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Abstract—Current energy demand for appliances in
smart homes is nowadays becoming a severe challenge,
due to economic and environmental reasons; effective
automated approaches must take into account basic
information about users, such as the prediction of their
course of actions.

The present proposal consists in recognizing user
daily life activities by simply relying on the analysis
of environmental sensory data in order to minimize
energy consumption by guaranteeing that peak de-
mands do not exceed a given threshold. Our approach
is based on information theory in order to convert
raw data into high-level events, used to represent re-
cursively structured activities. Experiments based on
publicly available datasets and consumption models are
provided to show the effectiveness of our proposal.

I. Introduction

Recent years have witnessed a steady increase in energy
demand, both from industries and households; sustainable
energy consumption for commercial and private buildings
is consequently becoming a relevant issue, also due to eco-
nomic and environmental motivations [1]. Concurrently,
the design of Building Energy and Comfort Management
(BECM) systems has grown to become a self-standing re-
search area within the greater field of Ambient Intelligence
(AmI) [2]. While the general scope of AmI is to apply
techniques from artificial intelligence to transparently sup-
port users in their everyday activities, a BECM system can
be defined more specifically as a control system that uses
computers and a distributed sensor network for monitoring
a building in order to ensure efficient usage of the available
energy sources.

Current literature about building automation, however,
shows that building control is still mainly performed
manually, as in the case of artificial lighting setting,
powering appliances on and off, or seasonal control of
heating systems; additionally, automation in buildings has
historically focused on narrow-scope tasks, such as lighting
control with simple motion detection and a fixed timeout,
or indoor climate control based on temperature and CO2

level. On the other hand, user activities and behavior have
considerable impact on the amount of consumed energy
in all kinds of buildings (i.e., residential, office, and retail
sectors). A significant amount of the energy dissipated in

these areas can be saved by fine-tuning deployed devices
and appliances according to actual user needs; for instance,
many research efforts have been focused on proposing
“smart thermostats” based on occupancy prediction, or
on maximizing user comfort by providing appropriate
artificial lighting, based on the activity carried on at a
given moment.

In order to implement such approaches, predicting the
users’ course of actions is regarded as the most important
input for building automation systems, as it is essential
to cope with the issue of reducing energy consumption
without negatively affecting the user experience. A typical
problem, for instance, is due to the presence of peaks in
energy demand, caused by the concurrent use of a set of
appliances, whose combined power demand is higher than
the maximum allowed consumption. This affects many
energy providers, whose supply offers typically impose a
limit on the maximum available instant power or apply
additional costs when power consumption exceeds some
prefixed quantity. As pointed out in [3], being dynamic
should be an essential property of any BECM system, and
no static assumptions should be made; also, such systems
should be as unobtrusive as possible in order to improve
user acceptance, coherently with AmI requirements.

The present work aims at recognizing daily life activities
performed by users in a smart home in order to minimize
energy consumption by guaranteeing that peak demands
do not exceed a given threshold. We require the system
to be able to work without an explicit human interven-
tion, so a specific challenge is related to the language
used to obtain a high-level, generalizable description of
human behaviour. Our approach assumes that the only
available data comes from the measurements of a typ-
ical environmental sensor network; moreover, we do not
require specific knowledge of the particular application
scenario. Modeling human activities from this perspective
is a compelling open issue, as each of them may be
loosely defined as a sequence of actions, which in turn may
be expressed as movements or interactions with objects,
captured by a specific series of sensory readings. If frequent
patterns were extracted from such sequences, they might
be used to characterize typical activities; however, such
kind of data is often noisy and unreliable, so the mapping
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of data onto high-level activities is not straightforward;
furthermore, typical data mining approaches are affected
by combinatorial explosion when confronted with the huge
amount of sensory data to be processed.

Our proposal is to preliminarily convert sensory readings
into meaningful events, by applying a lossy compression
algorithm based on minimum description length; patterns
representing activities are then extracted from the event
sequence, and clustered in order to train a Hidden Markov
Model, which implements an automated activity recog-
nizer. Each activity is associated to its own typical con-
sumption model, based on the involved home appliances,
so that, once we reliably identify the current user activity,
we can infer its impact on the energy consumption and we
can act in order to prevent the arising of unwanted peaks.
Our approach then consists in delaying the activation of
those appliances whose operations are not strictly required
by the user, until the combined demand for energy falls
below some predefined threshold.

The remainder of the paper is organized as follows.
Section II summarizes some of the approaches presented
in literature, with regards to energy management, and
activity recognition in smart homes. Section III presents
our approach to energy saving by way of automated user
activities recognition, and Section IV provides experi-
mental assessment of our system. Finally, some concluding
considerations are provided in Section V.

II. Related Work

The presence of peaks in energy demand is often symp-
tom of a suboptimal scheduling of the use of electric
appliances. As current electricity demand follows an ever-
increasing trend, it is vital to find solutions for bounding
the maximum amount of energy needed by the users at any
given time, through approaches to consumption manage-
ment aimed to stabilize the overall demand. Many works
in literature [4]–[6] debate this problem, and it has been
claimed that simply shifting or turning off unnecessary
devices can bring significant advantages in terms of energy
saving, without a relevant impact on users’ comfort [7]. A
drawback of most proposals, however, is their intrusive-
ness: such systems typically involve users in achieving an
acceptable level of energy consumption, which is often too
tiresome, time-demanding and ultimately unacceptable for
users. For this reason, our system tries to adhere to the
AmI philosophy which requires minimizing direct user
intervention; the basic idea is that turning off devices or
delaying their usage may be safely performed if the system
can reliably assume that they are not required for on-going
user activities.

This perspective requires that activity recognition
should be automated, and common proposals include (i)
methods based on the use of logic, (ii) probabilistic meth-
ods, or (iii) methods based on common sense reasoning.
In the context of logic-based methods, activity recognition
consists in reconstructing the plan an agent is following,

based on the observation of its actions, and the main
difficulty lies in the hypothesis of rationality, which often
does not hold when the agent is human, especially in the
presence of illness or disability. The authors of [8] use
reticular theory and a logic language for describing actions
in order to detect non-standard behavior; their system can
generate new plans and provide explanation for unusual
actions. In [9], event calculus is used to recognize activities
and support users in performing the correct action at the
right place and time. The significant advantage of using a
logic language, such as event calculus, is the possibility to
embed a-priori knowledge about the application domain,
which reduces the need for annotations and allows for
easy interpretation of the produced rules; the drawback,
however, is the inability to deal with ambiguity, which
arises when the system fails at detecting the on-going
activity and cannot even estimate the most likely one.

Probabilistic methods regard the sequence of events as a
time series, and the goal is to determine the chain of hidden
states which generated the observations. The probabilistic
approach requires computing the sequence which maxim-
izes the probability of the hidden states, given a particular
set of observations. Several methods, such as Semi-Hidden
Markov Models, Skip Chain Conditional Random Fields,
and many others, have been applied to address the issue of
activity recognition, as reported in [10]–[12]. Probabilistic
methods require the availability of a large amount of
labeled data in order to show acceptable performance;
the need for annotation may be partially mitigated by
hard-coding knowledge about how activities are typically
carried on, e.g. by extracting it from the Web. In [13], for
instance, a system whose purpose is to create a database
of bits of common-sense knowledge is proposed; such data
may be integrated in automated systems in order to
augment their ability of interacting with the real world.
Translation of sensory data into high-level abstractions is
made by merging knowledge with information from the
Web, and transforming the obtained data into clauses; the
system then performs statistical inference reasoning.

From a data mining perspective, activity discovery is
often seen as the problem of detecting recurring patterns
within a sequence of events; however, there are substan-
tial differences between frequent itemsets detection, and
discovery of patterns corresponding to activities. First
of all, itemsets do not account for the ordering of the
elements, which on the other hand is quite relevant during
activity discovery; secondly, each itemset must not con-
tain repetitions, whereas a pattern might do. In order to
overcome such limitations, most proposals rely on the so-
called T-patterns [14], and candidate itemsets are chosen
according to criteria defining their meaningfulness within
the event sequence. The authors of [15] use a variant
of the Apriori algorithm [16] to discover sequences of
events repeating with regular periodicity, besides patterns
related to frequent activities. The system starts from
elementary sequences and expands them to obtain longer
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Figure 1: An overview of proposed system.

ones, up to a maximum predefined size. Another approach,
proposed in [17], relies on standard Apriori and considers
the event sequence as a stream of incoming data; after
identifying all sequences of predefined size and support, a
transform function maps them into models for activities.
A hierarchical description is proposed for such models, and
activities are divided into tasks and sub-tasks; the bottom
of the hierarchy is represented by activities that cannot
be further decomposed; activity recognition, as well as
description, is carried on in a bottom-up fashion. A similar
approach is described in [18], where the authors address
the issue of broken or concurrent activities by considering
emerging patterns, i.e. those patterns able to capture
meaningful differences between two classes of data. Finally,
an approach worth mentioning is proposed in [19], where
activities of daily living (ADL) are discovered by means
of evolutionary techniques; the purpose is the creation of
an Evolving ADL Library containing models for activities;
the library evolves by learning additional models from new
sequences.

III. User Activity Recognition

The aim of our work is to level out peaks of energy
consumption by identifying the appliances whose service is
effectively needed by users, and postponing the use of the
others until the combined demand for energy falls below
some predefined threshold. To this end, reliable estimates
of current activities of daily living must be available;
however, recognizing them in a fully automated way is
quite challenging.

It has been mentioned that solutions borrowed from
data mining regard activity discovery as the issue of
finding recurring patterns within the stream of sensory
readings, or alternatively of extracting the ones corres-
ponding to the activities of interest. Typically, a super-
vised method is used for creating predefined models for the
most common activities, beginning by labelling training
samples, and then looking for occurrences in actual data.
A few assumptions are implicit with this strategy: all
involved users are assumed to carry on the same set of
known activities with similar regularity and demeanor; a
considerable amount of data needs to be collected and
consistently labelled, and finally incomplete or discontinu-

ous patterns within original data are not well tolerated.
In general, working directly on raw sensory data is likely
to result in overfitting, i.e. the obtained representations
are so overly specific for the employed dataset that they
are not generalizable to different contexts or users. In
fact, a current open issue regards transferring activity-
related knowledge across different scenarios [20]–[22], as
in most cases learned models cannot be easily exported
to contexts with different characteristics (e.g., type or
location of sensors, prior knowledge, and so on); the use
of advanced simulators has been proposed to overcome the
issue [23].

The idea behind our approach is to relieve the designer
from the task of creating a detailed model for each activity
to track, so, unlike previous proposals, we address this
problem from an algorithmic perspective, rather than
a learning one. We make use of data collected from
an environmental sensor network with no detailed prior
knowledge about the specific application scenario; careful
programming of the network can ensure both robustness
and efficiency of data gathering [24]. A general high-level
description of what may be regarded as an activity is
all is required, thus bypassing the difficulty of creating a
reliable model of an activity in terms of sensory triggers
or supposed interactions between users and their home
appliances. Our system then attempts to infer models
for activities defined as recursive structures and starts by
identifying relevant events, which, in this context, may be
thought of as short and recurrent sequences of raw sensor
readings. Hence, the designer is not forced to embed know-
ledge into the system and may rather choose a description
of events in terms of simple basic concepts, such as time
duration or type of sensor measurement. We implicitly
assume that “ground” events are characterized by a short
duration, and will directly correspond to readings; most of
them will likely be not very meaningful for characterizing
user activities, and their information content will not be
apparent unless they are considered in a combination with
other ground events, thus having the hidden structure of
the activity progressively emerge.

An overview of the proposed approach is shown in
Figure 1: the outcome of the upper half block is the set of
activity models that can be used by the activity recognizer,
together with the events generated by the preprocessor, to
feed the appliance scheduler; an energy-optimized usage
plan for the appliances will eventually be produces, also
taking into account standard energy consumption models.
The remainder of the section will describe each module.

A. Preprocessing

We consider sensors of diverse nature, whose read-
ings cannot be fed into our system without adequate
preprocessing. Assuming a full-fledged environment, the
performance of an activity will sparkle a great number of
sensor readings; for instance, breakfast preparation may
involve proximity sensors (to the cupboard, to the oven,
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etc.), item sensors (toaster, coffeemaker, taps), and envir-
onmental sensors (temperature, water flow), whose state
may be represented by a binary, discrete or continuous
variable, respectively. We define a trigger as the (sensorID

sensorstate) pair. Representative information must be ex-
tracted from a series of raw sensor triggers; to this end, our
approach was to devise a specific language, where an event
is defined in terms of triggers according to the following
syntax:
EvID 〈durmin durmax〉 trigID [, 〈gapmin gapmax〉 trigID ]

According to this definition, each event is identified
by the minimum and maximum expected duration of the
whole sequence, an initial trigger followed by an optional
sequence of triggers with intervening gaps of duration in
the range [gapmin, gapmax].

Our aim is to discover templates for events present in
the series of triggers, and for this purpose we use a greedy
probabilistic method based on a frequentist approach;
given enough samples, it is possible to obtain a reliable
estimate of the probability of each event template.

Initially, we just select the most frequent pairs of trigger
occurrences via a sliding window algorithm that filters out
pairs whose duration would not satisfy our search criteria;
moreover, in order to select meaningful items, we impose
additional constraints by applying a lower bound on the
acceptable frequency:

θfreq = meanfreq + 2 · devfreq

where mean and standard deviation are computed over the
frequencies of all pairs.

Pairs of triggers may already be considered as element-
ary event templates, and may be expanded by iteratively
adding more triggers to them. In order to discover the
most frequent triggers comprised within each pair (if any),
we exploit the conditional probability that a trigger falls
within a given pair. Upon adding a new trigger to a
sequence, the algorithm looks for the next possible value
maximizing the updated conditional probability; addition
of a trigger may reduce, but never increase the number of
occurrences of a sequence in the overall trigger sequence, so
the iterative procedure will terminate when such number
falls below a preset value.

As a final step, all basic events made up of a single
trigger are added to the newly found templates, thus
producing a complete list of templates sorted by their
relative frequency in the sequence.

Discovering the possible list of event templates enables
us to scan previously unseen trigger sequences in order to
identify the actual occurrences of events contained therein.

This step is accomplished by SAIL (S tring mAtching
with wI ldcards and Length constraints) [25], an on-line
algorithm able to locate patterns as soon as they appear
in the sequence, which we modified to account for our
representation for events and triggers.

The entire preprocessing algorithm is shown in Figure 2.

Figure 2: The preprocessor module.

Input: string E; int nmin, nmax

Output: alphabet a
1: nlist⇐ extract ngrams(E,nmin, nmax)
2: a⇐ ∅
3: while nlist 6= ∅ do
4: nlist⇐ sort(nlist)
5: ngram⇐ getfirst(nlist)
6: if get obtainable compression(ngram) < θcomp then
7: return a
8: else
9: a⇐ a

⋃
{ngram}

10: nlist⇐ nlist− {ngram}
11: E ⇐ delete(E,ngram)
12: nlist⇐ update(nlist, E,ngram)
13: end if
14: end while

Figure 3: Finding a better alphabet for event encoding.

B. Activity Discovery and Modeling

The use of SAIL transforms the trigger sequence into an
event sequence, ready to be scanned to find frequent and
relevant patterns, representing our high-level activities.
In order to keep this problem manageable, and to cope
with the complexity of exploring the search space, we
rely on information theory. We aim at compressing the
event sequence by lossy optimal coding so that events
with low information content will be discarded; in other
words, the most relevant patterns will be those that better
describe the whole sequence, according to the Minimum
Description Length (MDL) principle [26]; additionally, the
compression of the event sequence allows for a decrease
in the computational cost of later processing, thus coping
with the exponential complexity of frequent event pattern
mining.

Our algorithm for activity discovery is inspired to arith-
metic coding and entropy-based compression. In order
to find an optimal encoding for the event sequence E
produced by SAIL, we regard it as a string of symbols over
the alphabet of event IDs. Figure 3 shows the pseudocode
for our algorithm.

Borrowing the terminology from information theory, an
n-gram is a subsequence of n contiguous items from a given
string, so our aim is to translate the original sequence using
a new alphabet whose symbols are the most significant
n-grams in E. Line 1 of the algorithm extracts the list of
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n-grams of size between nmin and nmax together with their
frequencies.

The algorithm then proceeds iteratively (lines 3-14).
The n-grams are sorted according to the MDL principle:
basically, each of them is viewed as a potential new symbol
of the alphabet, and the length of string E is re-computed
accordingly, using a binary encoding; the n-grams are
sorted according to the degree of compression the can
produce, and the n-gram producing the best compression
is chosen (lines 4-5). In the following instructions, the fre-
quencies of the remaining n-grams are updated, avoiding
overlapping; the iteration stops when no n-gram is able
to produce a compression rate above the chosen θcomp

threshold. Convergence is ensured since addition of an n-
gram to the alphabet may only cause the frequencies of
the remaining n-grams (hence, their potential compression
rate) to decrease. The algorithm then returns the n-gram
alphabet resulting in better encoding.

Once a shorter version ER of the event sequence is
obtained thanks to the new encoding, the most frequent
patterns have to be discovered. Our approach is sim-
ilar to DVSM (D iscontinuous V aried-order Sequential
M iner) [27], which is an Apriori-based iterative algorithm,
relying on five main components: a candidate generation
function, a pruning function, a candidate set, and a fre-
quent pattern set. Initially, a candidate set is generated by
considering the pruned set of all pairs of consecutive events
in ER. The idea of the algorithm is that each pattern in the
candidate set is expanded at each iteration, according to
a generation function. New patterns are checked against a
pruning function, and only the ones surviving pruning are
added to the new candidate set. Only those patterns whose
expansions are all discarded (i.e. they are not “covered”
by their expansions) will be part of the frequent pattern
set. The algorithm stops when the candidate set is empty.
The candidate generation function expands a pattern by
adding the previous and the subsequent event in ER, in
order to create two new patterns. The pruning function
is based on the MDL principle, and discards those sets of
patterns unable to produce a sufficient compression rate
for E, according to a predefined threshold.

In order to compute the compression rate, DVSM it-
eratively creates a hierarchical structure: at each step,
variations of similar patterns in terms of the Levenshtein
distance [28] are grouped together into general patterns.
The compression rate of variations and general patterns
are checked against two threshold values, C and Cv re-
spectively:

1

1 + eAv
< Cv Av = DL(D|ai)∗Γv(ai)

DL(D|a)∗(1−Γg(a)) (1)

1

1 + eA
< C A = DL(D)

DL(a)+DL(D|a)∗(1−Γg(a)) (2)

where a is a general pattern, ai one of its variations, DL(·)
a measure of the description length and Γ is a continuity
measure of the pattern, as in [27].

The final frequent pattern set returned by DVSM con-
tains the most relevant patterns, which will be clustered
into meaningful classes to obtain the discovered activities,
by integrating temporal information with other features of
interest, such as composition similarity, with an approach
similar to [27]. This step is accomplished by k-medoids,
a variant of the well-known k-means clustering, where
representative points are bound to belong to the initial
dataset. k-medoids uses a dissimilarity measure computed
over all the possible pairs of points, giving it more robust-
ness than traditional k-means measures (see [29]). As with
k-means, the number of partitions is a parameter chosen
by the user.

The chosen dissimilarity measure reflects our definition
of pattern dissimilarity, according to the T-pattern model,
which considers three main features: causality, critical
intervals and missing components. Causality is expressed
by the order of the events in the pattern: earlier part of the
pattern can explain the presence of the later one; therefore,
the more two patterns differ for their event sequences, the
more it is probable they are instances of different activ-
ities. This function is implemented via the Levenshtein
distance. Critical intervals deal with the relations between
the distributions of components of a pattern; that is, this
measure consider the time distances separating consec-
utive components. The corresponding function measures
temporal information about the pattern element (time of
the day, duration, etc) and, clearly, the distance between
two different components. The last function computes
the so-called missing components, that is the differences
between the events present in two patterns; this function
finds the best pair of corresponding events between two
patterns, if any. In order to choose the best partitioning
of the original pattern set, the algorithm is run multiple
times with different initial random representative points.
In the end, we choose the partition that achieves the best
overall dissimilarity measure among the obtained clusters.
Such clusters constitute the so-called discovered activities,
i.e. activities emerging from collected data.

In the last phase, we encode the features of the obtained
clusters into models representing the discovered activities.
We adopt an approach based on boosting; we use hidden
Markov models (HMM) [30] to describe activities, and we
train an HMM for each activity we discovered, using the
correspondent cluster set as training set. In the recognizing
phase, a window of fixed size is slid over the input events,
and an activity label is assigned to the last event in the
window, according to the HMM that achieves the higher
posterior probability in correspondence to that event.

The software modules involved in activity discovery and
modeling are represented in Figure 4.

C. Recognizing Activities for Energy Saving

Once models for activities are available, our system may
process an incoming stream of sensor triggers, convert
them into event sequences, and use a sliding window on
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Table I: The datasets used for testing the system.

Dataset Features Activities Sensors

adlnormal 20 users (one at a
time), about 6,000
sensor readings, 100
activity instances

5 activities (Telephone use, Hand Washing,
Meal Preparation, Eating and Medication
Use, Cleaning)

motion sensors, analog sensors for monitor-
ing water and stove burner use, as well as
software sensors (VOIP), and contact switch
sensors on phone book, cooking pot and
medicine container

aruba 1 user, about 6,000
sensor readings (out
of 1,600,000 total),
120 activity instances
(6,471 total)

11 activities: Meal Preparation, Relax, Eat-
ing, Work, Sleeping, Wash Dishes, Bed to
Toilet, Enter Home, Leave Home, Housekeep-
ing, Resperate

binary sensors: motion sensors and door clos-
ure sensors (temperature sensors were also
present, but they were not used by the pro-
posed system)

kast 1 user, 2,120 sensor
readings and 245 activ-
ity instances spanning
28 days

7 activities (characterized by different time
duration and different frequency): Leave
house, Toileting, Showering, Sleeping, Pre-
paring breakfast, Preparing dinner and Pre-
paring a beverage

14 binary sensors deployed in the house,
placed on doors, cupboards, refrigerator and
a toilet flush.

Figure 4: Activity discovery and modelling.

them in order to recognize the current activity; the label
assigned to the last element of the window is that of the
activity corresponding to the HMM that maximizes the
posterior probability.

The proposed system uses the knowledge coming from
recognizing user activities to cleverly manage typical ap-
pliances of a house (e.g. household appliances, refriger-
ator, air conditioning). Typical energy consumption can
be divided into two principal components: the so-called
baseline consumption, composed by the normal schedule
of a typical home, and an activity-driven consumption,
that is the energy spent to accomplish a specific task.
The baseline consumption can be predicted by a typical
schedule of the principal devices in a house, according to
a prefixed user preference model. The activity-driven one
is not predictable due to the extremely variable habits
of people. Therefore, even if an accurate planning of the
use was organized, it would be impossible to be sure that
there will be no peaks in the total energy demand, due
to the activity-driven consumption. Our system estimates
the current energy usage and its evolution in the near
future and checks that it is compatible with the activity
the user is performing. When the total estimated energy
use exceeds the prefixed threshold, the system temporarily
turns off the minimum necessary amount of devices to
satisfy the energy use constraint. Once the activity is over,
the system attempts to turn back on a device; if that is
not possible due to on-going excessive energy demand, the
system checks for another device to turn off in order to

trade for the reactivation of the old one. The time during
when a device is off is thus minimized, causing as little
impact on user comfort as possible.

IV. Experimental Evaluation

In order to assess the performance of our system, we
devised two sets of experiments specifically aimed at its
main components and functionalities, i.e. activity discov-
ery and recognition, and energy saving. We considered
two reference scenarios; in the former case, we analyzed
events generated by sensors deployed in a smart home
environment, where each sequence of triggers was labeled
according to the activities performed by the user, whereas
for the latter we assumed that the system was able to
control a predefined set of appliances, and we simulated
an energy consumption scenario, according to a realistic
energy use profile.

A. Assessment of Activity Discovery and Recognition

Three public datasets were used to measure the accuracy
of the system: adlnormal [31], and aruba [32] (both from
the CASAS project), and the one we named kast [10] from
the Context Awareness in Residence for Elders (CARE)
project. All datasets are annotated, i.e. their sensor trig-
ger sequences are labeled with the activity the user was
performing in correspondence to that portion of data: the
so-called actual activities; however, the three datasets are
very different with respect to the set of employed sensors
and to the way the data was collected; their descriptions
are reported in Table I.

In order to assess the ability of the system to cor-
rectly identify patterns of events, we checked its perform-
ance against the 3 datasets, with varying compression
thresholds for the DVSM module (i.e. C influencing gen-
eral patterns, and Cv for variations, see Eq. (1) and (2)
on p. 5). Figure 5 shows that the algorithm performs
similarly in all cases, but the resulting number of pat-
terns is very threshold-dependent. Higher values for both
thresholds increase the number of discovered patterns, up
to a saturation point; the best performance is obtained
with adlnormal, arguably due to the fact that test users
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Figure 5: No. of extracted patterns as a function of the
compression threshold C, parameterized on Cv.

were instructed to simulate daily actions by following a
preset script. A bad choice of thresholds may result in
failing to discover any patterns at all, as is the case with
Cv = 0.38 for aruba. The results show that appropriate
values of C and Cv allow DVSM to prune most of the
less meaningful patterns, also in combination with the
preprocessing and encoding steps, that purge the input
trigger sequence from non-significant data.

We also tested the performance of our k-medoids al-
gorithm in producing meaningful classes of activities, in
terms of the goodness of its clustering. To this end, we
used the same metrics as in [27], namely:

• q1: the ability to identify activities, computed as the
ratio between the number of actual labels assigned to
the discovered cluster representatives, and the total
number of actual activities;

• q2: the ability to assign correct labels to the extracted
patterns with respect to actual activities, computed
as the fraction of patterns actually belonging to the
activity assigned to the cluster medoid, per each
cluster.

The obtained results are shown in Figures 6 and 7 for
different values of C, Cv; in order to assess the influence
of the chosen number of clusters (k) on our metrics, we
initially set this parameters equal to the number of actual
activities for each dataset, and then increased it. The
results show that q1 is more sensitive to k than to the
thresholds C and Cv, and higher values of k cause an
increase in q1, as is particularly evident in adlnormal.
The worst performance is obtained on aruba, due to
the presence of many unlabelled triggers, reflecting the
fact that actual activities poorly correspond to the user’s
normal life; this is also highlighted by the results for q2

on the same dataset, which show that when the cluster
does represent an actual activity, its patterns are labeled
in the correct way. For the other datasets, q2 confirms the
results from q1, and shows good performance on accuracy
in classification. The number of patterns does not influence
this metric as much as it does for q1, suggesting that
increasing the number of clusters improves the “coverage”
of our approach, but not the quality of produced clusters.

Finally, we assessed the accuracy of the HMM-based
activity recognizer, with respect to discovered and actual
activities. We aimed at computing the best values for
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(a) adlnormal : 5 clusters
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(b) adlnormal : 7 clusters
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(c) aruba: 11 clusters
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(d) aruba: 22 clusters
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(e) kast : 7 clusters
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(f) kast : 11 clusters

Figure 6: Metric q1 for the 3 different dataset as a function
of the compression threshold C e Cv and number of
clusters.

setting the HMM parameters, i.e. the number of hidden
states (N), and the size of the sliding window (w); to
this end, we used a grid search, with N ∈ [3; 15] and
w ∈ [3; 15], and computed the accuracy of the system at
each point in the grid. We conducted two separate tests,
aimed at the recognition accuracy of actual and discovered
activities, respectively. Results for the best configuration
of parameters with respect to actual activities are shown
in Table II, where the corresponding value for discovered
activities is also shown. As expected, better results are
achieved for actual activities in adlnormal, due to better
correspondence between actual and discovered activities.
The achieved accuracy is very high, confirming the capa-
city of our method of building reliable models. The results
obtained for the aruba and kast show that our recognition
system is able to create models of discovered activities with
no assumption regarding the particular scenario. On the
other hand, results on actual activities in these dataset
suffer from the poor correspondence between discovered
activities and actual activities. The setting for parameters
N and w is also dependent on the specific dataset; such
values need to be carefully chosen with respect the data
at hand, as they basically represent how different activity
definitions are mirrored into the corresponding datasets.
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(a) adlnormal : 5 clusters
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(b) adlnormal : 7 clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
.1

 0
.1

3
 0

.1
5

 0
.1

7

 0
.2

 0
.2

2

 0
.2

5

 0
.2

8
 0

.3

 0
.3

2

C

(c) aruba: 11 clusters
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(d) aruba: 22 clusters
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(e) kast : 7 clusters
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(f) kast : 11 clusters

Figure 7: Metric q2 for the 3 different dataset as a function
of the compression threshold C e Cv and the number of
clusters.

B. Energy saving

In this section we prove the efficiency of our system
in terms of energy saving, by showing its usefulness to
prevent peaks of energy consumption. Our experiments
were done on simulated data; an interesting study about
the characteristics of this typical home appliances can be
found in [33]. In our test scenario, we estimate the load
curve from data based on average consumption of the most
common appliances and on the statistics of their daily use
(hour of activation, duration of the use, etc). For example,
we are interested in the typical use of an appliance, that
is the moment of the day when it is usually turned on
and how long its typical utilization cycle takes; accord-
ing to this data, a typical load curve is generated. The
energy consumption deriving from the activity sequence
performed by the user can then be summed up to the
baseline load.

Table II: Best results in recognition accuracy.

C Cv k N w Actual Discovered

adlnormal 0.17 0.38 7 4 12 0.95 0.98
aruba 0.30 0.42 11 6 3 0.66 0.92
kast 0.13 0.40 11 6 3 0.55 0.97

Table III: Appliances used for each activity.

Activity Appliances

Cooking Hobs, oven
Cleaning Dishwasher
Eating Coffeemaker
Phone call Lamp

In our experiments, we assume that an average energy
consumer is present at home and makes use of some known
appliances to accomplish a set of predefined activities,
which we extrapolated from the adlnormal dataset. Our
system, based on the activity recognition results, is able
to infer the current user activity, guiding the appliance
scheduler so as to prevent peaks in energy demand. In
this context, a peak is caused by instantaneous energy con-
sumption exceeding a prefixed threshold. The correspond-
ence between a single appliance or set of appliances and
each activity is shown in Table III; the other appliances
that we assume in use, even though not directly influenced
by user activities, are: Electric Heating and Circulation
pump, Washing Machine, Tumble dryer, Refrigerator and
Freezer. In our experiments, the threshold to identify peaks
was set at 3kW, and the proposed approach was able to
reduce the number of the peaks of about 30%. For the
final user this arguably results into a considerable saving
in the energy bill and a more efficient curve of energy
demand. Moreover, this result validates our approach and
demonstrates that activity recognition can be very useful
for energy saving. Figure 8 shows a slice of the original
energy demand curve, and the one obtained when our
system is in use. The effect of our system, in terms of
avoiding peaks in energy demand, is evident in the new
schedule of the baseline consumption. The rightmost part
of the picture shows a more efficient distribution of energy
demand as compared to the original one; this is obtained
by postponing the use of appliances not involved in the
activity the user is performing at a given moment.

V. Conclusion

This paper presented an information theory-based ap-
proach to recognizing daily life activities performed by
users in a smart home, aimed at minimizing energy con-
sumption by guaranteeing that peak demands do not
exceed a given threshold. Our system is intended to be
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Figure 8: Comparison of original energy demand, and the
one obtained after applying our approach.
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completely automated in order to improve acceptance by
the potential users. This poses a challenge as it is typic-
ally very difficult to discover high-level activities starting
from raw sensory data, unless a very application-specific
approach is used. We provided experimental results based
on real data from public datasets, showing that we were
able to obtain satisfying precision in modeling predefined
activities via an unsupervised approach, and significant
accuracy recognizing on-going activities. We finally showed
how those results can be used to improve energy efficiency
in a simulated smart home scenario, based on reliable
energy consumption models.
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“Accurate activity recognition in a home setting,” in Proceedings
of the 10th international conference on Ubiquitous computing,
ser. UbiComp ’08. New York, NY, USA: ACM, 2008, pp. 1–9.

[11] S. P. Rao and D. J. Cook, “Predicting inhabitant action using
action and task models with application to smart homes,” In-
ternational Journal on Artificial Intelligence Tools, vol. 13, pp.
81–100, 2004.

[12] D. Hao Hu, S. J. Pan, V. W. Zheng, N. N. Liu, and Q. Yang,
“Real world activity recognition with multiple goals,” in Pro-
ceedings of the 10th international conference on Ubiquitous
computing, ser. UbiComp ’08. New York, NY, USA: ACM,
2008, pp. 30–39.

[13] W. Pentney, A.-M. Popescu, S. Wang, H. Kautz, and M. Phili-
pose, “Sensor-based understanding of daily life via large-scale
use of common sense,” in Proceedings of the 21st national
conference on Artificial intelligence - Volume 1, ser. AAAI’06.
AAAI Press, 2006, pp. 906–912.

[14] M. S. Magnusson, “Discovering hidden time patterns in be-
havior: T-patterns and their detection.” Behav Res Methods
Instrum Comput, vol. 32, no. 1, pp. 93–110, Feb. 2000.

[15] P. Rashidi and D. Cook, “Keeping the intelligent environment
resident in the loop,” in Intelligent Environments, 2008 IET 4th
International Conference on, july 2008, pp. 1 –9.
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