

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

A Distributed Bayesian Approach to Fault Detection in

Sensor Networks

G. Lo Re, F. Milazzo, M. Ortolani

In Proceedings of the IEEE Global Telecommunications Conference

(GlobeCom), 2012, pp. 634-639

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite

from the work.

Publisher: IEEE

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb
er=6503184

A Distributed Bayesian Approach to Fault Detection
in Sensor Networks

Giuseppe Lo Re, Fabrizio Milazzo, and Marco Ortolani
Università degli Studi di Palermo

Viale delle Scienze ed. 6, Palermo, Italy
first.lastname@unipa.it

Abstract—Sensor networks are widely used in industrial and
academic applications as the pervasive sensing module of an
intelligent system. Sensor nodes may occasionally produce incor-
rect measurements due to battery depletion, dust on the sensor,
manumissions and other causes. The aim of this paper is to
develop a distributed Bayesian fault detection algorithm that
classifies measurements coming from the network as corrupted or
not. The computational complexity is polynomial so the algorithm
scales well with the size of the network. We tested the approach
on a synthetic dataset and obtained significant results in terms
of correctly labeled measurements.

I. INTRODUCTION

Sensor networks are an emerging technology in ICT, thanks
to their high versatility as an underlying infrastructure for
environmental control systems [1]. They are widely used as
a sensing module for applications like environmental moni-
toring, ambient intelligence and military, which require the
perception of some physical quantities, such as temperature,
humidity, ambient lighting, and so on.

A sensor network consists of a large number of sensor nodes
which, in their turn, are made up of four main components:
(i) transceiver, (ii) power unit, (iii) sensors array, and (iv) pro-
cessing unit. Malfunctioning sensor nodes provide erroneous
information which is likely to negatively affect the QoS of the
overall system; a fundamental issue to be addressed is thus
fault detection. Literature classifies faults in sensor networks
as depending on: crashed nodes, link errors, and corrupted
measurements [2]; in our work, we will specifically focus on
the problem of fault detection of corrupted measurements.

There exist many causes that could negatively affect mea-
surements; in particular, according to the system-centric view
of a fault [3], the fundamental causes of corruption are:
• calibration faults: the ADC converter has a specific input-

output curve; however it is known that such curve changes
over time, which results into a calibration fault;

• connection/hardware faults: example of such fault is a
short circuit caused by a spill over the mainboard;

• low battery: this typically causes noisy and stuck-at (a
constant value) readings.

In the context of sensor networks, a measurement is deemed
as corrupted if it significantly deviates from the actual behav-
ior of the monitored quantity; indeed we cannot assume the
ground truth to be known in advance, so we are forced to
rearrange the definition as “a measurement that significantly

deviates from the expected behavior of the monitored quan-
tity”.

Any fault detection approach should be analyzed both under
the architectural and methodological viewpoint. From the
architectural point of view, we can easily identify two opposite
approaches:
• centralized: a fusion center gathers all sensor measure-

ments, and then chooses a subset of all those that can be
considered reliable, which are eventually sent to a base
station. The remaining measurements are discarded;

• distributed: sensor nodes exchange their measurements
with nearby nodes, and, by following a distributed agree-
ment protocol, they infer which nodes sent corrupted
measurements.

From the methodological point of view, the most common
approaches in literature are:
• majority voting scheme [4]: each node expresses an

opinion about a certain measurement from another node.
Its implementation is straightforward, but it works well
only if every sensor node has many neighbors;

• threshold methods [5], [6]: the whole set of measurements
is partitioned into those similar to each other, and outliers.
Such methods potentially outperform any other method,
but the performances are very sensitive to the chosen
threshold value;

• Bayesian methods [7]: they take into account background
information such as prior probability of a sensor fault;
they usually classify a measurement as corrupted or
not by maximizing a given likelihood function. Such
methods are not sensitive to the parameters choice in
that a learning phase automatically provides the optimal
ones; their major drawback consists in the exponential
growth in terms of computational resources, which is typ-
ically addressed by resorting to approximated inference
approaches.

The main contribution of the present work is the design
of a novel distributed Bayesian method for detecting faults in
sensor networks, in order to label the collected measurements
as corrupted or not. In our approach, each sensor node
manages a portion of the Bayesian network and is allowed
to decide whether to cooperate with its neighboring nodes or
not. If the node opts for cooperation, it receives information
about the measurements in its proximity, thus widening its

DRAFT

scope with respect to the surrounding environment; intuitively,
we expect that such behavior increases the chance of correct
classification of the sensed measurements. If the node does
not cooperate with its neighborhood, it will rely only on its
local information to perform classification; for instance, such
behavior can occur whenever the node needs to limit its energy
consumption, or when it notices that its transceiver component
is not properly working.

The approach is not approximated in the sense that it is able
to find the exact solution by maximizing a likelihood function,
while maintaining polynomial complexity; in particular, we
will show that our approach is characterized by: linear mes-
sage complexity with respect to the number of network nodes,
and polynomial time complexity with respect to the number
of different fault types.

The remainder of the paper is structured as follows: Section
II reviews related approaches and provides a brief comparison
with our work. Section III mathematically describes the main
aspects of the proposed approach. Sections IV and V contain
the theoretical and experimental assessment by analyzing both
complexity and performances of the algorithm we devised.
Finally Section VI presents some concluding remarks.

II. RELATED WORKS

Fault detection is a deeply studied topic in the context
of sensor networks, and related literature can be broadly
subdivided into works dealing with: (i) the definition of the
failure model, and (ii) definition of the detection method.

The authors of [3] propose a failure model classifying faulty
sensor readings as outlier (a measurement that significantly
deviates from other sensor readings), spike (a change rate
much greater than expected over a short period), stuck-at (a
series of values with zero variations), noise (a series of data
with a variance greater than expected). The authors of [8]
propose a similar taxonomy, with just three different type of
faults: short, noise, and constant, where, unlike the previous
work, the short fault is regarded as a generalization of outlier
and spike. Without loss of generality, in the remainder of
the paper we will rely on the latter taxonomy, since the
computational complexity of our method is dependent on the
number of different faults it can recognize.

Various detection methods have also been proposed in
recent literature. The work [9] proposes a centralized detection
method where the fusion center solves n different non-linear
systems of equations to discover nodes that negatively affect
the solution. The two main drawbacks of this approach consist
in the fact that the accuracy of the solutions depends on
the method used for solving the non-linear system, and the
method cannot be implemented in a distributed way, unless
every sensor node behaves as a fusion center. The authors of
[7] propose a centralized MAP Bayesian method that assigns
the most probable class (i.e. faulty or not) to each sensor
reading by maximizing a likelihood function. The approach
achieves low misclassification rate but it is computationally
expensive in that it is exponential in the number of sensor
readings that are to be classified. An interesting distributed

method was presented in [4]. The method is computationally
simple but achieves good classification rates only with a high
number of neighbors per node (at least 15); moreover, the
classification task depends on the value of two predefined
thresholds that can be only experimentally derived. Finally
the work [5] is a distributed detection method using spatial
correlation among readings to detect corrupted measurements;
if the last reading of a sensor node alters the value of the
correlation more than a specified threshold, then the reading is
labeled as corrupted. The method achieves good performance
with an average number of twenty neighbors per node; its
applicability is also hindered by the reliance on the threshold
that can be only experimentally derived.

The proposal we describe in the present paper consists
in a distributed and Bayesian method. Unlike centralized
approaches, it does not require the presence of a fusion
center and any node is free to choose a cooperative or non
cooperative behavior. Thanks to the use of a Bayesian network,
the choice of parameters depends on the computation of
conditional probability tables, which has analytical solution
(unlike threshold methods). We will show that our method
achieves good classification performance if network nodes be-
have cooperatively (i.e. when they do exchange information on
their measurements). It also achieves acceptable classification
performance when sensor nodes behave non-cooperatively, e.g.
when they have no neighbor node.

III. PROBLEM STATEMENT

Let us assume that a number of nodes deployed within the
sensor field obtain readings about environmental quantities,
such as temperature, humidity, or light exposure, and need
to check if such readings are corrupted or not. Sensor nodes
may try to classify their readings without communicating
with nearby nodes by only using local knowledge (such as
past readings, predictive models and so on); however they
could also exchange sensed measurements in order to obtain
additional valuable information about the physical quantity,
thus increasing the probability that their own measurements
are correctly classified.

We assume here that the sensor field covers a relatively
narrow area so that the measurements sensed by different
sensor nodes are likely to be correlated; in other terms we are
assuming that the variations due to the nature of the sensed
physical quantity are relatively small with respect to nearby
nodes.

In order to implement such behavior, we chose to devise
a distributed Bayesian network with the following key prop-
erties: (i) it must allow sensor nodes to freely select their
cooperative vs. non cooperative behavior and (ii) it must be
able to classify sensed measurements as corrupted or not, in a
distributed fashion. In the following, we analyze our Bayesian
network model by specifying its graphical representation, the
training phase for learning the network parameters, and the
distributed inference algorithm run by sensor nodes in order
to classify their measurements. The mathematical notation we
will use in the rest of the paper is summarized in Table I.

DRAFT

TABLE I
MATHEMATICAL NOTATION FOR THE BAYESIAN FRAMEWORK.

Symbol Description
N(i) Neighborhood set of node i
mi measurements sensed by node i
Li local features set of node i

Lk
i k-th component of Li

Si,j shared features set of node i and j

Sk
i,j k-th component of Si,j

X The whole evidence of the Bayesian network
ci The class assigned to the measurement of sensor i
C The set of possible assignment for ci

A. Graphical Representation

The distributed Bayesian network is split up into smaller
units, contained within sensor nodes. Such smaller networks
consists of one hidden (discrete) random variable taking the
most probable state of the sensed measurement, and some
observed (either discrete or continuous) random variables, also
called features, that are used to infer the hidden variable value.
Such Bayesian structures are typically called Naive Bayes [10].

Sensor node i tries to estimate hidden variable ci by
indicating whether measurement mi is faulty, and in such a
case which specific fault has occurred. Variable ci takes values
in the set C = {short, noise, constant, non-faulty}.
The observed variables are intended to capture statistical
properties of the measurements, and are used to check whether
the measurement is corrupted or not. The authors of [3]
propose a standard set of features to be used when performing
fault measurements detection:
• mean, variance, and correlation, useful to obtain a re-

gression model and to make predictions;
• gradient, which measures the change rate of different

time scales;
• distance from other readings, useful to consider informa-

tion from the neighborhood;
• node residual energy, useful to check if the sensor has a

sufficient amount of energy left before malfunctioning.
Clearly, the above set is not comprehensive and other

sophisticated features can be used; however we found that
they are widely sufficient for the purpose of this work.

Such features are the evidence of a normal/abnormal value
of the sensed measurements. Consider for example a short
measurement (i.e. an out-of-range value), corresponding to an
unexpected value for the gradient feature. From a causal point
of view, we deduce that the (hidden) class of a measurement
influences the state of the (observed) features; such causal
relation is indicated in a Bayesian context by an arrow starting
from the influencing variable and pointing at the influenced
ones.

In principle, some features (e.g. mean and variance) can be
computed locally, while others (distance from other readings)
necessarily require communication among sensor nodes; in
our framework, this means that, in general, features will be
influenced by a variable number of hidden variables. Features
that do not force a node to require communication with other
sensor nodes will be called local features, while in the opposite

Fig. 1. (a) Three isolated naive Bayes classifiers and (b) the same Naive
Bayes connected through shared features (b). We make use of the plate
notation to denote array of variables (local and shared) enclosed within the
boxes.

case they will be called shared features. Local features for
node i are thus functions of the type L(mi), while shared
features are functions of readings coming from more sensor
nodes: S(m1,m2, ...,mn), where the subscript identifies the
originating sensor node. As previously said, any node is
allowed to decide whether to perform its classification task
with or without exchanging information with nearby nodes; the
key property of the Bayesian model we described is that such
decision corresponds to the operation of adding or removing
links toward shared features. In order to ensure convergence of
the classification task, we will allow only pairwise interactions
among sensor nodes, so shared features will be restricted to
functions of the type S(mi,mj). Figure 1 shows the resulting
distributed Bayesian network in the cases of 3 nodes, in the
cooperative and non-cooperative cases, respectively. White
circles in the picture represent the hidden variables, while
shadowed circles represent the observed ones. If nodes do not
cooperate (case a), the whole Bayesian network is just made
up of independent naive Bayes classifiers; on the contrary, if
nodes cooperate (case b), the whole structure will be much
more complex, in that naive Bayes classifiers are connected
through shared features.

B. Learning parameters
The learning procedure consists in computing the joint prob-

ability for the whole Bayesian network; the joint probability
of any Bayesian network is defined as:

p(x1, x2,, xn) =
∏
i

p(xi|pa(xi)), (1)

where pa(xi) denotes the set of parent variables for xi.
Our Bayesian network model comprises two types of vari-

ables: hidden (ci, with no parents), and observed (Li, with
one parent, and Si,j , with two parents). By particularizing the
above equation to our Bayesian network we easily obtain the
joint probability:

p(c1, .., cn, X) =
∏
i,

j∈N(i):j>i

p(Li|ci)p(Si,j |ci, cj)p(ci), (2)

DRAFT

where X denotes the entire set of feature variables within
the Bayesian network.

The above equation shows that the parameters to be learned
are the prior probabilities of the class label assignments and
the conditional probabilities for local and shared features.

In order to simplify the computation of conditional probabil-
ities, we can exploit conditional independence thus obtaining:

p(Li|ci) =
∏
k

p(Lk
i |ci)

p(Si,j |ci(t), cj) =
∏
k

p(Sk
i,j |ci, cj) (3)

In our work we assume we can use supervised learning with
a training set made by a fixed amount of observed features
with the respective actual label assignments. The computation
of conditional probabilities p(Lk

i |ci), p(Sk
i,j |ci, cj), and prior

probabilities p(ci) is therefore carried out by using the fre-
quentist approach.

C. Distributed inference algorithm

The inference algorithm we implemented allows sensor
nodes to compute the classes to be assigned to the sensed mea-
surements. It computes the output class labels (copt1 , ..., coptn)
by maximizing the joint probability of the whole distributed
Bayesian network, given the evidence, as follows:

(copt1 , ..., coptn) =argmax
c1,...,cn

p(c1, ..., cn|X) =

= argmax
c1,...,cn

∏
i,

j∈N(i):j>i

p(Li|ci)p(Si,j |ci, cj)p(ci) (4)

It is worth pointing out that such formulation of the problem
corresponds to a MAP approach and it is quite similar to the
work [7]; however we will show that our algorithm computes
the class labels without using a mere brute force approach,
whose time complexity would be O(|C|n); rather, by ex-
ploiting factorization properties of the distributed Bayesian
network, we are able to compute the optimal class labels with
time complexity proportional to |C|2.

Without loss of generality, we will assume in the following
that every sensor node uses a cooperative approach; the case of
non cooperative nodes can be obtained by canceling all terms
in the above equation containing shared features terms.

Our distributed inference algorithm is based on “sum-
product” [11], which is an inference message passing algo-
rithm that aims to compute optimal values of hidden variables
in a Bayesian network. However, its specification is provided
in terms of messages exchanged among Bayesian variables;
since the purpose of our work is to design a distributed algo-
rithm for sensor networks, instead, we rearranged the original
mathematical framework in a way that the procedure is defined
in terms of messages exchanged among network nodes. The
convergence of “sum-product” algorithm is guaranteed only
if the Bayesian network is free of loops, so we restricted
the interactions among sensor nodes to be pairwise; such
assumption will also constrain the communication topology of
the wireless sensor network to a tree. Note that such restriction

is not unrealistic in a real deployment; the issue can be easily
addressed by building a spanning tree for the WSN [12], [13].

Our algorithm is divided into two phases: during the first
phase each node i computes local and shared features by
exchanging the sensed measurement with its neighboring
nodes. The second phase is the inference message passing
algorithm that implements a sort of convergecast-broadcast.

1) Phase one: local features are functions of the type:
Lk
i = fk(mi) and do not require any exchange of messages

among network nodes. Shared features are functions of the
type: Sk

i,j = fk(mi,mj), j ∈ N(i) and require the knowledge
of measurements in the neighborhood set of node i.

For this reasons the only message that (cooperative) nodes
need to exchange, is their own:

µi→j = mi and j ∈ N(i), (5)

If any node i chooses not to cooperate with its neighborhood
nodes it simply does not forward its measurement; such an
operation corresponds to the removal of any observed variable
Si,j from the distributed Bayesian network.

2) Phase two: this phase is composed of two rounds:
convergecast started at leaf nodes, and broadcast started at
root node. The convergecast round makes any sensor node
aware of the probability of its class label assignments given
the information of their neighbors, while the broadcast round
actually computes the most probable class to be assigned to
each sensor node.

Before introducing the convergecast message µi→j(cj), let
us define the following pairwise belief:

φ(ci, cj) = p(ci)p(Li|ci)p(Si,j |ci, cj)
∏

z∈N(i)/j

µz→i(ci). (6)

Such quantity represents the belief of node i with respect
to node j about the pair of class labels to be assigned to both
nodes. Note that node i can compute the above quantity only
after receiving messages µz→i(ci) from all its children.

The convergecast round message (children-to-parent) is then
the unary belief:

µi→j(cj) = max
ci

φ(ci, cj). (7)

Such quantity is a marginalized version of the previous
equation 6 and represents the belief of node i with respect
to node j about the single class label to be assigned to node
j; also note that such quantity is not defined for the root node
since the convergecast ends on that node.

Convergecast ends at root node that computes its optimal
class label assignment as:

coptr = argmax
cr

p(cr)p(Lr|cr)
∏

z∈N(r)

µz→r(cr) (8)

All the quantities p(ci), p(Li|ci) and p(Si,j |ci, cj) are
computed by using a simple table look-up since they have been
previously stored during the learning of conditional probability

DRAFT

TABLE II
NOTATION USED IN THE ALGORITHM COMPLEXITY SECTION.

Symbol Description
h The depth of the tree
n The number of nodes of the tree
D The maximum number of children of any sensor node
kl The number of local features of any sensor node
ks The number of shared features of any sensor node
|C| The number of possible assignment for ci
|Z| The maximum number of discrete values a feature can take

tables.
Before sending the convergecast message, any node i, only
needs to store the quantity φ(ci, cj) that will be used during
the broadcast round.

The broadcast round message (parent-to-children) from par-
ent node j to its children i is:

µj→i = coptj (9)

Finally, any node i (other than the root) computes its optimal
class assignment as:

copti = argmax
ci

φ(ci, c
opt
j), (10)

where φ(ci, cj) was stored during convergecast round.

IV. THEORETICAL ASSESSMENT

The aim of this section is to prove that the algorithm scales
well with the size of the network. In the following we will
refer to the mathematical notation contained in Table II.

Theorem 1: The algorithm has memory complexity:

O(kf |C|2|Z|) (11)

Proof: The learning task stores a conditional probability
table for every feature (local and shared) and a prior table for
the class label. Let us suppose any node has at most kl local
features and at most ks shared features; additionally we define
kf = max(kl, ks)

The required memory for such tables are bounded by:
kf |C||Z| for local features, kf |C|2|Z| for shared features and
|C| for priors; by summing up the above terms, we can easily
see that the overall required memory is O(kf |C|2|Z|).

Theorem 2: The algorithm has time complexity:

O(h|C|2(2kf +D)) (12)

Proof: Phase one involves a simple message exchange
among neighbor nodes, and does not involve any computation.

Phase two is a convergecast-broadcast procedure. The con-
vergecast message computation involves mono-dimensional
maximizations (equation 7). To perform such operation the
algorithm computes all the entries of the matrix φ(ci, cj) that
are |C|2.

The computation of a single value of φ(ci, cj) is a multipli-
cation among 1 + 2kf + (D − 1) terms (see equation 6), that
amounts to 2kf +D−1 total multiplications. Time complexity
for such round thus is |C|2(2kf +D − 1).

During broadcast round the optimal class label assignment
(see equation 10) is computed by a table lookup on φ(ci, cj),

that requires |C| operations. The time complexity for such
round thus is simply |C|.

By summing all terms for phase one and phase two, and
considering that tree depth is h we obtain the whole time
complexity of the algorithm: O(h|C|2(2kf +D)), where we
discarded all irrelevant terms.

Theorem 3: The algorithm has message complexity O(n).
Proof: Phase one involves sending measurements. In this

case two messages will travel on every tree link, that amounts
to 2(n− 1) messages. Phase two is a convergecast-broadcast
of messages involving also 2(n− 1) messages.

It is easy to see that the whole amount of messages
exchanged by the algorithm is O(n).

V. EXPERIMENTAL ASSESSMENT

The aim of this section is to evaluate the classification per-
formance of our distributed Bayesian network. We computed
false rejection ratio (FRR) and false acceptance ratio (FAR) for
different corrupted samples percentage while nodes behaved
cooperatively or not.

We conducted experiments onto ten simulated sensor nodes
using BRML Matlab toolbox [14]. The dataset is made of
temperature readings sensed at intervals of 30 seconds for
six days (2880 readings per day); since sensor nodes are
simulated, we used a real Mica2Dot sensor node as mea-
surements generator. Each of the ten simulated sensor nodes
sampled measurements from the real sensor node, and then
added a small Gaussian noise N (0, σ2

E) to simulate small
environmental fluctuations among nearby sensor node (we set
σ2
E = 0.1). Every measurement coming from such (clean)

dataset was thus labeled as non-faulty. The successive step
consisted in randomly injecting faults of the type: short,
noise and constant; in the following we will indicate
as m(t) the clean measurement, and m̃(t) the corrupted
measurement.

The corruption formulas we used were [8]:
• Short: m̃(t) = m(t) + g ×m(t)
• Noise: m̃(t0 + k) = m(t0 + k) +N (0, σ2

N)
• Constant: m̃(t0 + k) = m(t0),

where g is a gain constant, k ∈ {0, 1, 2, ...,K} and K is the
duration of the fault, t0 is a random starting time instant, and
N (0, σ2

N) is a Gaussian noise with zero mean and σ2
N variance

(note that σ2
N >> σ2

E).
We conducted experiments by considering different amounts

of nodes behaving cooperatively and different amounts of
corrupted readings; we varied the percentage of cooperating
nodes from 0 to 100 with 25 percent increments, while we
varied the percentage of corrupted samples from 0 to 25 with
5 percent increments; finally, we used the first day of readings
as training set. Parameters setting for all the experiments were:
g = 1, σ2

N = 3, K = 100.
The features we used were:
• Gradient: L1

i (t) = mi(t)−mi(t− 1)
• Number of measurements without changes: L2

i (t) =∑
t=t−k I[m(t) = m(t− 1)]

DRAFT

Fig. 2. The picture shows false rejection ratio for different amounts of
corrupted samples and different amounts of cooperative nodes.

Fig. 3. The picture shows false acceptance ratio for different amounts of
corrupted samples and different amounts of cooperative nodes.

• Distance from other readings: S1
i,j(t) = mi(t)−mj(t),

where I[·] is the indicator function.
Classification results consist in FRR and FAR (figures 2

and 3) for the different amounts of cooperating nodes and
corrupted measurements.

When all nodes behave cooperatively, the algorithm
achieves very low false negative/positive rates; in particular
FRR and FAR are consistently below 10 percent, even for an
amount of 25 percent of corrupted samples; on the contrary
when no node behaves cooperatively we can see that false
negative rates and false positive rates increase because of the
lack of shared features; however, also in such extreme case
we obtained acceptable performance. The algorithm achieves
better performance when more sensor nodes cooperate because
they take into account dependence among hidden variables,
unlike the non cooperative case where all hidden variables are
considered independent of each other.

VI. CONCLUSIONS

We developed a cooperative distributed algorithm using
a probabilistic approach to detect corrupted measurements
within sensor networks. The algorithm works using a dis-
tributed Bayesian network where hidden variables assume the
most probable class (faulty or not) explaining observed data.
Theoretical results have shown that unlike other works in
literature, the algorithm scales well in time, message and

memory complexity. Experimental results were carried out
for different amounts of corrupted samples and cooperating
nodes. We noticed that when nodes behave cooperatively the
inference algorithm achieves classification results better than
in the opposite case; the empirical explanation was that in the
latter case hidden variables are considered independent of each
other, whereas in the former case they are kept dependent of
each other by considering relationship with shared features.

We carried out supervised training onto a dataset containing
the actual class label assignments for a fixed amount of
time (one day of measurements); future works include the
possibility of working without labeled training set, performing
unsupervised training and by using Expectation Maximization
algorithm to compute conditional and prior probabilities.

Further investigation is needed to allow our method to cover
wider sensor field; in particular, a future work may consist of
make sensor nodes able to learn the most probable Bayesian
structure they should adopt independently from the size of the
sensor field; this could be achieved by implementing Bayesian
Networks Structure Learning methods.

REFERENCES

[1] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduction:
overview of sensor networks,” Computer, pp. 41–49, 2004.

[2] L. Paradis and Q. Han, “A survey of fault management in wireless sensor
networks,” Journal of Network and Systems Management, vol. 15, no. 2,
pp. 171–190, 2007.

[3] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor
network data fault types,” ACM Transactions on Sensor Networks, vol. 5,
no. 3, 2009.

[4] J. Chen, S. Kher, and A. Somani, “Distributed fault detection of wireless
sensor networks,” in Proceedings of the 2006 workshop on Dependability
issues in wireless ad hoc networks and sensor networks, 2006, pp. 65–
72.

[5] W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, and P. Deng, “Local-
ized outlying and boundary data detection in sensor networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 19, no. 8, pp.
1145–1157, 2007.

[6] N. Giatrakos, Y. Kotidis, A. Deligiannakis, and Vasilis, “In-network ap-
proximate computation of outliers with quality guarantees,” Information
Systems, 2011.

[7] K. Ni and G. Pottie, “Bayesian selection of non-faulty sensors,” in IEEE
International Symposium on Information Theory, 2007, 2007, pp. 616–
620.

[8] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection
methods and prevalence in real-world datasets,” ACM Transactions on
Sensor Networks, vol. 6, no. 3, p. 23, 2010.

[9] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “On-line
fault detection of sensor measurements,” in Sensors, 2003. Proceedings
of IEEE, vol. 2, 2003, pp. 974–979.

[10] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[11] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001.

[12] S. Hussain and O. Islam, “An energy efficient spanning tree based multi-
hop routing in wireless sensor networks,” in IEEE Wireless Communi-
cations and Networking Conference., 2007, pp. 4383 –4388.

[13] S. Upadhyayula and S. Gupta, “Spanning tree based algorithms for low
latency and energy efficient data aggregation enhanced convergecast
(dac) in wireless sensor networks,” Ad Hoc Networks, vol. 5, no. 5,
pp. 626 – 648, 2007.

[14] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge
University Press, 2012.

DRAFT

	0082_COP
	0082_DRAFT

