity.

Faults belonging to the discontinuous class cause sensors
to produce a constant value of temperature (between 0◦C
and 5◦C in our experiments) during some time intervals,
regardless of the natural trend. Figure 4(a) highlights the
effect of this type of fault on the dataset.

We tested our algorithm by varying the length of such
intervals, and the number of times that a sensor assumes
such behavior during the experiment. Table II reports the
performance of our algorithm in two different scenarios:
in the former one, we decrease the duration of each fault,
while progressively increasing the number of occurrences;
we measure the duration of faults as a multiple of the
time slots we used, so 96 corresponds to a duration of 1
day (with 6 days corresponding to 570 samples); the latter
scenario dually increases the duration of the faults, while
their occurrences decreases.

Considering the second scenario, it is relevant to highlight
that sensitivity keeps approaching to 1.0, while the duration
of the faults increases; this may be intuitively explained
by considering that, as soon as our algorithm identifies a
“steadily” faulty sensor, the energy function shows a higher

variance than when the sensor behaves correctly, as can be
intuitively recognized by considering the parts of the energy
plot highlighted by the two dashed rectangles in Figure 4(a).

Also considering Equations 4 and 7, we can see that
the parameter θ indirectly influences the final probability
p(xi, yi); for our experiments, we choose the two possible
values for θ so that:

θD
θG

= 0.1

which results in preferring the DAMAGED label.

V. CONCLUSION

This paper discussed a stochastic approach to fault de-
tection for wireless sensor nodes, through Markov Random
Fields. The classifier does not need supervision, and may be
easily implemented in a distributed scenario, without requir-
ing additional control overhead. Our experiments, carried out
on a publicly available dataset, showed promising results in
the presence of various types of faults, and encourage us
to explore possible future developments in the context of a
more comprehensive autonomic framework.

VI. ACKNOWLEDGEMENTS

This work has been partially supported by the “FRASI –
Framework for Agent-based Semantic-aware Interoperabil-
ity” project.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor
network survey,” Computer Networks, vol. 52, no. 12, pp.
2292–2330, 2008.

[2] Kephart, J. O. and Chess, D. M., “The vision of autonomic
computing,” in IEEE Computer, vol. 36. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2003, pp. 41–50.

DRAFT



(a) (b)
Figure 4. (a) Sample of the real dataset, with 5% of the nodes corrupted by discontinuous fault. (b) Plots showing how the algorithm detects the health
status for a faulty sensor.

Table II
DISCONTINUOUS FAULTS

Scenario 1
Duration 96 48 32 24 19 16 13 12 10
#faults 1 2 3 4 5 6 7 8 9

Specificity 0.98 0.97 0.96 0.95 0.93 0.93 0.92 0.92 0.91
Sensitivity 0.94 0.88 0.83 0.77 0.72 0.69 0.67 0.64 0.61

Scenario 2
Duration 1 2 3 4 5 6 7 8 9
#faults 96 48 32 24 19 16 13 12 10

Specificity 0.65 0.68 0.77 0.81 0.85 0.87 0.88 0.89 0.91
Sensitivity 0.28 0.28 0.24 0.36 0.44 0.55 0.57 0.57 0.71

[3] M. C. Huebscher and J. A. McCann, “A Survey of Autonomic
Computing — degrees, models, and applications,” ACM Com-
puter Survey, vol. 40, no. 3, pp. 1–28, 2008.

[4] Frank, Ove and Strauss, David, “Markov Graphs,” Journal of
the American Statistical Association, vol. 81, no. 395, pp. pp.
832–842, 1986.

[5] Dogandzic, A. and Zhang, B., “Distributed Estimation and
Detection for Sensor Networks Using Hidden Markov Ran-
dom Field Models,” IEEE Transactions on Signal Processing,
vol. 54, no. 8, pp. 3200–3215, 2006.

[6] David Marsh and Richard Tynan and Donal O’Kane and Gre-
gory M. P. O’Hare, “Autonomic wireless sensor networks,”
Engineering Applications of Artificial Intelligence, vol. 17,
no. 7, pp. 741 – 748, 2004.

[7] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” Journal of the ACM, vol. 43, pp.
225–267, 1995.

[8] Yagang Zhang and Jinfang Zhang and Jing Ma and Zengping
Wang, “Fault Detection Based on Data Mining Theory,” in
International Workshop on Intelligent Systems and Applica-
tions., 2009, pp. 1–4.

[9] Nicole Sergent and Xavier Défago and Andre Schiper, “Fail-
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