

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

Sensor 9k: A testbed for designing and experimenting

with WSN-based ambient intelligence applications

A. De Paola, S. Gaglio, G. Lo Re, M. Ortolani

In Pervasive and Mobile Computing, vol. 8, issue 3, 2012, pp. 448-466

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite

from the work.

Publisher: Elsevier

http://www.sciencedirect.com/science/article/pii/S15741
19211000319

SENSOR9K: A Testbed for Designing and Experimenting with
WSN-based Ambient Intelligence Applications

Alessandra De Paola, Salvatore Gaglio, Giuseppe Lo Re, Marco Ortolani

Department of Computer Engineering, University of Palermo,
Viale delle Scienze, ed. 6, 90128 Palermo, ITALY

Abstract

Ambient Intelligence systems are typically characterized by the use of pervasive equip-

ment for monitoring and modifying the environment according to users’ needs, and to

globally defined constraints.

Our work describes the implementation of a testbed providing the hardware and soft-

ware tools for the development and management of AmI applications based on wireless

sensor and actuator networks, whose main goal is energy saving for global sustainability.

A sample application is presented that addresses temperature control in a work environ-

ment, through a multi-objective fuzzy controller taking into account users’ preference

and energy consumption.

Keywords: Wireless Sensor and Actuator Networks, Ambient Intelligence,

Probabilistic Reasoning, Energy Efficiency.

1. Introduction and Motivations

The main goal of Ambient Intelligence (AmI) is the development of systems aimed

at adapting the surrounding environmental conditions so that they can match the users’

needs, whether those are consciously expressed or not, while at the same time satisfying

other system-driven goals, such as the minimization of global energy consumption. An

implicit requirement is the use of pervasively deployed sensing and actuating devices,

following the ubiquitous computing paradigm which states that technology must not

Email addresses: depaola@unipa.it (Alessandra De Paola), gaglio@unipa.it (Salvatore Gaglio),
lore@unipa.it (Giuseppe Lo Re), ortolani@unipa.it (Marco Ortolani)

Preprint submitted to Elsevier February 8, 2011

DRAFT

intrude into human lives; hence, control and monitoring devices should be deployed so

as to remain invisible to the users [21, 46]. Wireless Sensor Networks (WSNs) fully meet

these requirements, thanks to their intrinsic pervasiveness and low intrusiveness [4, 11,

16], and may thus represent a suitable choice for the sensory layer of AmI systems.

This work presents SENSOR9K, a testbed for designing and experimenting with WSN-

based Ambient Intelligence applications, deployed at our labs in the context of our re-

search projects [20]. The name of the testbed is meant to emphasize its pervasiveness,

as it ideally recalls the fictional HAL 9000 AI system, whose extremities pervaded the

spaceship in “2001: A Space Odyssey”; in particular, we intend to address the issue

of implementing effective policies for energy saving in the context of indoor environ-

ments. Recent studies have shown that ICT technologies, and AmI systems in particular,

may play a twofold role since their constituting elements are both significant consumers,

and potential actors in steering a more clever overall usage of the available energy re-

sources [25, 44]. The pervasive sensory infrastructure may be profitably used to gather

information about the current energy usage, as well as the corresponding environmen-

tal conditions, into a centralized server, where artificial reasoning techniques may be

implemented. Centralizing the reasoning activity preserves its consistency and unitar-

ity [6], and allows to steer the behavior of the distributed actuators in order to bring the

environment to the desired state.

In this context, our testbed aims to boost the development of AmI applications,

and we argue that providing an abstraction towards the physical layer by means of a

composition of core services will effectively let the AmI designer focus on higher-level

issues; in this perspective, SENSOR9K provides a set of “building blocks” that implement

basic intelligent functionalities on top of the underlying distributed sensory and actuating

infrastructure.

SENSOR9K specifically focuses on indoor environments, where relevant environmen-

tal quantities will be monitored through pervasively deployed WSNs without adversely

impacting the integrity of the pre-existing structures. Sensor nodes host the software

implementing the logic of the application to be tested, as defined by the AmI designer,

as well as additional testbed-specific functionalities.

The design of our testbed thus encompasses both hardware and software issues. Be-

2

DRAFT

sides the pervasive sensory devices, SENSOR9K provides a minimal set of communication

and processing devices, organized into a backbone of local gateways providing access to

the remote WSNs; such intermediate infrastructure is designed in a hierarchical fashion

in order to accommodate scalability and fault tolerance, and its main purpose is to act as

a connection interface bridging the gap between the distributed sensors and the central-

ized AmI server. SENSOR9K’s core is thus represented by a middleware, partly distributed

on the remote sensory devices and on the backbone gateways, and partly residing on

the central AmI server, which stores the library of modules implementing basic AmI

functionalities, such as user profiling, energy monitoring and multi-sensor data fusion,

which we regard as the common ground for the creation of applications targeting energy

saving.

In order to assess the validity of the proposed testbed, we will present a fully featured

sample application, addressing temperature control in the context of a work environment,

and involving conflicting goals, namely the satisfaction of the users’ preferences in terms

of pleasantness of the office environmental conditions, while minimizing the global energy

consumption. It will be shown how SENSOR9K eases the development of such application;

in particular a multi-objective fuzzy controller will be created by exploiting the basic

SENSOR9K’s functionalities.

The paper is organized as follows: Section 2 summarizes relevant works about software

architectures for WSNs in the context of AmI. An overview of the architecture of our

system is reported in Section 3, while Sections 4 and 5 contain the details about its

physical and middleware layers, respectively. Finally, Section 6 describes our sample

application, and Section 7 presents some experimental results.

2. Related Work

Since their introduction, Wireless Sensor Networks have steadily evolved, especially

with respect to the degree of complexity of the network configuration, as summarized

in [14]. The point of view has shifted from the use of one single WSN for the entire field,

possibly composed by a very large number of nodes, towards a more structured approach

involving several interconnected WSNs, each with a limited number of nodes, and up to

a comprehensive strategy where the sensor nodes are enabled to interact with diverse

3

DRAFT

devices and applications. Such progress has consequently widened and diversified the

range of issues that the different middleware systems for WSNs, presented in literature,

attempted to address.

While initial efforts were mainly focused on the optimization of the resources available

to the nodes, in terms of energy or computational power, later research has also addressed

the functionalities for enabling interoperability among heterogeneous devices and for

providing a common interface to different applications. A survey of middleware tools for

WSNs must thus consider such variety in the approaches, despite the fact that they may

not always be directly comparable.

A traditional categorization of WSN middleware softwares [24, 39], mostly focused on

the first type of proposals of single WSN deployments, specifically distinguishes them with

respect to the adopted programming model; the common goal is always the provision of

an intermediate layer decoupling the node application logic from the underlying operating

system and hardware. The authors of Impala [35], for instance, adopts a modular design

paradigm in order to improve the applications adaptability, and to provide a simple way

to keep them up-to-date; in the authors’ vision, the possibility of adapting the application

interface on the fly is bound to improve the performance, energy-efficiency, and reliability

of the overall system. The modular approach has also led to the adoption of an agent-

based programming model, as for instance in [22]; the latter work, in particular, employs

mobile agents traversing several nodes, and carrying snippets of code with them; in

this view, nodes are able, for instance, to host multiple applications at the same time.

Another popular approach involves the use of virtual machines in order to provide the

user with programming primitives in an assembly-like language, thus allowing developers

to dynamically upload new “scripts” onto the network nodes; systems implementing this

approach include Maté [34], and Magnet [9]. Alternatively, the entire WSN has also

been viewed as a single distributed database, so that the goal becomes to transparently

provide access to sensed data according to the traditional relational model; one of the

most relevant works in this context is TinyDB [37].

A limitation of such classification is that it just focuses on middleware running entirely

inside the network, thus disregarding middleware that instead runs, partly or entirely, on

top of the sensor network level. The specific context of Ambient Intelligence, on the other

4

DRAFT

hand, has often stimulated researchers to exploit WSNs as a distributed sensory tool, and

as a communication infrastructure, whereas the core of the intelligent services typically

resides elsewhere, at a higher abstraction level. Our standpoint thus comprehensively

considers that most of the AmI system is superimposed over the sensory equipment,

and not entirely merged therein; the connection with the sensor nodes is provided by a

minimal abstraction layer acting as a wrapper over the (user-defined) application logic,

with the aim to hide possible future upgrades to the underlying hardware, as well as to

provide a common interface towards the centralized Ambient Intelligence services.

A profitable comparison with other related approaches must thus analyze the func-

tional aspects, besides the architectural paradigm; more specifically, a meaningful dis-

tinction for the classification of middleware in this perspective needs to consider the

respective roles of the application logic at the sensor node level, and the higher-level

application logic, that characterizes the behavior of the whole system, apart from the

sensor network itself. While most middleware implementations discussed in literature

are in fact an integral part of the sensor node software, the authors of [14] highlight

the importance of both aspects, as functionalities implemented at the sensor node level

may be used to provide novel services, whereas higher-level abstractions are useful to

generalize the nodes’ behavior so that it matches the upper layer requirements. GSN [1],

for instance, uses some abstractions to communicate with the software running on the

sensor network gateways, which consequently do not depend on the use of some custom

software of their own, although of course software drivers specific for each application

have to be implemented. An advance toward the extension of the middleware beyond

the WSN layer is presented in [5], where the authors focus on multi-sensor data fusion

in order to dynamically select the sensory services matching some application-specific

Quality of Service (QoS) requirements.

Other works more explicitly separate intelligence from sensing; in [33], for instance,

the authors propose systems for healthcare, especially targeted to the monitoring of

chronic illness, and for assistance to the elderly. Both works employ WSNs as the sup-

porting infrastructure for biometrical data collection toward a central server; in this

view, sensor nodes are thus simply required to transfer data packets through multiple

hops without any distributed processing intervention on them. WSNs are also at the

5

DRAFT

basis of the work presented in [3], although its goal is specifically the collection of infor-

mation about user presence in the monitored premises; collected data are aggregated in

order to compute predictions on the occupants’ behavior.

Complete testbeds for experimenting with AmI applications in the context of smart

environments are also reported in literature, as widely surveyed in [16, 18]; each of them

proposes an ad-hoc approach to some specific scenario, although it is possible to abstract

some common functionalities that may be considered as the basic necessary tools for

building the overall intelligent behavior. The MavHome [17] has been designed following

the agent-oriented approach, and is composed by a set of agents able to communicate

through a hierarchical interconnection schema for control and information flow. The main

research connected to this project concerns the prediction of users’ activity exploiting

past collected motion and lighting information, with the aim of performing an automating

environmental control. The Aware Home [31] is a living laboratory for researching how

ubiquitous computing can support everyday home life for elderly people. The project

focus is devoted to sensing users’ interaction with the surrounding environment. This

project includes systems for human position tracking through various hardware, such as

ultrasonic, video, and floor sensors.

Finally, the iDorm research [28] considers the scenario of a student bed-sitting room

that provides the normal furniture arrangement found in a typical student study/bed-

room environment, including bed, work desk and wardrobe, and allows the simulation

of different activities like sleeping, working, and entertaining. The whole environment

is purposely constructed in order to implement the designed testbed, given that a great

number of wires and networked devices are hidden above the ceiling and behind the walls.

The Gator Tech Smart House research [27] targets instead a single-family home, perme-

ated by a wide set of sensors and actuators that can be automatically integrated through

a generic middleware, that allows application programmers to assemble provided services

in order to achieve their own goals, named programmable pervasive spaces. Both these

works present flexible and expandable architectures thanks to the use of a middleware

layer that gives a homogeneous representation of heterogeneous physical devices. How-

ever, in order to build an environment with the intended functionalities a preliminary

design of the physical deployment must be carefully planned in advance, possibly requir-

6

DRAFT

Table 1 Comparison of the proposed testbed with other middleware for WSNs.

S
E
N

S
O

R
9
K

M
id

F
u

si
o
n

Im
p

a
la

A
g
il

la

M
a
té

M
a
g
n

e
t

T
in

y
D

B

G
S

N

Support for an abstraction
Yes No No No No No No Yes

sensor language

Scalability Yes Yes Yes Yes Yes Yes No Yes

Heterogeneity management Yes Yes No No No Yes No Yes

Energy awareness Yes No Yes No Yes Yes Yes No

Provides intelligent
Yes Yes No No No No No No

functionalities

Transparency to network
Yes Yes Yes Yes No Yes No No

topology changes

Sensor network management No Yes Yes No No No Yes Yes

Support for diverse applications Yes Yes No Yes No Yes Yes Yes

QoS awareness No Yes No No No No No No

Independence from knowledge
Yes Yes No No No No No No

about exact sensors

Support for information fusion Yes Yes No No No No No No

Dynamic sensor discovery No Yes No No No No No Yes

Service selection No Yes No No No No No No

ing heavy modifications to some pre-existent premises, because of the non negligible level

of intrusiveness of some specialized devices, such as for instance the smart floor.

Unlike the previously mentioned frameworks, SENSOR9K explores a topic currently at

the forefront of research, i.e. energy efficiency in the context of pervasive systems, with

the aim to obtain a globally sustainable development. This goal is achieved by providing

the developer with comprehensive support, ranging from physical level to application

level issues, and covering all the necessary functionalities for enabling energy-aware AmI

systems.

Table 1 qualitatively compares some of the previously mentioned middleware propos-

als with SENSOR9K, in an analogous fashion as in [5].

7

DRAFT

Energy
Consumption

Manager

User Presence
Detector

User Profiler

...User-designed
AmI App

Physical Abstraction Interface

di
re

ct
 a

cc
es

s

Energy
consumption

sensors

User
action

sensors
RFId

A
pp

lic
at

io
n

La
ye

r
M

id
dl

ew
ar

e
Ph

ys
ic

al
La

ye
r

AmI Interface

User-designed
AmI App

User-designed
AmI App

Actuators

Sensor9k-specific hardware user-designed WSN

TLG

LG

application
logic

sensor node iface

Figure 1 The logical 3-tier architecture.

3. The Testbed Architecture

SENSOR9K is aimed at simplifying the construction of complete AmI applications by

providing basic hardware and software tools that can be composed and extended in order

to build an intelligent comprehensive entity for controlling the environment.

The architecture is logically designed according to a 3-tier model, as depicted in

Figure 1: the physical layer is composed by all the sensory and actuation devices, in-

cluding those necessary to implement the testbed’s functionalities, and possibly those

required by the end user’s application; the physical abstraction interface, in particular,

will take care of exporting higher-level abstractions identifying the basic monitored units

(e.g. each office room) besides dealing with basic connectivity issues among gateways,

and will group together all the functionalities related to message relaying, monitoring

and control of the testbed infrastructure health, and reconfiguration due to changes in

the underlying physical infrastructure. On top of it, the middleware defines a toolset

of basic AmI functionalities in the form of building blocks for implementing intelligent

services over the available hardware; finally, the actual AmI applications created by the

final developer, although strictly speaking not a part of the testbed, will be hosted at

8

DRAFT

Central AmI Server

Knowledge
Base

TLG

WiFiEthernet LG
Coordinator

Phys Abstr Iface

AmI
Applications

AmI Library

Ethernet

IEEE 802.3
IEEE 802.15.4

IEEE 802.11

RS232/485

power line

wired sensor

actuator

wireless sensor node

LG
Zigbee

WiFi

RS 232/485

Ethernet

Local
DB

light powerdoor

user workstation rfid reader

relay board
light powerdoor

P
hy

s
A

bs
tr

Ifa
ce

Data
Preprocessing

Module

wireless sensor network

connection to
upper TLG

and same-level LG

...

...

...

top level
sensor

top level
actuator

TLG : top-level gateway

LG : local gateway

TLG

TLG

LG

LG

LG

...

Figure 2 The hierarchical gateways system. The Central AmI Server represents the
point of access for AmI applications; Top Level Gateways (TLGs) are connected to it,
each managing a different environment, while fine-grained monitoring is guaranteed by
Local Gateways (LGs).

the application layer. The shadowed part of Figure 1 shows the logical boundaries of

SENSOR9K’s own components, as opposed to the user-provided ones.

In the scenario of workplace monitoring, the basic monitored unit would be a single

office room; however, the architecture of our testbed has been designed in order to be

scalable with respect both to the number of monitored premises and to the potentially

diverse employed technologies. According to this perspective, the logical architecture

described has been designed as a partly centralized and partly distributed system; more

specifically, high-level functionalities are implemented in a central AmI server, whereas

the functionalities for managing low-level data gathering and command injection are

pushed forward into the distributed nodes pervading the environment, as shown by the

deployment diagram of Figure 2. In particular, the entire middleware is distributed over

several components: part of it, namely the AmI modules and their interface with the

applications, lies in the central AmI server, whereas most of the underlying services are

provided by the remote gateways, and finally a tiny middleware layer is superimposed to

the remote sensor nodes in order to have them respond to SENSOR9K’s commands.

Each of the remote networks deployed into a specific room includes both wireless and

9

DRAFT

wired sensor nodes and actuators. SENSOR9K provides access to the room via a dedicated

gateway node that implements the bridge between the physical devices, and the system

itself. Such a component, named Local Gateway (LG) in the rightmost side of Figure 2,

simplifies the connection among different network technologies and provides the higher

layers with a homogenous representation of data originated by the heterogenous sensory

technologies.

The remote LGs may be installed on lower-performance computing devices, such as

microserver nodes connected to the wireless sensor and actuator network. Those devices

are more powerful than low-end wireless nodes, and may provide temporary storage

trough their local DBs and an increasingly refined preliminary processing for data, before

forwarding them to the remote processing units.

LGs are connected to each other in order to create a communication backbone in

the controlled premises; this LG Network is coordinated by a Top-Level Gateway (TLG)

which plays the role of collector of the information coming from all of the LGs. The

TLG also supplies the programming interfaces towards some devices, related to general

sensing and actuating functions, not specific for a single premises. For example, the

TLG provides the interface for the sensors and actuators used to perform the access

control for a unique floor. If the system architecture needs to be implemented for an

entire building, individual rooms will be managed by a dedicated LG; one TLG will

take care of coordinating them and of dealing with floor-wide functionalities; finally, the

TLGs for different floors will all report to the Central AmI Server which will possess a

comprehensive view over the physical system.

AmI applications access the functionalities of our testbed only through the Central

AmI Server; the intelligent software components of the system are not directly coupled

to the hardware, thus making the development of ad-hoc applications both simpler and

more generalizable. Figure 1 also shows the specific middleware modules provided by

SENSOR9K for implementing basic functionalities, such as monitoring the energy con-

sumption of remote appliances and actuators, analyzing sensory data to infer the user’s

presence in a given area, and finally analyzing the users’ interaction with the actuators

in order to build a profile of their preferences. The outcome of such modules will provide

the common ground over which general higher-level AmI applications may be developed.

10

DRAFT

4. The Physical Layer

The main sensory infrastructure of SENSOR9K is represented by WSNs; moreover, our

testbed has been designed in order to be easily customized with additional sensors, thanks

to the adoption of a standard abstraction layer. Such layer has been designed to comply

with a reduced version of the specifications provided by the OpenGIS sensor model lan-

guage [12], which indicates models and arrangement rules for device interfaces in order to

obtain the maximum degree of interoperability among different technologies. We loosely

adhere to their specifications for data types and for describing sensor characteristics,

and adapt them to our case by including actuators. In particular, SENSOR9K provides a

library of low-level common functionalities, analogous in some aspects to the SWECom-

mons of [12], in that it supplies basic software tools for data management, with additional

functionalities for actively modifying the data gathering process in terms of sensing rate

or precision. We also defined a protocol for the communications between the LG and the

sensor/actuator nodes, as well as from the LG upward to the higher levels of the system

hierarchy. The protocol allows for the injection of commands into the network and for

sensory data retrieval. Typical commands include switching nodes on and off, triggering

the sensing, varying the sensing rate, and even more radically changing nodes’ behavior,

e.g by having them aggregate data before transmitting them. Analogous commands exist

for the actuators, ranging from simpler ones for on/off actuators, to more elaborate ones

for the air conditioning, or light dimming systems. The interfaces of the LG towards

the various connected elements rely on physically diverse media which may be wired or

wireless, and the presence of the mentioned protocol allows the data management and

communication software operation on board of the LG to be unaware of data formats

and communication modalities specific to each of those technologies. Figure 3 shows a

partial view of the DB schema contained in a LG, and showing the internal representation

of the sensory and actuator devices relative to office rooms, according to the physical

abstraction interfaces exported by each node.

We assume that the choice of the sensors and of the sensor nodes platform for envi-

ronmental monitoring is determined by developer of the AmI application under testing;

however, our testbed shall use supplementary sensors for specific testing purposes, so

as to provide AmI applications with additional information in order to allow them to
11

DRAFT

ACTUATOR_COMMANDS

ACTS ON

ACTUATOR_TYPE

ACTUATOR_STATE

INSTALLED_ON

INSTALLED_ON

SENSOR_TYPE

SENSOR_READING

SENSOR_STATE

HAS_OFFICE_IN

NODE_STATE

SENSES

IN_PREMISE

IN_PREMISE

NEXT_TO_PREMISE PREMISE_FK

PLACED_IN

TB_ACTUATOR_TYPE

TYPE_NAME: varchar2(50)

AMBIENT_PROPERTY_NAME: varchar2(50) (FK)

TB_ACTUATOR_STATE

TIMESTAMP: DATE

ID_ACTUATOR_FK: varchar2(30) (FK)

TB_COMMAND

TIMESTAMP: DATE

ID_ACTUATOR_FK: varchar2(30) (FK)

TB_ACTUATOR

ID_ACTUATOR: varchar2(30)

ACTUATOR_TYPE: varchar2(50) (FK)

INSTALLED_ON_FK: varchar2(30) (FK)

TB_ACTUATOR_FKIndex1

INSTALLED_ON_FK

TB_ACTUATOR_FKIndex2

ACTUATOR_TYPE

TB_SENSOR

ID_SENSOR: varchar2(30)

INSTALLED_ON_FK: varchar2(30) (FK)

SENSOR_TYPE_FK: varchar2(50) (FK)

SENSOR_FKIndex2

SENSOR_TYPE_FK

TB_SENSOR_FKIndex2

INSTALLED_ON_FK

TB_USER

ID_USER: varchar2(30)

HAS_OFFICE_IN_FK: varchar2(50) (FK)

TB_NODE_STATE

TIMESTAMP: DATE

NODE_FK: varchar2(30) (FK)

BATTERY_LEVEL: NUMBER(11)

TB_NODE_STATE_FKIndex1

NODE_FK

TB_SENSOR_TYPE

TB_SENSOR_TYPE_NAME: varchar2(50)

AMBIENT_PROPERTY_NAME: varchar2(50) (FK)

TB_READING

TIMESTAMP: DATE

SENSOR_FK: varchar2(30) (FK)

VALUE: NUMBER(11,6)

TB_READING_FKIndex1

SENSOR_FK

TB_SENSOR_STATE

TIMESTAMP: DATE

SENSOR_FK: varchar2(30) (FK)

PREMISE_has_NEXT_PREMISES

PREMISE_FK: varchar2(50) (FK)

NEXT_TO_PREMISE_FK: varchar2(50) (FK)

TB_PREMISE

PREMISE_NAME: varchar2(50)

TB_POSITION

ID_POSITION: varchar2(30)

IN_PREMISE_FK: varchar2(50) (FK)

TB_NODE

ID_NODE: varchar2(30)

BATTERY_POWERED: varchar2(1)

PLACED_IN_FK: varchar2(30) (FK)

NODE_FKIndex1

PLACED_IN_FK

TB_AMBIENT_PROPERTY

NAME: varchar2(50)

IS_OBSERVABLE: varchar2(1)

1

Figure 3 Part of the DB-schema showing the internal representation of the sensory and
actuator devices for an indoor environment.

implement proper policies of energy saving. For this reason, SENSOR9K provides the tools

for monitoring the electric energy usage of the building, for inferring the users’ presence,

and monitoring the interaction between users and actuators. Energy consumption may

be monitored with varying resolution, and it is possible to observe the energy usage of en-

tire premises, or specific devices. To monitor the global energy consumption of a specific

room, we installed a multifunctional power analyzer; it was connected to the monophase

line powering the room under observation and allowed us to collect information about

voltage, current, and active and reactive power. Individual monitoring of specific devices

is carried on by specialized “energy sensor nodes” that measure energy usage of any

device connected to the power outlet of the sensor.

Besides mere measurement of instantaneous consumption, effective implementation

of high-level policies for energy saving would also benefit from additional information.

For instance, estimating the presence of specific users in the controlled areas might be

interpreted as a trigger for the system to operate on the actuators only when actually
12

DRAFT

needed. Our approach is to avoid deploying additional dedicated sensors, and rather

exploit pre-existing ones; however, we do not assume that any of them, separately con-

sidered, is able to provide a sufficiently precise estimate of the user’s presence, so we

choose to merge multiple sensory information, coming from diverse sensors, through a

data fusion process.

Monitoring users’ access to the premises managed by the AmI system may provide

rough indications on the presence of users in specific areas, and a suitable technology

for implementing simple access control is represented by RFIds [42]. In the proposed

testbed, the RFId readers have been coupled with sensor nodes installed close to the

main entrance and to each office door, while RFId tags have been embedded into ID

badges for the department personnel, so as to completely replace traditional keys.

Also the sensory infrastructure deployed for the AmI application purposes may be

exploited beyond its “natural” purpose; in particular, the WSN may cooperate to the

estimate of the user’s presence in a given room; namely we extend the system with addi-

tional sensor nodes carried by the users, and we use their interaction with the deployed

WSN infrastructure to provide naive localization. Portable nodes are not equipped with

any specific sensor, as they are only used to communicate with fixed nodes and to esti-

mate their relative distances to them. The basic idea consists in estimating the distance

between a mobile node, carried by the user, and the other environmental nodes placed at

know locations, that may act as “beacons”; a simple trilateration algorithm would the-

oretically be sufficient to provide an approximation of the position of the mobile node.

This idea is in fact not new in the field of WSN research [32, 43], and one of the easiest

way to provide a rough estimate of distance is through RSSI measurements; however

early research has already pointed out that this kind of signal is very noisy and that the

relative measurement is highly error-prone especially because of the unpredictable signal

attenuation model in unknown environments. Several works have thus been presented

aimed at refining the distance estimate, either by using different, more reliable measures

altogether, or via more advanced postprocessing [2, 45]. Our approach is fundamentally

different in that we do not intend to provide precise localization of the mobile nodes, but

we limit our system to determine the closest beacon, or in other words the macro-area

through which the mobile node is currently moving. Whenever the system needs to find

13

DRAFT

Figure 4 Example of coarse-grained localization: the mobile node is assigned to “Area1”
by estimating the closest beacon.

out the position of one of the mobile nodes, it injects a query into the part of the WSN

that forms the localization subsystem; beacon nodes collect the RSSI signals and send

those measurements back to the querying unit that may easily identify which beacon is

closer to the mobile node; the interaction is depicted in Figure 4. This may be regarded

as a coarse-grained localization, and its precision of course depends on the number and

density of beacon nodes; in our context, though, we do not need to refine the estimate

beyond a certain threshold as this piece of information will be used in conjunction to

other ones, and will only be an additional uncertain input for the upper-level decision

system.

In order to observe the interactions of the users with the actuators, and thus to

provide the system with some indication about the users’ preferences, SENSOR9K includes

a set of ad-hoc sensors. The simpler actuators provided by our testbed are remotely-

controllable power relays, with the additional capability of providing information about

their current state (e.g. the artificial lighting relay controller). More complex actuators

are the domestic appliances controllable via IR remotes that may be typically found in

homes or offices; within this category, we can mention air conditioning units, or automatic

motorized electric blinds and curtains. Our hardware infrastructure thus includes the

possibility of capturing the interactions between the users and such remotes, with the

aim of providing the system with some indication about the users’ preferences. An ad-

hoc sensor node was designed to this end, and equipped with an IR receiver through a

suitable expansion board. We positioned one such node close to each appliance under

observation, with the sensor next to its IR receiver. Each setting sent via the remote

to the IR receiver is then captured by the sensor node, and sent to the LG along with

other sensed data. No modification is thus required to existing devices, which makes the

system highly adaptable to different scenarios, and suitable for capturing user-defined
14

DRAFT

configurations of generic IR-based devices.

In order to develop the sensor node software for decoding the received IR information,

a preliminary decoding of the pulse sequence sent by the IR remote needs to be performed.

In our case, this has been accomplished by means of the utility library offered by the

LIRC (Linux Infrared Remote Control) software package [10], which allows to directly

measure the duration of pulses got out from the IR receiver. The validation of these

measurements has been achieved by comparing them with those obtained through a

digital oscilloscope connected with the same IR received.

SENSOR9K is also meant to reproduce any possible user action, so it provides an IR

remote control connected to the LG of each room. This device may be programmed to

allow the system to remotely control most of the commonly available domestic appliances,

as it just reproduces the same interface as traditional remote controls. The user action

sensors, coupled with the USB remote control, contribute to the creation of an unintrusive

and flexible testbed, easily deployable in most kinds of environments. The proposed

solution also aims to keep the realization costs low since it is does not require to modify

the devices to be controlled, or to buy specific versions of them; also it already solves the

issue of collecting the relative measurements, that are just regarded as additional sensory

inputs, and as such managed by the WSN infrastructure.

5. Middleware

This Section presents the middleware providing the core functionalities for the design

of specialized modules on top of the hardware substrate.

From a logical standpoint, the main purpose of the middleware is to decouple the

applications from a specific choice for the underlying hardware, so that the developer

may focus on the issues concerning AmI aspects specifically. To this end, our testbed

provides the modules implementing basic AmI functionalities that may be combined to

form complete applications; moreover we also allow the possibility to directly access

the lower level functionalities of the sensory and actuation equipment, although we still

interpose an abstraction layer hiding the irrelevant details and providing a homogeneous

view on the hardware.

In the following we provide some insight into the upper part of the middleware,

15

DRAFT

by describing some of the specialized modules, currently available in our testbed, for

monitoring energy consumption, interacting with the actuators, detecting the presence

of users, and profiling their preferences.

5.1. Energy Consumption Management

In order to monitor energy consumption, our testbed has been equipped with spe-

cific sensors, as described in Section 4. However, application developers might not be

interested in detailed data about individual energy consumption of each device, but they

might rather prefer to obtain only higher-level information. To comply with this need, our

middleware includes a specialized module for governing energy consumption monitoring,

continuous sensing, and for triggering notifications to the application layer only if some

predefined thresholds are exceeded. AmI applications will be able to tune the behavior

of such software component by acting on its parameters, by means of specific control

messages. Besides implementing such basic functionalities, SENSOR9K’s middleware also

provides support to planning in the context of energy saving by computing predictive

models for energy consumption trends for selected devices. We assume that each mon-

itored device is connected to one of the wireless nodes that gather data about energy

consumption. The model will be synthetically represented by a table whose entries are

pairs of the form [actuator state, consumption]; the energy consumption associated with

each state of the actuator is estimated incrementally via an exponential moving average:

c(s)← α · c̄+ (1− α) · c(s),

where c(s) represents the estimate of the energy consumption of the actuator with respect

to its current state s, c̄ is the latest reading of energy consumption, and α is a coefficient

in the range [0, 1]. The cost model may then be queried by AmI applications in order to

get information preliminary to planning.

Furthermore, the energy consumption module also includes the definition of the con-

straints to be taken into account by AmI applications in the planning phase. Although

not currently available, it is arguable that in the near future energy providers will be

able to supply information about the current contractual offer, scheduled shortages and

low-fare hours. We are considering here the possibility of dealing with a limited set of

contractual options, so that the module controlling our intelligent energy meter may con-
16

DRAFT

nect with the energy provider, gather information about possible constraints on monthly

average consumptions and, by keeping track of past consumptions, provide an optimal

estimate that meets the provided constraints.

Finally, a visionary but realistic scenario could include distributed energy production

through the so called “smart grids” [15], whose main goal is to be autonomous by pro-

ducing energy locally, via the exploitation of renewable energy sources. Such technology

allows to feed possible overproduction of energy back into the distributed network in

order to satisfy the demand coming from other network areas. In this context, the smart

building managed by the AmI system represents a node of the electrical distribution

network, and it is crucial to tune its energy consumption with respect to the amount of

locally available energy, and to its cost.

5.2. Multi-sensor Data Fusion for Detecting Users at Work

SENSOR9K offers various types of sensors capable of perceiving physical and environ-

mental characteristics useful in order to detect users’ presence. However, none of these

sensors is sufficient, alone, for performing this kind of elaboration, because it is charac-

terized from an excessive uncertainty or because it does not succeed in monitoring all

the premises of interest.

In order to overcome these limitations and to make the most of the available sensory

information, SENSOR9K’s middleware includes a module that performs the fusion of data

coming from multiple sensors. One of the sensors used by this module is a virtual sensor

that performs a näıve localization using the information obtained through the few RFId

sensors used for users’ access control. Several works in literature ([26, 40]) aim to perfect

the localization process through the exploitation of a dense RFId grid. However in our

work one of the most relevant goals is to maintain low costs and a low intrusiveness degree,

so the proposed approach is to exploit several sensory information, each of which suffers

from a non negligible uncertainty degree, but is obtainable via inexpensive processes.

Our virtual RFId-localization sensor employes Gaussian filters on the gathered data,

according to the pseudocode reported in Figure 5. A badge reading gives timely infor-

mation about the current presence of the user in the room where the specific reader is

placed. The underlying idea is that the belief about the presence of the user in a spe-

cific location may be represented by a normal probability distribution with mean µ, and
17

DRAFT

— Localization through RFId readings —
Parameters: userID, targetRoom;
Initialization:

1: Graph← graph(area topology);
2: µ← [xID, yID]T ;
3: Σ← Σmax;
4: init R;

Main Loop:
5: loop
6: if new reading for userID in [x, y]T then
7: µ← [x, y]T ;
8: Σ← Σmin;
9: else Σ← Σ +R;

10: end if
11: propagateBelief(Graph, µ, Σ); . topology-aware belief propagation
12: notify targetRoom.belief ; . notify belief update to upper-layer modules
13: end loop

Figure 5 Pseudocode for the virtual sensor feeding the Bayesian network, to be run on
a TLG.

covariance Σ, as expressed by the following equation:

p (x) = det (2πΣ)−
1
2 exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
. (1)

A suitable tool for managing linear Gaussian systems is the Kalman filter [30], which

represents the belief function through its moments; we modify the classical approach

by specializing the measurement update step, and using a simplified transition state

function. The RFId reading produces a precise information about the presence of the

user in the same area where the badge is read, so the measurement update step of the

Kalman filter may be simply formulated by centering a Gaussian in the reader location,

and assigning a minimum variance to it (lines 7–8). Since we cannot predict the direction

of the movements of the user, the control vector of the Kalman equation is assumed to

be null, thus resulting in the following equations for the measurement update step:

µt = µt−1, (2)

Σt = Σt−1 +R; (3)

where R represents the covariance of the Gaussian noise signal, with zero mean, assumed

to affect the state transition (line 9). If no further readings occur for the same user, the
18

DRAFT

— Topology-aware belief propagation —
Parameters: Graph, µ, Σ;
Initialization:

1: updateList ← ∅ . list of nodes whose belief is to be updated
2: for all n in Graph do
3: n.updated ← false;
4: end for
5: root ← Graph.getNode(µ); . the location of the root node is the center

of the belief distribution
6: root.belief ← gaussianValue(µ, Σ, 0); . evaluate the Gaussian at its center
7: root.dist ← 0 ; . physical distance from root node along the

graph
8: root.updated ← true;
9: neighborList ← neighbors(Graph, root);

10: for all neighbor in neighborList do
11: neighbor.parent ← root ;
12: updateList.append(neighbor); . append the neighbor node to the update

list
13: end for

Belief Propagation Loop:
14: while updateList 6= ∅ do
15: n ← updateList.pop();
16: parentDist ← distance(n, n.parent); . Euclidean distance between the current

node and its parent

17: n.dist ← parentDist + n.parent.dist ; . physical distance of node n from root node
along the graph

18: n.belief ← gaussianValue(µ, Σ, n.dist); . evaluate the Gaussian at distance n.dist
from center

19: n.updated ← true;
20: neighborList ← neighbors(Graph, n);
21: for all neighbor in neighborList do
22: if neighbor.updated is false then
23: neighbor.parent ← n;
24: updateList.append(neighbor);
25: end if
26: end for
27: end while

Figure 6 Auxiliary pseudocode of the belief propagation function.

uncertainty on the position estimate, represented by the Gaussian function centered on

the location corresponding to the latest reading, increases with time; after some delay,

the latest sensory reading does not provide relevant information any longer, so the user

might be located anywhere in the building with the same probability.

The software implementing this module is fully aware of the complete topology of the

19

DRAFT

Xt-1 Xt

Et

Xt: state variables for
 the current time
Xt-1: state variables for
 the past time
Et: observable variables
 at the current time

Figure 7 Markov chain for room occupancy evaluation.

building, represented as the graph of the connections between the building areas, in order

to propagate the belief about the user’s presence. A detailed pseudocode implementing

this function is reported in Figure 6; it is worth pointing out that the belief value at a

specific location does not depend on the actual Euclidean distance from the center of the

distribution, but rather on the physical length of the complete path along the topology

graph (lines 16–18).

The sensory information achieved through this module is represented by the Locali-

zationSensor RFID block in Figure 7.

Other sources of information for the multi-sensor data fusion module are:

• LocalizationSensor WSN: the WSN-based subsystem for localization, as previ-

ously described;

• ActivitySensor: a virtual sensor installed in the LG with the job of detecting the

interactions among the customer and the actuators and of merging these informa-

tion in order to obtain the level of user’s activity;

• SoundSensor: the sensors able to detect the average level of sound in the room;

• DoorStatus: a sensor for detecting the state of the office door (open / closed /

locked);

• SoftwareSensor: a software sensor for detecting user’s activity at his workstation.

20

DRAFT

The last monitoring device detects the user’s logins and logouts at their workstation,

thus identifying time intervals when they are not logged in. When the user is performing

some activities at the workstation using the peripheral devices, such as mouse and key-

board, the sensor software remains deactivated, and simply acts as a screen-saver; in this

case the information on the user’s activity is provided by the lack of data. If no activity

is detected for a given time interval, it is possible that either the user is no longer sitting

at their desk or that they are engaged in some activity that does not requires the use

of the workstation; in order to discriminate between the two events, the software sensor

activates a visual recognition process through which it tries to recognize the user’s face

in the images acquired through a webcam, through the approach described in [7].

Since the fusion of these sensory data inevitably involves reasoning with uncertainty,

it was decided to consider a model based on probabilistic Bayesian networks as opposed

to logical inference engines. Indeed, rule-based expert systems are not suitable for dealing

with environmental features characterized by a large uncertainty, as the set of logical rules

constituting them is exclusively deterministic; our domain, on the other hand, requires

the integration of intrinsically noisy sensory information that, moreover, can only provide

partial observations of the system state. Classical Bayesian networks [41], however, may

only provide a static model for the environment, which would not be suitable for the

proposed scenario; therefore dynamic Bayesian networks were chosen or, more specifically,

Markov chains to implement our models which thus allow for probabilistic reasoning on

dynamic scenarios, where the estimate of the current system state depends not only on the

instantaneous observations, but also on past states. The validity of a Markovian approach

for detecting users’ presence and behavior by exploiting pervasive sensory information is

confirmed by several works presented in AmI literature [8].

Figure 7 shows the Bayesian network designed for detecting users’ presence, and

clearly shows that sensory information are the only measurable manifestation of the

system hidden state. State is here represented by the presence of the considered user in

their own office room (associated to the UserInRoom variable), and the number of people

in in the same room (PeopleInRoom). The state is observable through the previously

described sensory information described. Variables modeling this sensory information

are connected with state variables through sensor probabilistic models, expressed by

21

DRAFT

conditional probability tables that were learned from an opportune training data set.

The approach based on Bayesian networks allows to connect many state variables

through cause effect relationships, thus making simpler the structure of the network. In

our case the fact that the customer is present in his office influences indirectly the number

of people present in the same room. Therefore sensory signals that are considered directly

affected by the feature PeopleInRoom are indirectly biased by the feature UserInRoom.

In the network model each sensory signal is associated to the state variable from

which it is mostly influenced, according to opportune indices of sensors utility [36].

5.3. User Preferences Profiling

SENSOR9K may perceive the actions performed by users via specifically designed sen-

sors. The information obtained may be interpreted as implicit user feedbacks in order to

learn their requirements; lacking any other kind of explicit feedback, the system resorts

to analyzing the actions carried on by users, in order to extract implicit knowledge; for

instance, the system is able to detect that a temperature decrease was requested and may

use this piece of information to infer that the current environmental conditions are not

satisfactory for the user; hence, a plan may be formulated on how to modify the system

goals in order to better fit the intelligent environment inhabitants’ demands. The avail-

ability of these implicit feedbacks, obtainable by means of these special non-intrusive

sensors that monitor user’s actions, is one of the innovative aspects of the proposed

testbed.

The middleware provided with the testbed includes a module that collects the de-

tected feedbacks and produces a model for the user’s behavior. User-environment interac-

tion modeling has been extensively studied in the field of Human-Computer Interaction;

one of the most relevant issues in formalizing a method for user profiling is the creation

of a unique profile for each user valid for all AmI applications possibly running on the

testbed [23]. Although such choice may appear as the most elegant, it also raises some

issues; firstly, creating a unique user profile for all applications involves processing a

wealth of data, originated from many diverse interactions of the users with the actua-

tors; moreover, as the user profile is communicated to the applications, they risk to be

overwhelmed by possibly irrelevant data about events they are not interested about.

We therefore opted for the creation of a user profile generation model that were general
22

DRAFT

but at the same time parameterizable by the applications depending on which aspects

of user-environment interactions they need to focus on. The users’ profiles are built by

regarding them as room occupant, and considering their interaction with the actuators.

In particular, the software module may learn the utility value perceived by the user for

each [state, action] pair, by observing the environmental conditions and the interactions

of the user with the actuators. The utility value is computed via an on-line mechanism

based on a phase of action evaluation typical of reinforcement learning, so that the user

profile may be built incrementally. Information related to implicit feedbacks is clearly

filtered taking into account data about the user’s presence obtained by the middleware

modules devoted to this task.

Basically, whenever a user interacts with an actuator and changes its state, the corre-

spondence between the current environment state and the current setting for the actuator

is bound to a negative utility value; the greater the gap between the current setting and

the user-imposed value, the greater the absolute value for the utility. When the user is

present in the monitored area and they do not interact with the actuators, the corre-

spondence between the environment state and the actuator setting gets a positive utility

value. In order to automate this process, time is divided into slots and each of them is

regarded as a discrete event.

According to the reinforcement learning formalization, we refer to the actuator setting

at time t as at, to the environment state at time t as st. The environment state resulting

at time t + 1, as a consequence of the actuator setting, is referred to as st+1, while

the reward obtained according to the users’ feedback is rt+1. After the evaluation of

users’ feedback, the current estimate of the average of the current actuator setting at in

the current environment state st, referred to as Q(st, at), is updated according to the

following equation:

Q(st, at)← (1− β)Q(st, at) + β[rt+1 + γ max
a
{Q(st+1, a)}]. (4)

The new utility estimate is obtained by merging the previous one with the information

about the obtained reward and the future one; namely max
a
{Q(st+1, a)} is the maximum

obtainable reward in the new state. The β and γ parameters, both ranging in [0, 1],

control the learning mechanism, and represent the learning rate and the discount factor,

respectively. The former determines the weight of new information with respect to past
23

DRAFT

history, and the latter determines the influence of future rewards. By setting the γ

parameter to 0, utility is estimated according to a simple exponential moving average,

similarly to what is done in the energy consumption module.

The information that may be gathered by AmI applications from the user’s prefer-

ence profile may regard synthetically the optimal action given a specific environmental

condition, or broadly the entire utility table learnt so far.

6. A Complete Sample Application: Temperature Control in an Office Room

This Section presents a simple AmI application aimed at illustrating the use of the

various hardware and software components of our testbed; the main goal here is to provide

a proof-of-concept of the complete sensing-reasoning-acting loop. The testbed has been

specialized for the context of temperature control in a work environment, and the physical

layer was built by augmenting a classic office room with a set of non intrusive devices.

The premises of our department were chosen as a convenient experimental platform, and

we aimed to control the temperature conditions not just for improving the users’ comfort,

but also for optimizing the overall energy consumption.

6.1. The Sensory Infrastructure

The sensor nodes used for this sample application belong to the mote family [38]; they

are particularly suitable for our purposes, also thanks to the possibility of extending their

functionality by adding new types of sensors or actuators. TelosB Motes, in particular,

are equipped with 10 kB RAM, 16 kB for configuration EEPROM, and 1024K bytes for

data storage into Flash serial memory; the communications among them are based on

the IEEE 802.15.4 protocol over a 250 kbps radio channel.

In order to assess the practical usability of our testbed, we compared its requirements

in terms of memory occupancy with other widely used applications. The two lowest rows

of Table 2 show the separate memory footprints for the SENSOR9K middleware, and for

the specific application considered here; for instance, our middleware requires roughly

double memory for code, as compared to the basic Blink application for TinyOS. A

more reliable comparison can be made with other popular middleware tools for WSNs,

such as Maté [34], and Agilla [22], showing that the requirements for code and data are

comparable.
24

DRAFT

Table 2 Memory footprint comparison (data for Maté and Agilla are from [19]).

App. code (ROM) App. data (RAM)

Blink 2650 bytes 55 bytes

Maté 7.5 kB 600 bytes

Agilla 3.59 kB 41.6 kB

SENSOR9K middleware 4672 bytes 512 byte

Sample application 8.5 kB 3 kB

Nodes have been placed at strategic points in the rooms (see Figure 8), in regions

where sensed measurements may present oscillations and unexpected trends; specifically,

we deployed nodes in different rooms, close to “sensitive” areas: by the door, by the

window, and by the user’s desk; additional nodes have been installed on the building fa-

cade, close to the office windows, for monitoring outdoor temperature, relative humidity,

and light exposure. Besides the sensors provided by SENSOR9K, Table 3 shows the main

sensors available to this sample application for environmental monitoring.

Based on the measurements of ambient temperature and relative humidity, the ap-

plication computes the physiological equivalent temperature (PET) [29], and uses this

value to make a decision on the proper actuation policy. The equivalent temperature is

computed through the index defined in [13], which adds the latent heat of condensation

for the water vapor in the air to the actual temperature. The resulting empiric formula

Air Conditioner

Sensor and Actuator

Curtain Control
Sensor and Actuator

Power Analyzer

Door Status
Sensor and
Actuator

Lighting
Sensor and

Actuator

RFId Reader
Local

GW

Wireless Sensor Node

Local Gateway

User’s workstation

Wired Sensor

Actuator

Figure 8 Location of wireless sensor nodes installed in user offices.

25

DRAFT

Table 3 The main sensors used for environmental monitoring, and their characteristics.
Measure Sensor Characteristics

Temperature range: -40 ◦C to +123.8 ◦C

Temperature Sensirion Temp. accuracy: +/- 0.5 ◦C @ 25 ◦C

and SHT11 Humidity range: 0 to 100% RH

relative humidity Absolute RH accuracy: +/- 3.5% RH

Low power consumption (typically 30 µW)

Pressure range: 300 to 110 mbar

Barometric pressure Intersema Pressure accuracy: +/- 3.5%

and MS5534 Temperature range: -10◦C to 60◦C

temperature Temperature accuracy: +/- 2◦C

Operating range 3.6 to 2.2 volts

Outdoor Light

Spectral response range λ: 320 – 730 nm

Hamamatsu Peak sensitivity wavelength λp 560 nm

S1087 Photo sensitivity S (A/W)

Infrared sensitivity ratio 10%

Ambient Light
Taos Range: 400 to 1000 nm

TSL2550 Operating range 3.6 to 2.2 volts

is the following:

PET = T +mh · (r − 2.326 · T)/(cp +mh · cw). (5)

For our purposes, we have considered a fixed value for the atmospheric pressure above

sea level, and computed all other involved quantities as reported in Table 4, so that the

value of the index only depends on the measured ambient temperature T (directly) and

relative humidity (through the moisture content parameter mh). The PET index, for

atmospheric pressure in the 800–1100 mbar range, returns meaningful values when the

Table 4 Parameters for computing the PET index.

Quantity Meaning Value

mh moisture content 0.620 · pv(hum)
patm−pv(hum)

patm atmospheric pressure 1013mbar

pv(hum) vapor pressure 610.78 · e
17.269·T
T+237.30 · hum

100

r latent heat of vaporization 585 cal · g−1

cp specific heat of air 0.24 cal ◦C g−1

cw specific heat of water 1 cal ◦C g−1

26

DRAFT

measured ambient temperature is between 20◦C and 45◦C; since our test environment

might also experience lower and higher temperature, we consider here the following ag-

gregated index PT as representative of a subjective measure of human perceived tem-

perature:

PT =

 PET if T > 20◦C,

T elsewhere.
(6)

The nodes of the WSN dedicated to environmental control are programmed to directly

compute the PT value, by performing all computations and thresholding on board; in

fact, the application layer may in all respects assume to deal with a virtual sensor,

undistinguishable from other common sensors.

6.2. Exploiting the Middleware Modules

The sample application considered here shows how to profitably make use of the

middleware modules described in Section 5. In particular, besides analyzing the perceived

temperature, the application will get information about the presence of the users in their

office from the middleware module described in Section 5.2, in the form of a probability

measure; this module is installed on the LG, which forwards the presence probability,

together with the information about the state of the actuators, up to the AmI application.

Furthermore, a profile of the user’s preferences is computed thanks to the functional-

ities provided by the module described in Section 5.3; in this case, the module has been

parameterized in order to collect the associations between the environment state and the

users’ actions, as represented by the following vectors:

state = [PT, PT ′],

action = [∆T,Mode].
(7)

This middleware module returns the user’s profile expressed in terms of the utility

function as perceived by the user for each [state, action] pair. In our sample application

we compute the reciprocal of this utility value, which may be interpreted as a metric

representing the distance from the user’s preference, and regard this as the first objective

function to be minimized.

The sample application also uses the middleware module described in Section 5.1

for predicting the cost of each actuator setting; this cost value is the second objective

function to be minimized.
27

DRAFT

(a)
(b)

(c) (d)

(e) (f)

Figure 9 Block diagram of fuzzy controller (a) and membership functions for input and
output variables: (b) input Perceived Temperature, (c) input Perceived Temperature
Variation Rate, (d) input user’s presence, (e) output Temperature Variation , (f) output
Operating Mode.

It is worth mentioning that if the middleware modules for user profiling and cost

prediction provided only static, off-line models, the resulting application policy would

be characterized by overfitting, and the system would only correctly react to ambient

conditions analogous to those experimented during the training phase. In our case this

is avoided by allowing each module to incrementally update its model, based on on-line

information.

6.3. The Sample Application

The considered sample application, running on the central AmI server, deals with

actuator management and enforces advanced AI algorithms for optimizing environmental

control, also taking into account constraints about energy consumption. In particular,

the management is performed through a simple fuzzy controller operating on the sensory

inputs.
28

DRAFT

Fuzzy Logic allows to model uncertainty of sensory data and inaccuracy of human-

based definitions; in our case, for instance, it allows to manage vague concepts such as

Cold while speaking about perceived temperature. An AmI application whose core is

a fuzzy controller is able to mimic human reasoning, and to simply model a non-linear

mapping from inputs to outputs.

Considered input variables are the PT index, its variation rate PT ′ and the userPre-

sence probability value, opportunely fuzzified, while output variables are the variation

of the controlled temperature (∆T) with respect to the current assigned value, and the

operation mode of the air conditioner (Mode), which can be set to Cold, Off and Hot.

A block diagram of this fuzzy controller is shown in Figure 9(a).

The fuzzy knowledge base comprises five gaussian membership functions for each

input variable, seven gaussian membership functions for the output variable ∆T and

three gaussian membership functions for the output variable Mode, as shown in Figure 9.

The fuzzy engine has been designed so that with a high probability that the user

is present in his office the air conditioner is tuned by acting on its functioning mode

and temperature, in order to found the best setting that fits with the actual perceived

temperature and its variation rate. Rules designed for this case are in the following form:

if (userPresence is Probable) ∧ (PT is valPT) ∧ (PT ′ is valPT ′) then

(∆T is val∆T) ∧ (Mode is valM);

where valPT , valPT ′ , val∆T and valM are linguistic values defined over the ranges of

PT , PT ′, ∆T , and Mode respectively. A sample of a complete mapping from [PT, PT ′]

to [Mode,∆T], when userPresence is Probable, is summarized in Tables 5 and 6.

If userPresence is Improbable a unique rule is activated, that turns off the air

condition in order to meet energy saving goal:

Table 5 Fuzzy rules for temperature variation.
PT \ PT ′ VNeg Neg Null Pos VPos

VeryCold δ3 δ3 δ2 δ1 0

Cold δ3 δ2 δ1 0 0

Agreeable δ2 δ1 0 −δ1 −δ2
Hot 0 0 −δ1 −δ2 −δ3

VeryHot 0 −δ1 −δ2 −δ3 −δ3

29

DRAFT

Table 6 Fuzzy rules for the operating mode.
PT \ PT ′ VNeg Neg Null Pos VPos

VeryCold Hot Hot Hot Hot Off

Cold Hot Hot Hot Off Off

Agreeable Hot Hot Off Cold Cold

Hot Off Off Cold Cold Cold

VeryHot Off Cold Cold Cold Cold

if (userPresence is Improbable) then (Mode is Off).

When dealing with the conflicting goals of adjusting the perceived temperature ac-

cording to the users’ preferences while minimizing energy consumption, the traditional

approach of merging them into a single objective function presents several limitations,

mainly because it would require an accurate knowledge of the different objective func-

tions, either in terms of relative priority or relevance. On the contrary, we chose to keep

two independent objective functions, one expressing the dissimilarity from the users’

preferences and the other expressing a degree of energy consumption, as previously men-

tioned.

The associations between [state, action] pairs (as defined by Eq. 7), and the cor-

responding distance and cost values, are collected by the AmI application as shown in

Table 7, where n is the number of discrete environment states and m is the number of

possible actions.

For each state si, optimizing only with respect to the user’s preference would involve

selecting the action a∗ that minimizes the dsi(a
∗) value, whereas optimizing only with

respect to the energy consumption would involve minimizing the csi
(a∗) value.

Since we intend to consider both objective functions at the same time, we adopt

a Pareto-dominance criterion for evaluating the actions; this implies the selection of

Table 7 Evaluation of [state, action] pairs via two objective functions.
State Action Dissimilarity Cost

s1 a1 ds1(a1) cs1(a1)

s1 a2 ds1(a2) cs1(a2)

...
...

...
...

sn am dsn(am) csn(am)

30

DRAFT

a1

a2

a3

csi

dsi

csi
(a2)

csi
(a3)

csi
(a1)

dsi
(a2)

dsi
(a1), dsi

(a3)

a4

a5

Figure 10 Graphical example of the Pareto-dominance analysis.

multiple optimal actions.

For a given state si, an action aj Pareto-dominates another action ak if dsi
(aj) ≤

dsi(ak)∧csi(aj) ≤ csi(ak). An action a∗ is Pareto-optimal if no other solution has better

values for each objective function, that is if the following equation holds:

dsi
(a∗) ≤ dsi

(aj) ∧ csi
(a∗) ≤ csi

(aj), ∀j = 1 . . .m. (8)

Figure 10 represents an example of the Pareto-dominance analysis for a given ambient

state si: actions a1 and a2 belong to the same non-dominated front because dsi
(a2) ≤

dsi
(a1) and csi

(a1) ≤ csi
(a2), while both actions a1 and a2 dominate action a3; the set

of optimal actions is {a1, a2, a4, a5}.

The action to perform in a given ambient state is selected inside the set of Pareto-

optimal actions; namely, it is the action that represents the median point on the curve

(a) (b)

Figure 11 Nonlinear surfaces for the proposed AmI fuzzy application concerning (a) the
Functioning Mode and (b) the Temperature Variation.

31

DRAFT

Figure 12 Results of the Bayesian multi-sensor data fusion process for user’s presence
detection (Test A).

of the optimal front.

Finally, Figure 11 shows the nonlinear surfaces produced by the Pareto-optimal fuzzy

controllers that models the mapping among inputs and outputs.

7. Experimental Evaluation

We assessed the performance of our AmI sample application as a whole, and of the

individual modules of the testbed; we report here a representative subset of our tests

conducted over a three days time period. We considered one target user, who was

unaware of the ongoing experiment, and so did not modify his usual behavior. In order to

validate the subsystem for detecting the user’s presence, its outcome was compared with

information obtained by manually analyzing the output of a video-surveillance system.

The plots reported in Figure 12 show how the system performs in detecting user’s

presence. Figures 12(a), 12(b), and 12(c) consider three different time intervals, and each

of them shows two superimposed plots: the continuous line represents the actual trend of

the user’s presence signal; the dashed line represents the belief of the system about the

user’s presence, as obtained by the Bayesian multi-sensor data fusion process, previously

described in Section 5.2 (see Figure 7).

In order to get a deeper understanding of the behavior of this module in scenarios

including a limited number of sensory devices, we carried on further experiments high-

lighting the impact of specific sensory information; namely, we iteratively excluded some

of the sensory inputs from the probabilistic inference process, and run the tests on the

32

DRAFT

Xt-1 Xt

Et

Xt: state variables for
 the current time
Xt-1: state variables for
 the past time
Et: observable variables
 at the current time

Figure 13 Structure of the Bayesian network without the ActivitySensor (Test B).

same data in order to get comparable results. The new tests indicate that the user detec-

tion module is robust with respect to the exclusion of a limited number of sensor types.

It is however clear that there exists a critical threshold for the number of excluded sensor

types beyond which the results deteriorate intolerably. Figure 13 shows the Bayesian

network obtained after excluding the ActivitySensor; the corresponding test is labeled

“Test B”, as opposed to the original test including all the available sensors, and labeled

as “Test A”. As shown by the results in Figure 14, the presence detection system suc-

ceeds in compensating the lack of information by exploiting what is still available. The

greatest difference appears at the beginning of time interval (b), when the software mod-

ule detects the user only with some delay. Figure 15 reports the results from “Test C”,

where the DoorStatus sensor is missing in addition to the ActivitySensor; the figure

shows that additional errors are present as compared to “Test B”, both in time interval

(b) and (c).

In order to obtain a statistical evaluation of the system performance we discretized

the time intervals and computed false positives and false negatives; the specificity and

the sensitivity of the system are computed according to the following definitions:

specificity = #true negatives
#true negatives + #false positives ;

sensitivity = #true positives
#true positives + #false negatives .

(9)

33

DRAFT

Presence

Absence

Presence

Absence

Presence

Absence
Time

Time

Time

Belief
Real

(c)

(b)

(a)

Rete 02

Figure 14 Results of the Bayesian multi-sensor data fusion process for user’s presence
detection without the ActivitySensor (Test B).

Presence

Absence

Presence

Absence

Presence

Absence
Time

Time

Time

Belief
Real

(c)

(b)

(a)

Rete 012

Figure 15 Results of the Bayesian multi-sensor data fusion process for user’s presence
detection without the ActivitySensor and the DoorStatus sensor (Test C).

34

DRAFT

Table 8 Specificity and sensitivity of the module for detecting the user’s presence, in
different sensor devices available.

Test Excluded Sensor Types Specificity Sensitivity

Test A none 97.50% 93.33%

Test B ActivitySensor 97.92% 91.67%

Test C ActivitySensor, DoorStatus 97.08% 90.00%

If the gathered sensory information is not sufficient to infer the user presence, the

software module opts for a default strategy that indicates the user’s absence. Such

choice implies that sensitivity is the most relevant factor for the assessment of the system

performance. In order to get a deeper insight on that, we can imagine a scenario where the

software module is constantly unable to detect the user’s presence; in such scenario the

module keeps indicating user absence, hence no false positives may arise and specificity

amounts to a constant 100%; however the anomalous situation shows clearly by looking at

the sensitivity parameter, which falls to 0. Both the specificity degree and the sensitivity

degree are reported in Table 8 for all conducted tests, and the worsening performance

of the system are shown by the lowering sensitivity degree throughout the tests. It is

however worth noting that the system still produces good results, even when lacking

groups of sensory devices.

In order to assess the effectiveness the system’s decisions as regards the resulting

environmental conditions, we measured the mismatch between the current ambient state,

and the desired ambient state inferred by observing the interactions of the user with

the actuators. We used the same time discretization as for the localization system,

and labeled each time interval as “satisfactory” if the user was in fact present and no

interaction was detected, whereas the opposite label is used if the user modified the

actuators settings at least once in that interval.

In order to assess the performance of the AmI application, we need to take into ac-

count 6,6% of the cases where the user was present in the office, but the localization

system failed in detecting them. This in fact prevented the triggering of the rules for

environmental control. This testbed-dependent error must be added to the application-

dependent error, so that overall the AmI application sets the environmental state coher-

35

DRAFT

ently with the user’s preferences in 84,5% of the cases, which is a remarkable behavior

nonetheless.

8. Conclusion and Future Developments

This work presented a testbed for experimenting with AmI-based applications, which

is characterized by the use of a low-cost and non intrusive technology, such as WSNs.

Besides providing the hardware substrate, our testbed is also equipped with a middleware

that allows for a full exploitation of the offered capabilities; the physical component is in

fact decoupled from the higher-level module devoted to drive the operations of the entire

system. A sample application involving the estimate of the users’ presence in a given

area, and a fuzzy controller for tuning the heating and air conditioning, was considered

as a proof-of-concept of the role of the middleware in processing raw sensory data in

order to extract high-level information.

SENSOR9K’s main contribution relies in addressing energy efficiency in the context of

pervasive systems, by providing the designer with comprehensive support for enabling

energy-aware AmI systems, in order to obtain a globally sustainable development.

Future developments will focus on providing further capabilities, such as additional

complex middleware modules for supporting advanced reasoning and planning, and more

refined management services for the sensory infrastructure.

For instance, the multi-sensor data fusion module will be extended to use the high-

level information extracted from raw environmental data, in order to perform dynamic

selection of sensor devices, thus implementing self-optimization based on QoS and cost

metrics. Additionally, SENSOR9K will implement self-monitoring mechanisms in order

to timely detect potential malfunctioning in the low-level devices, so as to allow our

uncertainty-based reasoning to exclude such faulty data.

In order to enhance the overall fault tolerance, such self-monitoring functionality will

be coupled with basic primitives for self-reconfiguration and self-optimization, allowing

for optimal tuning of sensing parameters.

Finally, our research will focus on investigating further techniques for sustainable

energy management, specifically considering the optimization of the energy consumption

of sensors and actuators. This topic is particularly challenging when some of the sensory

36

DRAFT

devices are allowed to access renewable energy sources, which suggests the adoption

of energy harvesting policies in order to extend the overall lifetime of the pervasive

sensor networks. Although this issue is very application-specific, and usually deeply

affects all of the node architectural levels, we will focus on how to provide useful high-

level tools, such as a middleware module for accessing information about residual node

energy (e.g. measured voltage supply, discharge function), or specialized modules for the

prediction of physical phenomena influencing the replenishment of the energy sources.

Such information may be exploited for planning accurate strategies of load balancing

that optimize the overall network lifetime.

References

[1] K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible sensor network de-
ployment. In Proceedings of the 32nd International Conference on Very large data bases, pages
1199–1202. VLDB Endowment, 2006.

[2] H.S. Ahn and K.H. Ko. Simple pedestrian localization algorithms based on distributed wireless
sensor networks. IEEE Transactions on Industrial Electronics, 56(10):4296–4302, 2009.

[3] M.J. Akhlaghinia, A. Lotfi, C. Langensiepen, and N. Sherkat. Occupant Behaviour Prediction in
Ambient Intelligence Computing Environment. Journal of Uncertain Systems, 2(2):85–100, 2008.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE
Communication Magazine, 40(8):102–114, 2002.

[5] H. Alex, M. Kumar, and B. Shirazi. MidFusion: An adaptive middleware for information fusion in
sensor network applications. Information Fusion, 9(3):332–343, 2008.

[6] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri. What planner for Ambient Intelligence appli-
cations? IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,
35(1):7–21, 2004.

[7] E. Ardizzone, M. La Cascia, and M. Morana. Face Processing on Low-Power Devices. In Proceedings
of the 4th International Conference on Embedded and Multimedia Computing, pages 1–6, Jeju,
Korea, 2009.

[8] L. Atallah and G.Z. Yang. The use of pervasive sensing for behaviour profiling - a survey. Pervasive
and Mobile Computing, 5:447–464, 2009.

[9] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. Kim, B. Zhou, and E. G. Sirer. On the need for
system-level support for ad hoc and sensor networks. ACM SIGOPS Operating Systems Review,
36(2):1–5, 2002.

[10] C. Bartelmus, P. d’Angelo, H. Langos, T. Wheely, K. Scheibler, J. Paris, P. T. Jochym, and
M. Pikula. LIRC - Linux Infrared Remote Control. Available online at http://www.lirc.org/,
2002.

[11] L. Benini, E. Farella, and C. Guiducci. Wireless Sensor Networks: Enabling Technology for Ambient
Intelligence. Microelectronics Journal, 37(12):1639–1649, 2006.

[12] M. Botts and A. Robin. OpenGIS sensor model language (SensorML) implementation specification.
OpenGIS Best Practices Paper OGC, pages 5–86, 2006.

[13] W. Bründl and P. Höppe. Advantages and disadvantages of the urban heat island - an evaluation
according to the hygro-thermic effects. Meteorology and Atmospheric Physics, 35(1):55–66, 1984.

[14] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas. 50 ways to build your application: A Survey of
Middleware and Systems for Wireless Sensor Networks. In Proceedings of the 12th IEEE Conference
on Emerging Technologies and Factory Automation (ETFA 2007), pages 466–473. IEEE, 2008.

[15] S. Y. Chen, S. F. Song, Li L. X., and Shen J. Survey on Smart Grid Technology. Power System
Technology, 33(8):1–7, 2009.

[16] D. J. Cook, J. C. Augusto, and V. R. Jakkula. Ambient Intelligence: Technologies, applications,
and opportunities. Pervasive and Mobile Computing, 5(4):277–298, 2009.

[17] D. J. Cook and S. K. Das. MavHome: Work in progress. IEEE Pervasive Computing, 2004.

37

DRAFT

[18] D. J. Cook and S. K. Das. How smart are our environments? An updated look at the state of the
art. Pervasive and Mobile Computing, 3(2):53–73, 2007.

[19] N. Costa, A. Pereira, and C. Serodio. Virtual Machines Applied to WSN’s: The state-of-the-art and
classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International
Conference on, page 50. IEEE, 2007.

[20] A. De Paola, S. Gaglio, G. Lo Re, and M. Ortolani. Human-ambient interaction through Wireless
Sensor Networks. In Proceedings of the 2nd Conference on Human System Interactions (HSI),
Catania, Italy, 2009.

[21] K. Ducatel, M. Bogdanowicz, F. Scapolo, and J.-C. Burgelman. Scenarios for Ambient Intelligence
in 2010, Tech. Rep. Information Soc. Technol., Advisory Group (ISTAG), Inst. Prospective Technol.
Studies (IPTS), Seville, 2001.

[22] C. L. Fok, G. C. Roman, and C. Lu. Agilla: A mobile agent middleware for self-adaptive wireless
sensor networks. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(3):1–26,
2009.

[23] G. González, C. Angulo, B. López, and J. L. de la Rosa. Smart user models: Modelling the humans
in ambient recommender systems. In Proceedings of the workshop on decentralized, agent based and
social approaches to user modelling (DASUM), pages 11–20, Edinburgh, Scotland, 2005.

[24] S. Hadim and N. Mohamed. Middleware: Middleware challenges and approaches for wireless sensor
networks. IEEE Distributed Systems Online, 7(3):1–1, 2006.

[25] H. Hagras, I. Packharn, Y. Vanderstockt, N. McNulty, A. Vadher, and F. Doctor. An intelligent
agent based approach for energy management in commercial buildings. In Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pages 156–162. IEEE, 2008.

[26] S. Han, H. S. Lim, and J. M. Lee. An efficient localization scheme for a differential-driving mobile
robot based on rfid system. IEEE Transactions on Industrial Electronics, 54(6):3362–3369, 2007.

[27] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The Gator Tech Smart
House: A programmable pervasive space. Computer, 38(3):50–60, 2005.

[28] A. Holmes, H. Duman, and A. Pounds-Cornish. The iDorm: Gateway to heterogeneous network-
ing environments. In International ITEA Workshop on Virtual Home Environments, Paderborn,
Germany (February 2002), pages 1–8, 2002.

[29] P. Höppe. The physiological equivalent temperature – a universal index for the biometeorological
assessment of the thermal environment. International Journal of Biometeorology, 43(2):71–75,
1999.

[30] R.E. Kalman. A new approach to linear filtering and prediction problems. Journal of basic Engi-
neering, 82(1):35–45, 1960.

[31] J. A. Kientz, S. N. Patel, B. Jones, E. Price, E. D. Mynatt, and G. D. Abowd. The Georgia Tech
Aware Home. In Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 3675–3680. ACM, 2008.

[32] K. Langendoen and N. Reijers. Distributed localization in wireless sensor networks: a quantitative
comparison. Computer Networks, 43(4):499–518, 2003.

[33] R. G. Lee, C. C. Lai, S. S. Chiang, H. S. Liu, C. C. Chen, and G. Y. Hsieh. Design and imple-
mentation of a mobile-care system over wireless sensor network for home healthcare applications.
In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBS ’06),
pages 6004–6007, New York City, USA, 2006.

[34] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. ACM SIGARCH
Computer Architecture News, 30(5):85–95, 2002.

[35] T. Liu and M. Martonosi. Impala: a middleware system for managing autonomic, parallel sensor
systems. In Proceedings of the ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 107–118. ACM, 2003.

[36] C. H. Lu and L. C. Fu. Robust Location-Aware Activity Recognition Using Wireless Sensor Network
in an Attentive Home. IEEE Transactions on Automation Science and Engineering, 6(4):598–609,
2009.

[37] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an acquisitional query pro-
cessing system for sensor networks. ACM Transactions on Database Systems (TODS), 30(1):122–
173, 2005.

[38] Memsic. TelosB datasheet. Available online at http://www.memsic.com, 2010.
[39] M.M. Molla and S.I. Ahamed. A survey of middleware for sensor network and challenges. In

Proceedings of the 2006 International Conference on Parallel Processing (CPP 2006) Workshops,
pages 6–228. IEEE, 2006.

[40] S. Park and S. Hashimoto. Autonomous Mobile Robot Navigation Using Passive RFID in Indoor

38

DRAFT

Environment. IEEE Transactions on Industrial Electronics, 56(7):2366–2373, 2009.
[41] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan

Kaufmann, 1988.
[42] G. Roussos and V. Kostakos. RFId in pervasive computing: State-of-the-art and outlook. Pervasive

and Mobile Computing, 5(1):110–131, 2009.
[43] A. Savvides, H. Park, and M.B. Srivastava. The n-hop multilateration primitive for node localization

problems. Mobile Networks and Applications, 8(4):443–451, 2003.
[44] R. Vastamaki, I. Sinkkonen, and C. Leinonen. A behavioural model of temperature controller usage

and energy saving. Personal and Ubiquitous Computing, 9(4):250–259, 2005.
[45] J. Wang, R. K. Ghosh, and S. K. Das. A survey on sensor localization. Journal of Control Theory

and Applications, 8(1):2–11, 2010.
[46] M. Weiser. The computer for the 21st century. Scientific American, 272(3):78–89, 1995.

39

DRAFT

	0079_COP
	0079_DRAFT

