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Abstract

The peculiar features of Wireless Sensor Networks (WSNs) suggest to exploit the distributed computing paradigm
to perform complex tasks in a collaborative manner, in order to overcome the constraints related to sensor nodes
limited capabilities. In this context, we describe a lightweight middleware platform to support the development of
distributed applications on WSNs. The platform provides just a minimal general-purpose software layer, while the
application components, including communication and processing algorithms, as well as the exchanged data, are
described symbolically, with neither preformed syntax nor strict distinction between data and code. Our approach
allows for interactive development of applications on each node, and requires no cross-compilation, a common
practice that makes the development of WSN applications rigid and time-consuming. This way, tasks and behavior
of each node can be modified at runtime, even after the network deployment, by sending the node executable code.

1 Introduction

Wireless Sensor Networks (WSNs) are composed of tiny embedded devices connected in a network that are able
to collect some useful measurements from the physical environment. The existing works in literature confirm the
enormous attention to this technology, which lends itself to be useful in various application scenarios [1, 2]. A dis-
tributed application running on a WSN consists of a set of cooperating, interacting nodes. Each node performs small
computations and exchanges information with the others, contributing to the accomplishment of the application’s
goals [3, 4]. Due to the absence of appropriate high-level abstractions to simplify programming WSNs, application
development is still challenging. The middleware for sensor networks is responsible of supporting programmers
during the application development phases, by reducing the complexity related to the underlying hardware level
knowledge and providing adequate system abstractions [5]. In this work we introduce a middleware to facilitate the
development of distributed applications for WSNs by combining the practical simplicity of programming with a high
degree of versatility. We only provide a minimal software layer allowing for the construction of all the application
requirements –e.g. in terms of communication protocols– above it. Moreover, using a symbolic description, code and
data are also treated equally, and the application code results readable and understandable. In this preliminary work,
we introduce a novel middleware approach in which the nodes are able to directly exchange executable code. Indeed,
this mechanism is suitable for implementing adaptive real-time behavior of remote nodes, since the possibility of
exchanging executable code does not force nodes to have a default set of predefined abilities. The network may
instead acquire new capabilities at runtime. A relatively similar strategy was described for Active Networks program-
ming [6], but it is unsuitable for resource constrained devices as it requires a thick separation layer between hardware
and applications. In Section 2 we describe in detail our current work, together with the development methodology
and the primitives for code exchange and execution. Section 3 discusses a sample distributed application relying on
our middleware, showing how, through the exchange of executable code, a synchronization mechanism between the
nodes can be triggered and accomplished. Finally, Section 4 reports our conclusions.
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2 The Adopted Approach

In this section, we describe in detail the key requirements guiding the implementation of our middleware layer and
the solutions adopted to satisfy them. The middleware platform we are developing shows characteristics that, despite
its simplicity, make it different from other middleware implementations existing in literature [7]. The keystone of our
approach consists in the use of Forth as a software development methodology [8]. Forth is a language that combines
the advantages of several languages with pure assembly [9]. By using Forth, it is not necessary to define a rigid
layered architecture, but a cross-layer design approach is simply realized without any strict separation between high
and low levels, and by creating just a minimal software layer between the underlying hardware and the application
level. Forth is a highly scalable language because adding new words to the language is simple, which makes it easy
to extend the middleware platform. The Forth approach allows maintaining a high degree of expressivity, since no
syntax elements other than a sequence of word names are required to describe a computation. Therefore, a Forth
program can be read similarly to a natural language description of the task it performs. Forth can be thus considered
a “meta-application language”, lending itself well to the creation of problem-oriented languages.

Conventionally, applications for WSNs are based on traditional operating systems [10] which are usually written
in compiled languages and thus any code change involves recompilation before code execution. Using a Forth
environment, on the contrary, subsequent code changes can be made in a simple and interactive manner, with
considerable time saving. Consequently, the programmer may spend less time in the application development
because the feedback is instantaneous and the testing phase takes place simultaneously with code drafting.

The environment we adopted for our middleware is the AmForth interpreter [11]. AmForth is mostly written in
Forth, with only a few words written in assembly, and permits to program AVR microcontroller based devices in an
interactive way through a serial terminal. AmForth inherits from Forth the programming model based on indirect
threading and uses an inner interpreter for processing the code. This interpreter performs an infinite loop consisting
in checking for interrupts, reading the instruction pointer for the next instruction to be executed, executing it and
jumping back to check for interrupts. The interactive environment is instead provided by the text interpreter, a line
based command interpreter. Each word composing a string typed at the terminal is stored in a system buffer where
each word is processed. If the word is found in the dictionary, it is executed, otherwise the system tries to convert it
to a number. To implement our middleware we ported AmForth to the IrisMote platform, defining words to control
the onboard radio and sensors.

2.1 Primitives for Code Exchange and Execution

In a distributed scenario, an adequate communication paradigm reveals itself of fundamental importance, since
it represents the mechanism regulating the interaction among the individual components of the network. Our
system is based on the interrupt events, generated by hardware or software events. Interrupts are managed by the
inner interpreter that is responsible of the interrupt handling at a lower level and, then, of switching to the Forth
word dealing with the interrupt. This mechanism ensures that all the interrupts are handled immediately when an
event occurs, before resuming the execution of the word previously running. Based on this operating principle, the
middleware provides the abstraction mechanisms to handle transmission of code among nodes, and the possibility to
inject code through the shell. We implemented this abstraction mechanism in Forth, by defining the pair of primitives
tell:code :tell and received, as shown in Figure 1.

• tell:code :tell literally “tell a node to do something”. This word creates a packet with the specified
destination address and containing the executable code as payload. In detail, the word tell: parses what
follows until the last :tell marker is encountered, and uses send to send a frame via radio. Due to the symbolic
nature of the language, data and code are treated equally. It is worth noticing that this primitive allows sending
the code to the nodes listening to the channel, by using the word bcst representing the broadcast MAC address.
Therefore, more than two entities can be involved simultaneously in the communication process. Furthermore,
this primitive lends itself well to a “recursive” use, e.g. “to tell a node to tell another node to do something”.
Correct transmission is signaled by an interrupt. Dynamically computed values may be inserted in the packet
by using syntactic placeholders, such as ⇠ for the single cell Forth value, that are substituted at runtime
with the content of the top of the stack using a hexadecimal representation. Inside a word definition, the
couple [tell:]code [:tell] must be used. This slightly complicates the syntax with respect to a single word
couple having both interpreted and compiled behaviors, but avoids insidious bugs that may arise with Forth
state-smart word implementations, traditionally adopted in such cases [12].

• received Once an interrupt indicating the frame reception is generated, the frame content is injected into the
system input buffer where it is processed by interpret.

2



DRAFT
Figure 1: To tell the node with ID 02 to turn its green LED on the sender uses the syntactic construct tell:code :tell.
This creates a default packet the destination address and the code to be executed are then copied to. Internally, this
primitive executes send to transmit the packet over the radio channel. Correct transmission is then indicated by an
interrupt. On the receiver side, packet detection is signaled by an interrupt and handled by the primitive received

that injects the packet content into the system input buffer where it is processed by interpret.

Figure 2 shows an example of a code and data exchange between two nodes using these primitives. In this example
the node with ID 01 tells the node with ID 02 to perform the sum between 2 and 3, and then to reply with the value
on top of the stack. Even though the reply message consists only in a literal value, it is interpretable Forth code and it
is simply executed by node 01 leaving 5 on top of its stack.

3 Case Study: Time Synchronization

In order to explain how the code migration mechanism can expand the middleware functionalities, we describe
a time synchronization protocol implementation. This is a basic service for a middleware as several applications
running on sensor nodes require node clocks being synchronized to function properly. This is the case of link layer
protocols [13] as well as application layer ones [14, 15]. Even when nodes are turned on at the same time, their
clocks would drift differently for several reasons, such as local temperature changes and tolerances. Hence, proper
synchronization is required to eliminate the inconsistencies existing among the clocks. In our case study, we adopt a
synchronization protocol requiring a hierarchical topology, known as Timing-sync Protocol for Sensor Networks
(TPSN) [16]. This sample application relying on our middleware platform shows how, through the exchange of
executable code, a synchronization process can be triggered and accomplished. According to the TPSN protocol, the
synchronization process takes place in two phases. The first phase creates a hierarchical structure in the network,
by assigning a level to each node. Just one node, the root, has level 0, while its neighbors take level 1. Neighbors
of level 1 nodes take level 2, and so on. Here we show our implementation of the second phase that performs
synchronization. The root node sends a time sync packet to all of its neighbors. Each neighbor waits a random time
and sends a synchronization pulse packet to the root containing its level and its local time of the packet reception.
The root replies with an acknowledgement packet containing its level, the time received from the neighbor, its local
time of arrival and its time of sending. The node thus estimates the drift and the propagation delay and it adjusts its
clock according to root’s clock. This process propagates through the network from nodes of level 1 to nodes of level
2, and so forth. For simplicity, we assume that all the nodes belong to level 1. To implement this protocol, we have to
extend the nodes’ set of capabilities. In fact, it is necessary to tell the node connected to the shell to send its neighbors
pieces of useful code to be stored as new word definitions in their dictionaries. In our case, we interactively send the
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DRAFTFigure 2: An example of code and data exchange between two nodes. The node with ID 01 tells the node with ID 02
to perform the sum between 2 and 3, and to reply with the value on top of the stack. Node 02 receives the code and
performs the sum. The result is now on the top of Node 02 stack. Then Node 02 executes tell: ⇠ :tell, replying
with a packet containing the value taken from the top of the stack. Node 01 receives the reply message and executes
it. Eventually Node 01 will have 5 on top of its stack.

description of the time sync, sync pulse and acknowledgement packets as defined words, together with the code to
adjust the clock. Then, we trigger a synchronization process, by sending the time sync packet, as shown in Figure3

Listing 1: Code to define the synchronization primitives according to the TPSN protocol.
b c s t t e l l : : c l k s y n c rt ime @ 2 d i f f 2dup pdly r o t r o t + d r i f t + t i c k ! ; : t e l l
b c s t t e l l : : ack t i c k @ rtime @ lev @ reply [ t e l l : ] ˜ ˜ ˜ c l k s y n c [ : t e l l ] ; : t e l l
b c s t t e l l : : sync pulse rt ime @ lev @ reply [ t e l l : ] ˜ ˜ ack [ : t e l l ] ; : t e l l
b c s t t e l l : : t ime sync 60000 random ms sync pulse ; : t e l l

In order to explain better the synchronization code, we describe the meaning of some useful words and variables.
Each word is listed together with the values it needs to have on the stack before being executed and the values left on
the stack afterwards, separated by dashes. The rightmost item on either side is the item on top of the stack.

• drift ( T2 � T1 T4 � T3 -- drift): dri f t = (T2�T1)�(T4�T3)
2 ;

• pdly ( T2 � T1 T4 � T3 -- propagation delay ): propagation delay = (T2�T1)+(T4�T3)
2 ;

• random ( u1 -- u2): Produce a random value between 0 and u1 onto the stack;

• reply ( -- addr): Leave on the stack the sender’s address of the last received packet;

• 2diff ( x1 x2 x3 x4 -- x2 � x1 x4 � x3 ): Leave on the stack the difference between the first two values on the top
of stack and the difference of the last two values;

• ms (u1 -- ): Wait for the time indicated as top of the stack;

• rtime: Variable representing the time of arrival of a packet;

• lev: Variable representing the node’s level in the topological hierarchy;

• tick: Variable representing the node’s local time.

It is interesting to note that, due to the adopted methodology and the tools used, there is a full correspondence
between the code and the high-level description of the protocol, as shown in Figure 3. The symbolic description
allows the code to be self-explanatory, although it lies just above the hardware layer.
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Figure 3: To make the nodes synchronized, we extend the nodes’ dictionary by telling the node connected to the
shell to send its neighbors new pieces of code to be stored in their dictionaries. Then, the synchronization phase is
triggered by telling the node connected to the shell to send its neighbors a time sync packet. T1, T2, T3 and T4. T2, T3
represent the time measured by the local clock of root, while T1, T4 represent the time measured by the local clock of
the other node. The sync pulse packet contains the node’s level and the time of arrival T1 while the acknowledgement
packet contains the root’s level and the time T1, T2 and T3. Once the acknowledgement packet has been received, the
node has the same notion of time as root.

4 Conclusions

In this preliminary work, we presented a lightweight middleware platform to support the development of distributed
applications on WSNs. Our middleware allows for interactive and incremental development of applications, even on
deployed nodes that are only reachable through wireless links, and requires no cross-compilation, with considerable
time saving. Indeed, our middleware provides a mechanism for exchanging directly data among nodes, using just
a few simple primitives. As a result, tasks and behaviors of each node can be modified at runtime, without any
predefined and fixed set of capabilities, and thus, increasing the adaptivity of the entire network. Typical WSN
middleware services, such as authentication or data queries, could also be built exploiting this set of primitives.
Future work will focus on extension and refinement of the middleware to implement basic and advanced services in
order to support a broad range of distributed applications.
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