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Abstract—Recent advances in technology, with regard to sens-
ing and transmission devices, have made it possible to obtain
continuous and precise monitoring of a wide range of qualita-
tively diverse environments. This has boosted the research on
the novel field of Ambient Intelligence, which aims at exploiting
the information about the environment state in order to adapt
it to the user’s preference. In this paper, we analyze the issue of
detecting the user’s presence in a given region of the monitored
area, which is crucial in order to trigger subsequent actions. In
particular, we present a comprehensive framework that turns
data perceived by sensors of different nature, and with possible
imprecision, into higher-level information; a case study derived
from an actual implementation of the system regarding the
management of an office environment is also described, and
experimental results are presented.

I. INTRODUCTION

Ambient Intelligence (AmI) is a new paradigm in Artificial
Intelligence that introduces a shift in perspective as regards
the role of the end user [1]. Unlike other well established
approaches, such as the human-in-the-loop design, where the
contribution resulting from the exploitation of the human fac-
tor is limited to facilitate the system design process, or to infer
more accurate models for the environment state, Ambient In-
telligence aims to fully integrate the user’s preference into the
system. In this respect, the basic intrinsic requirement of any
AmI system is the presence of pervasive sensory devices [2],
which are essential to ensure context-aware reasoning in order
to act upon the environment, modify its state, and react to user-
driven stimuli. Today’s advances in technology allow for cheap
and unintrusive sensors that may be profitably employed as a
distributed sensory means permeating the whole environment
under observation. In particular, Wireless Sensor Networks
(WSNs) [3] allow to get precise and continuous monitoring
of the physical quantities of interest; not only does this novel
technology allow to perform remote sensing without causing
disruption, but it may also perform basic in-network pre-
processing of sensed data thanks to the limited computational
capabilities of the nodes.

Even if WSNs easily allow for low-level ambient sensing,
basic nodes are not sufficient to perceive high-level features
such as who is in the office or what this person is doing
there (e.g. reading, talking, using their workstations, and so
on); for this purpose, high-level vision sensors are needed.
The growing attention on embedded vision-based techniques

can be mainly attributed to the increasing availability of
small devices capable of sensing the environment, performing
onboard processing on captured data and exchanging it with
other devices in a collaborative way. Some face detection
(e.g., Viola-Jones face detector [4]) and face recognition (e.g.,
local binary patterns [5]) techniques have reached a good
level of maturity, so we focused on their implementation on
embedded systems, taking into account both hardware and
software constraints.

Our work focuses on sensing the presence of the user by
producing a description of the observed scene; in order to
ensure system scalability and efficient resource allocation,
a variant of WSNs is used, namely Wireless Multimedia
Sensor Networks (WMSNs), which are characterized by the
addition of video sensors. Face processing is performed on
each node and extracted data is sent to a server which
will make inferences over the people interacting around each
observed area. However, in such a dynamic scenario, sensory
data is likely to be biased by environmental noise and by
the unavoidably imperfect nature of sensor devices, so it is
convenient to adopt an approach able to cope with uncertainty
for developing reasoning components. Our architecture is thus
designed to make use of a probabilistic approach that allows
to meet this requirement, and also to manage information
fusion in a dynamic scenario. In particular, this work describes
an approach based on Bayesian Networks for merging data
coming from heterogeneous sensors, in order to improve the
detection of the users’ presence.

The remote, distributed sensory device thus acts as the
termination of a centralized sentient reasoner, where actual
intelligent processing occurs; sensed data is processed in order
to extract higher-level information, carrying on symbolic rea-
soning on the inferred concepts, and producing the necessary
actions to adapt the environment to the users’ requirements.
A set of actuators finally takes care of putting the planned
modifications to the environment state into practice.

The paper is organized as follows: an analysis of related
work will be given in Sect. II, and the proposed system will
be fully described in Sect. III. A case study implemented at
the Department of Computer Engineering of the University of
Palermo will be shown and discussed in Sect. IV. Conclusions
will follow in Sect. V.
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II. RELATED WORK

Wireless Multimedia Sensor Networks (WMSNs), i.e., “net-
works of wirelessly interconnected devices that allow re-
trieving video and audio streams, still images, and scalar
sensor data” [6], are enabling several new applications such
as multimedia surveillance sensor networks, environmental
monitoring and many others. Traditional wired distributed
monitoring systems [7], [8] are deeply constrained at design
time so that a reengineering process often requires a great
effort making the system static and unmodifiable. WMSNs ex-
tend traditional systems by using multiple sensors to perceive
the environment from different, not necessarily predefined,
viewpoints. Each sensor device is usually independent of other
nodes and connected to the wireless network, therefore it
can be moved, added or removed from the system without
difficulty. In [9] the design and implementation of a distributed
search system over a camera sensor network is described.
Each node is an iMote2 sensor device that senses, stores
and searches information. A network of dual-camera nodes
is proposed by [10] to facilitate retrieval of misplaced objects
in a home environment. Each platform consists of a low-power
(MICAz mote equipped with CyclopsCam) and a high-power
(iMote2 equipped with EnalabCam) camera sensor nodes.
Some works on embedded solutions for face detection or
recognition have also been proposed: a study for an embedded
implementation of boosting-based face detection is described
in [11]. In [12] the authors present an architecture to perform
real-time face recognition using smart cameras. However many
works are usually limited to the implementation of a single
face processing task.

The face detection module we developed is based on Viola-
Jones [4] face detector (VJFD), that is the most stable and used
face detector both in academic and commercial systems. Face
recognition step is based on Local Binary Pattern (LBP), an
operator invariant to monotonic gray level and computationally
efficient. In [13] a comparison of LBP, Eigenfaces and Fisher-
faces descriptors is reported. To reduce the effects of different
illumination conditions, we used the method presented in [14].

In WMSNs literature a lot of works are presented about
sensor fusion algorithms, in order to cope with natural uncer-
tainity related to this kind of technology. In [15] a distributed
Bayesian algorithm is proposed to perform the sensor fusion
task, and to solve the fault-event disambiguation problem in
sensor networks. The authors of [16] propose a dynamic infras-
tructure based on Bayesian networks, for unifying information
coming from a wireless network.

The authors of [17] propose an AmI system able to analyze
simultaneous data coming from a heterogeneous network
(virtual sensors, CCD cameras, probes, etc.), combining them
in a unique and symbolic representation of what happens in
the environment. In our work the fusion of information com-
ing from different sensors, including RFId readers, ambient
and video sensors is made through a Bayesian Network in
which each piece of information is treated as a sensor signal
regardless of the subsystem that has generated it.

Fig. 1. The three-tier structure of a low level module.

III. SYSTEM OVERVIEW

The architecture proposed in this work is inspired by the
human nervous system, in which signals gathered by the
peripheral system are filtered, aggregated and then sent to the
central system for high-level processing. We consider as case
study a home automation application instantiated for a work
environment, with the aim to provide constant monitoring of
the environmental conditions in the rooms of the teaching
staff of our department. After presenting an overview of our
multi-tier approach to knowledge representation, we go on to
describe the designed WMSN, representing the peripheral sys-
tem that permeates the environment, and allows for distributed
data pre-processing; finally, this section outlines the modular
structure of the intelligent system, where sensor fusion is
performed.

A. Multi-tier Knowledge Representation

The proposed system is based on a multi-tier paradigm for
performing knowledge extraction starting from sensory data
[18]. As shown in Figure 1, this paradigm provides three
tiers of knowledge representation, corresponding to different
abstraction degrees. Starting from the rightmost block in the
figure, knowledge is represented at linguistic level, where in-
formation is described symbolically via a high-level language,
whose input is provided by a conceptual level where grounding
of symbols occurs, and used to connect the system to the lower,
subsymbolic tier, where sensory data is first acquired.

The subsymbolic tier processes the measurements collected
by the pervasive sensory subsystem. As already mentioned,
the purpose of the WMSN-based infrastructure is not limited
to the basic gathering of sensed data, but comprises also a
preliminary processing aimed at the selection of the relevant
information. Sensed measurements can be classified into two
main categories, namely continuous or discrete; data belonging
to the former class is fed to the intermediate conceptual tier,
where they will be provided with a representation in terms
of continuous quality dimensions. On the other hand, discrete
data is outright handed over to the symbolic tier, where a
linguistic representation will be given.

At the conceptual tier, data is endowed with a geometrical
representation that allows for a straightforward management
of the notion of concept similarity, as long as a proper
metric is chosen for the quality dimensions. Points populating
the conceptual space, originally generated by the underlying
measurement space, are represented as vectors, whose compo-
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nents are the quality measurements of interest. Concepts thus
naturally arise from the geometric space as regions, identifiable
through an automated classification process, and points will
belong to one of those regions. In our implementation the
identification of regions associated to concepts occurs after
a supervised training of the classifier. As will be detailed in
the following, the classifier is also able to dynamically adjust
its internal representation of the concepts based on direct and
indirect feedback from the user.

The symbolic tier in each module produces a concise
description of the environment by means of a high-level
logical language. At this level, regions individuated inside the
conceptual space are associated to a linguistic construct, thus
identifying basic concepts, while relations necessary to infer
more complex concepts are described through an opportune
ontology. The gap between a concept and its linguistic de-
scription is filled through two separate mechanisms inspired
to the work of [19]: an “automated concept extractor” deals
with the translation of the regions in the conceptual space into
symbolic elements, whereas a “symbolically guided concept
search” identifies further points in the conceptual space as a
consequence of the activation of some of the logical rules
contained at the symbolic tier.

The created knowledge base is used to iterate the same
knowledge extraction mechanisms at a higher abstraction level.
In the considered case study, the concepts asserted at the
symbolic tier are also employed for the activation of the
control rules of the actuators, represented by the controllers
of the heat, air conditioning, and lighting systems. Moreover,
a subset of those rules is devoted to providing feedback to
the WMSN in order to guide its self-maintenance activity; for
instance, under steady environmental conditions, the higher
tier will opt for a reduction of the sensor sampling rate in
order to reduce the overall energy consumption.

B. Eyes on the User - The Sensory Component

WMSNs represent the sensory component of our system,
that permeate the environment and allow for distributed data
pre-processing. We regard the aggregation and selection of
environmental data as analogous to the processing of percep-
tual signals occurring in the human nervous system. Some
components of the peripheral system filter perceptual infor-
mation by means of distributed processing among several
neurons. A remarkable example is the processing of visual
information occurring in the retina [20]: in the human eye,
photoreceptors convert light into electrical signals that are
passed to a network of retinal neurons, and are modified before
being transmitted to gangliar neurons; eventually, they are
handed to the optic nerve that carries the information up to
the brain. The retinal neuron network does not restrict itself
to carrying signals from photoreceptors, but rather combines
them to obtain an aggregate heavily dependent on the spatial
and temporal features of the original light signal.

In our architecture the terminal sensory component perform-
ing is represented by WMSNs pervasively deployed in the
environment.

Fig. 2. Scheme of the face processing module.

In order to detect user presence, the most functional sensors,
that is sensors that produce signals the most correlated with
the signal representation of user’s presence, are video sensors.
From an exclusively functional point of view, a part from
the particular deployment and hardware implementation, video
sensors has to perceive high-level features such as who is in the
office or what this person is doing. In particular, in this work,
we describe the use of video sensor to detect user presence
through a face recognition process.

Face processing is performed in two steps: firstly face
detection is performed on the acquired frame, then a face is
sent to the face recognition module obtaining the face id and
the probability with which the id is assigned.

The framework proposed by Viola and Jones has been
chosen since it represents the state of the art approach to face
detection. Images are classified by evaluating the values of
three simple rectangular features.

Each feature is scaled and shifted across all possible combi-
nations (e.g., in a window of 24× 24 pixel, 160,000 possible
features are to be computed), however the use of an image
representation called integral image allows the features to be
computed very quickly in just a few references.

A variant of AdaBoost [21] is then used both to select
the best features from the huge feature space (e.g., 160,000
rectangle features associated with each image sub-window)
and to combine them to train the classifier. Computation time
is further reduced by arranging the classifiers in a cascade,
a decision tree, where a classifier at stage t is trained only
on those examples which pass through all the previous stages.
Thus, early stages of the cascade allow background regions
of the image to be quickly discarded while spending more
computation on promising regions.

Once a face has been detected and normalized for scale
(i.e., 110 × 110 pixels) it is possible to proceed to the face
recognition step.

Local Binary Pattern (LBP) [22] is a non-parametric kernel
which summarizes the local spacial structure of an image. At a
given pixel position, LBP is defined as an ordered set of binary
comparisons of pixel intensities between the centre pixel and
its eight surrounding pixels.
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The LBP operator performs the labeling of image pixels
by thresholding the M ×N neighborhood of each pixel with
the center pixel value p(x, y). Pixel labels are obtained by
considering the result of the thresholding as a binary number
(i.e., 1 if p(m,n) > p(x, y), 0 otherwise). In [23], LBP was
used for face recognition. The histograms of the extracted
labels are concatenated to form a global descriptor of a generic
image. In order to preserve spatial relations between facial
features, the authors define spatially enhanced histograms for
encoding both the appearance and the spatial relations of facial
regions.

Face recognition is performed by comparing LBP feature
vectors. As discussed in [13], the probability p of a match
given the distance can me obtained by using a gamma density
functions to model the histograms of the distances of each
couple of LBP-based face descriptors in a training set in case
of match and mismatch.

C. Modular Architecture for Sensor Fusion

The proposed system is organized according to a hierarchi-
cal structure whose modules are combined together in order
to carry on specific reasoning on the environment at different
levels of abstraction and on different kinds of perceptions.
The overall behavior mimics that of the human brain, where
the emerging complex behavior is the result of the interaction
among smaller subsystems. From the design point of view, the
modular organization allows for the realization of a scalable
sofware architecture, able to effectively manage the huge
amount of sensory data.

In our modular architecture, the outcome of lower-level
reasoning is fed into the upper levels, that deal with the
integration of information originated by multiple lower-level
modules. Each module independently measures environmental
quantities and conceptualizes them.

Considering a particular scenario, the human language com-
prehension model, described in [20], provides a significant
example of interaction patterns among specific areas of the
brain.Different anatomic structures are devoted to different
phases of language processing, the primary auditory cortex
initially processes the auditory signals while at the same time
the primary visual cortex processes the visual signals. In our
architecture, an analogous example may be recognized in the
modules devoted to detect user’s presence: low-level modules
independently reason about noise level (auditory input) and
a visual recognition of user’s face (visual input), and the
produced information is aggregated by a higher-level module.

The design approach for each reasoning modules depends
on what kind of environmental features is the subject of the
reasoning. In some cases, where sensory information is not
affected by noise, and the data fusion process can be easily
coded, it is possible to choose a rule-based approach. On the
contrary, if the reasoning module has to cope with uncertainty,
as is the case where the goal is to detect user’s presence,
it is desirable that the design rely on the Bayesian Network
theory, which allows to infer knowledge through a probabilistic
process, and offers an effective way to deal with unpredictable

Fig. 3. Structure of a Markov chain for inference a given state feature starting
from a set of sensory data.

ambiguities from multiple sensors [24]. This approach is
different from a rule-based approach, that is not suitable for
dealing with environmental features characterized by a large
uncertainty, as the set of logical rules constituting logical
reasoning engine is exclusively deterministic; our domain, on
the other hand, requires the integration of intrinsically noisy
sensory information that, moreover, can only provide partial
observations of the system state.

Classical Bayesian networks [25], however, may only pro-
vide a static model for the environment, which would not be
suitable for the proposed scenario; we therefore chose dynamic
Bayesian networks or, more specifically, Markov chains to
implement our models which thus allow for probabilistic
reasoning on dynamic scenarios, where the estimate of the
current system state depends not only on the istantaneous
observations, but also on past states.

Figure 3 (a) shows our proposed Markov chain used to
infer probabilistic knowledge on a given state feature starting
from a set of sensory data. Each state feature affects a set of
sensory readings (we indicate each sensor node with si), that
can be considered the perceivable manifestation of that state.
The link among the current state and its sensory manifestation
is given by the probabilist sensor model P (sit|xt). Moreover
the current state depends on past state according to a state
transition probability P (xt|xt−1).

The belief about the value of a state variable is the condi-
tional probability with respect to all past states and the whole
set of observation from the initial time to the current time. Due
to the simplification introduced by the Markov assumption,
the current state belief depends only on the past state and on
current observations:

Bel(xt) = P (xt|x0, . . . , xt−1, s
0
0, s

1
0, . . . , s

n
t )

= P (xt|xt−1, s
0
t , . . . s

n
t ) (1)

According to the Bayesian Network structure, this joint
probability can be factorized as follows:
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Fig. 4. Markov chain for room occupancy evaluation. Xt and Xt−1 are the
sets of state variables at the current and at the past time respectively, while
Et is the set of observable variables at the current time.

Bel(xt) = η

∑
xt−1

P (xt|xt−1)Bel(xt−1)

[∏
i

P (sit|xt)

]
(2)

Thanks to these simplifications, at each time step it is
necessary to consider a reduced set of variables, as shown in
Figure 3 (b), so reducing the number of required computation.

These principles had been followed in the design of the sub-
system aimed at detecting the user’s presence and therefore at
reasoning on room occupancy. The outcome of this subsystem
provides an estimate about the number of people present in the
user’s office room, and a probability for the user’s presence
as well.

Since there exist two interconnected state variables, i.e.,
two variables that are not probabilistically independent, the
Bayesian network has been extended to manage two state
variables, as shown in Figure 4. Sensor nodes are split into two
sets, each of them is considered the measurable manifestation
only of one hidden state variable. The two state variables are
connected by dependency; in other words the number of peo-
ple in the user’s office room (associated to the PeopleInRoom
variable) is influenced also by the presence of the considered
user in their own office room (UserInRoom)

The state is observable through sensory information as-
sociated to the noise level in the room (SoundSensor), to
the sensed interaction of the user with the room actuators
(ActivitySensor), to the open / closed / locked status of
the room door (DoorStatus), to the RFId-based naive user
localization (Localization-Sensor-RFId), to the user’s activity
at their workstation monitored via software sensors (Software-
Sensor), and to the video sensors (VideoSensor) Variables
modeling this sensory information are connected with state
variables through sensor probabilistic models, expressed by
conditional probability tables that were learned from an op-
portune training dataset. Almost all of the above mentioned
sensory information is discrete and does not require conceptual

Fig. 5. The subsystems for lighting adequacy and room occupancy.

modules for extracting factual information from qualitative
data, with the exception of the noise level, whose attached
conceptual module uses a statistical characterization of room
noise to classify it as Negligible Noise, LowNoise,
MediumNoise, or HighNoise.

Figure 5 shows those architectural modules. The informa-
tion outcome of the Activity (SS), DoorStatus (SS), RFId (SS),
SW activity (SS), Video (SS) subsymbolic modules is directly
handed over to the Room Occupancy (S) symbolic module that
implements the previously described Bayesian network, while
qualitative information produced by the subsymbolic module
Sound (SS) needs preliminary classification through the Sound
(C) conceptual module, before passing to the Room Occupancy
(S) module.

IV. CASE STUDY

The described architecture has been tested on a specific
application scenario consisting in the management of an office
environment, namely a university building, in order to fulfill
constraints deriving both from the specific user’s preferences
about the air quality, and room lighting and occupancy, and
from considerations on the overall energy consumption.

The sensory component of this system is implemented
through a WMSN, whose nodes are equipped with off-the-
shelf sensors for measuring such quantities as indoor and
outdoor temperature, relative humidity, ambient light exposure
and noise level. Sensor nodes have been deployed in various
rooms close to “sensitive” indoor areas: by the door, by the
window, and by the user’s desk; additional nodes have also
been installed on the building facade, close to the office
windows, for monitoring outdoor temperature, relative humid-
ity, and light exposure. Moreover, other nodes carry specific
sensors, such as RFId readers, in order to perform basic access
control. In our prototype, RFId tags have been embedded into
ID badges for the department personnel, while RFId readers
are installed close to the main entrance and to each office
door; readings from each tag are collected via their coupled
nodes, and forwarded by the WMSN to the intelligent core,
that will process them and will reason about the presence of
users in the different areas of the department. RFId-triggered
reasoning about users’ locations is inherently imprecise and

DRAFT



Fig. 6. Intel/Crossbow Imote2 with Imote2 Multimedia Board.

requires the integration with other sensory information, such
as those collected by specialized software demons acting as
virtual software sensors and used to detect the users’ activity
on their workstations. The users’ interaction with actuators
is also captured via ad-hoc sensor monitors. For instance,
if the user manually triggers any of the provided actuators
(e.g. the air conditioning, the motorized electric curtains, or
the lighting systems) via the remote controls or traditional
switches, specialized sensors capture the relative IR or electric
signals so that the system may use them as implicit feedback.

The main contribution for detecting user’s presence is given
by video sensors integrated with wireless sensor nodes. Since
Intel has developed several advanced wireless sensor node
platform, we chose to develop our system using its state-
of-the-art platform. The Imote2 is a smart device (36mm x
48mm x 9mm) produced by Crossbow and built around a low-
power PXA271 XScale processor that can operate in a low
voltage (0.85V), low frequency (13MHz) mode. It integrates
an 802.15.4 radio with a built-in 2.4GHz antenna and can be
expanded with extension boards.

In this work, we expanded it using the Imote2 Multimedia
Board (IMB400) that integrates video and audio functionality
into one platform (Fig. 6). In addition, the IMB400 features
a Passive InfraRed (PIR) sensor to detect movement (up to 5
meters) for platform wake-up from sleep. Computer vision
techniques have been developed using the Open Computer
Vision (OpenCV) Library on the Imote2 Linux OS.

In order to validate our system, several tests were conducted
on a prototype deployed for the monitoring of an office at
the University of Palermo. Two Imote2 nodes were placed
pointing at the entrance door of the office and to the user’s
desk respectively (Fig. 7), in order to monitor user presence.

Fig. 7. Placement of the two Imote2 inside the office.

Fig. 8. Average execution time (ms) for each face processing step.

To evaluate the face recognition module we considered a
scenario in which two nodes share the same face database.
When processing a new frame, each detected face is described
by using LBP, compared with already known faces and then
the probability of match is computed.

We also tried to investigate the usage of each hardware
component individually, but the producer does not provide
benchmark tools to do it. Thus, additional tests have been
performed to evaluate the overall system efficiency in terms
of time of execution. Results are shown in Fig. 8.

Each bar represent the average execution time calculated for
the corresponding face processing step. As you can see, face
detection is the most computationally intensive operation since
it requires several memory accesses for loading the training
data and testing the whole input image. LBP computation and
face recognition require ∼160ms-60ms respectively, while just
a few milliseconds are required for frame initialization and
final data storage.

To evaluate the whole data fusion process, we tested our
system over a 3-days time period considering one user target
unaware of the ongoing experiment, and so not modifying
his usual behavior. To validate system results we compared
them with videos obtained by the surveillance system already
present at the Department.

The plots reported in Figure 9 graphically show how the
system performs in detecting user’s presence. To obtain a
statistical evaluation of system performance we divided the
considered time interval in a set of discrete time steps, in
order to compute false positives and false negatives, and then
the specificity and the sensitivity of the system, according to
equations 3:

specificity = # of true negatives
# of true negatives + # of false positives

sensitivity = # of true positives
# of true positives + # of false negatives

(3)
With respect to 300 considered time steps, the user’s detec-

tion system produces 56 true positives, 234 true negatives, 6
false positives and 4 false negatives. Thus, we can conclude
that the system shows an excellent behaviour with a specificity
degree of 97,5% and a sensitivity degree of 93,3%.
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Fig. 9. Results of the bayesian multi-sensor data fusion process for user’s presence detection.

V. CONCLUSION

This paper presented a multi-tier architecture for extracting
higher-level knowledge from heterogeneous sensory measure-
ments, also taking into account possible imprecisions in the
original data, by means of a Bayesian approach. We focused
on the specific issue of detecting the user’s presence in selected
locations of the monitored environment, in order to provide the
grounds for subsequent reasoning in an Ambient Intelligence
scenario. We also discussed the computer vision techniques
employed for implementing face recognition on board of the
nodes equipped with video sensors. Such information, together
with additional information gathered by sensors of differ-
ent nature (namely, RFId, audio sensors, and other activity
sensors) was fed into our modular architecture in order to
effectively implement sensor fusion, and to enrich the AmI
system with context awareness. The provided experimental
evaluation showed that the proposed Bayesian approach is
promising in overcoming the difficulties arising from the
inherently imprecision of sensory measurements, and allowed
us to obtain a sufficiently precise estimate of the presence of
the user.

REFERENCES

[1] P. Remagnino and G. L. Foresti, “Ambient intelligence: A new multidis-
ciplinary paradigm,” IEEE Trans. on Systems, Man, and Cybernetics—
Part A: Systems and Humans, vol. 35, no. 1, pp. 1–6, Jan 2005.

[2] K. Ducatel, M. Bogdanowicz, F. Scapolo, and J.-C. Burgelman, Scenar-
ios for Ambient Intelligence in 2010, Tech. Rep. Seville: Information
Soc. Technol., Advisory Group (ISTAG), Inst. Prospective Technol.
Studies (IPTS), Feb 2001.

[3] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
world with wireless sensor networks,” in Proc. of Int. Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2001), Salt Lake
City, Utah, May 2001.

[4] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1, pp. I–511–I–518 vol.1, 2001.

[5] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local
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