

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

Secure random number generation in wireless sensor
networks

G. Lo Re, F. Milazzo, M. Ortolani

In Journal of Concurrency and Computation: Practice and Experience

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: Wiley

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3311

SPECIAL ISSUE PAPER

Secure random number generation in wireless sensor networks

Giuseppe Lo Re, Fabrizio Milazzo and Marco Ortolani*,†

DICGIM – Università degli Studi di Palermo, Italy

SUMMARY

The increasing adoption of wireless sensor networks as a flexible and inexpensive tool for the most diverse
applications, ranging from environmental monitoring to home automation, has raised more and more atten-
tion to the issues related to the design of specifically customized security mechanisms. The scarcity of
computational, storage, and bandwidth resources cannot definitely be disregarded in such context, and this
makes the implementation of security algorithms particularly challenging. This paper proposes a security
framework for the generation of true random numbers, which are paramount as the core building block
for many security algorithms; the intrinsic nature of wireless sensor nodes and their capability of reliably
providing measurements of environmental quantities make them natural candidates as true random num-
ber generators. In order to provide robustness to common attacks, we additionally devised a protocol aimed
at obscuring the actual source of data, by making nodes cooperate with their neighbors. Furthermore, we
describe an enhanced version of our framework consisting in an optimization for use in the context of
resource-constrained systems. Copyright © 2014 John Wiley & Sons, Ltd.

Received 15 June 2012; Revised 8 July 2013; Accepted 13 May 2014

KEY WORDS: true random numbers generator; network Security; wireless sensor networks

1. INTRODUCTION

In the last few years, wireless sensor networks (WSNs) have become a widely used technology
in several ICT application fields [1, 2]. As is well known, those networks are made up of a large
number of small nodes that sense the environment and typically report their measurements to a
base station; because of the need for protection against unauthorized access, trustworthiness of
transmitted messages, and data integrity in general, security issues are of paramount importance and
cannot be neglected when developing WSNs applications.

Commonly implemented security mechanisms rely on the availability of random numbers in order
to perform their operations, as in the case of key exchange algorithms [3], which are based on
randomly generated keys, or of mutual authentication algorithms [4, 5], which use the so-called
random ‘nonce’ to ensure the other part is trusted. Random number generators therefore play a
crucial role when considering security in ICT systems, and for WSNs in particular.

The main challenge when using random number sequences is the characterization of their statis-
tical properties; typical requirement for such sequences is that they must not present any order nor
any coherence; that is, no regularity patterns should be discovered in a sequence.

Random numbers are typically generated either via computational or physical approach. The
computational approach relies on the use of formulae where a sequence of random numbers is gener-
ated as a function of a secret key and some initialization, the so-called random seeds; such generators
are called pseudo-random number generators (PRNGs), because randomness is only apparent, as

*Correspondence to: Marco Ortolani, DICGIM – University of Palermo, Viale delle Scienze, ed. 6, 90128 Palermo, Italy.
†E-mail: marco.ortolani@unipa.it

Copyright © 2014 John Wiley & Sons, Ltd.

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

the produced sequences show some periodicity and are actually reproducible. The attacker could in
principle collect generated random numbers until the sequence restarts and then deterministically
predict the rest of the sequence; a common used countermeasure consists in periodically changing
the key after a certain time interval. PRNGs are widely used because they ensure good statistical
properties and high bit rates; however, their viability completely depends on the actual randomness
of the initialization seeds.

As the name suggests, the physical approach relies on measurements related to physical phenom-
ena; in this case, random numbers are generated as a function of a set of samples coming from
sensory readings, and the generator is named a true random number generator (TRNG), because
the sequence is actually non-deterministic and unpredictable. TRNGs do not need seeds nor secret
keys and do not exhibit periodicity because of the independence of the current random number
from its past values. TRNGs usually require post-processing operations because they often do not
ensure sufficiently good statistical properties, so they are intrinsically characterized by lower bit
rates with respect to the PRNGs counterpart. TRNGs are thus often used as random seed generators
for PRNGs because they are too slow for standalone usage in applications requiring high-bit-rate
random sequences.

However, secure applications in the specific context of WSNs seldom require high-bit-rate ran-
dom sequences; we will thus focus on TRNGs as the basic building block for a security infrastructure
for WSNs.

Moreover, sensor nodes are obvious candidates as data providers for TRNGs, because their natural
purpose is to collect great amount of data for environmental monitoring. As reported in the recent
literature, many of the typically sensed quantities provide the necessary characteristics that a TRNG
should possess, so in principle, any sensor node could feed its own measurements to an onboard
TRNG module; however, security issues make such choice impractical because the sensor board
could be hacked by an attacker. A more suitable alternative is to rely on data from multiple sources,
such as those originating from neighboring sensor nodes.

The contribution of this paper is the proposal of a TRNG module combined with a lightweight
protocol for gathering multiple readings from nearby sensor nodes. Collected data are combined at
the requester in order to generate the random number. As our considerations and experimental results
will show, our solution is robust to security threats, because an attacker would have to tamper with
multiple nodes before gaining complete control of the random number generation process, but at the
same time, it does not burden nodes with excessive computational or transmission requirements.

The remainder of the paper is structured as follows. Section 2 surveys the TRNGs presented
in literature and their main features. Our proposals for customizing TRNGs for use in resource-
constrained devices are presented in Section 3, with additional details and a formal description of
the communication protocols in Appendix A. A theoretical and experimental assessment of the
proposed infrastructure is contained in Section 4, while Section 5 provides a comparison between
our approach and other methods in the literature. Finally, Section 6 presents our conclusions.

2. RELATED WORK

The construction of TRNGs has been widely discussed in literature, but most proposals have a
narrow focus on the description of the physical process to be used to generate random numbers. For
instance, the generator proposed by [6] used the small variations in the response time of the readings
of a hard disk sector as the measurements source; in particular, the authors observed that the rotation
speed of a disk drive is not predictable and exhibits random fluctuations. In [7], the thermal noise
present in resistors was proposed as source of randomness; the mean voltage sensed by the resistors
is subtracted, and the noise component is then isolated. The work proposed by [8] built a TRNG by
using the intrinsic features of quantum mechanics; in particular, the authors generate random bits
by using photons emitted by light rays; the arrival time of the photon is used to evaluate which path
was followed, thus producing a random bit. Many other works in literature show that, in general,
physical quantities are actually suitable to build TRNGs [9, 10].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

True random number generators specifically developed for WSNs use the sensory component,
the transceiver, or the internal clock as the main source of randomness. In [11], a function of the
transmission power, namely, the received strength signal indicator (RSSI), is used, while the authors
of [12] exploit the noise contained in environmental readings. Another recent work [13] proposed
a random number generator using the unpredictability of errors on transmission bits to generate
numbers. Authors of [14] proposed an RNG that combines a clock and the CRC (Cyclic Redundancy
Check) field contained in the transmission packets.

As regards security, research on TRNGs has recently been shifting its focus toward the design of
mechanisms to ensure that random numbers cannot be manipulated by an external attacker. In fact,
regardless of the type of physical quantity chosen as randomness source, the generation process itself
must be secure in its own implementation. Although all previous approaches showed that random
numbers appear to be unpredictable for external attackers, they would still be able to violate the
generator by physically breaching into the measurement system.

Physical attacks are usually performed to gain control of a sensor node. The work [15] shows
that the so-called node capture, which effectively gives to the attacker full control of the sensor
node, is not very easy to be performed; however, the same work claims that violating single compo-
nents, and in particular the sensory one, is quite trivial. The decentralization of the measurements
generation task has been proposed as a defense strategy in recent literature. Consider as example
the work [16] where a P2P system is used to generate random numbers. Every peer p is allowed
to generate a random number xp; the network peers will agree on a true random number com-
puted as ˚pxp . In this case, it is proved that if at least 2m=3 peers are not corrupted, then the
random number is correctly generated. The work [17] built up a TRNG using the phase jitter of
the signal produced by a network of ring oscillators. This method too is tolerant to invasive and
non-invasive attacks using some kind of redundancy in the transmission of the random bit strings
among oscillators.

Although decentralization of the sensing task is helpful to build a secure TRNG, it is still sub-
jected to security attacks because of the need for transmitting data. There is strong evidence in
literature [18–21] that physical attacks and in particular ‘sensor tampering’ are not very easy to
address; at the same time, the Medium Access Control (MAC) and network layers seem to be easier
to protect using straightforward techniques such as traffic padding and symmetric encryption. The
key property of using decentralization is that security issues are shifted from physical (challenging
to secure) to upper layers (easier to secure).

3. A TRNG FOR WIRELESS SENSOR NODES

Nodes of a WSN need to rely on random numbers for all kinds of security purposes. Such nodes are
typically severely constrained as regards their available resources, both in terms of storage capacity
and of energy supply; however, they are naturally able to sense common physical quantities, such
as ambient temperature or humidity and battery voltage, which makes them suitable as true random
numbers generators without the addition of expensive dedicated hardware.

The operation of a TRNG may be described in mathematical terms as follows:

rt D f .mt!w ; mt!wC1; :::; mt /; (1)

where mt is the reading related to the considered physical phenomenon at time t , w represents the
size of the considered time window, and rt represents the output of the RNG.

A basic version of a random number generator for WSNs was proposed in [12] and consisted
of a module generating random sequences using the Analog-to-Digital-Converter (ADC) of the
node’s sensor board. The ADC of a sensor node is used to sense the environment, and its readings
are sent to a 64-bit left-shift circular buffer block (BB); such readings are then encrypted by the
CMAC algorithm in order to provide confusion and diffusion; finally, its 64-bit result is XOR-ed
with a 64-bit register block (RB) to produce the random number as the output of the entire module.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

The RB also acts as a key for the CMAC, so the same set of readings will in general produce different
outputs. The computation of the output random number RN may thus be formulated as

RN D CMAC.BB;RB/˚RB; (2)

where BB is the content of the BB and RB is the content of the RB.
We note, however, that this generation process may be prone to attacks: measurements could be

fraudulently obtained by physically violating the ADC block of the wireless sensor node, so it would
be sufficient for an attacker to capture the RNG output for time t (i.e., the secret key of the CMAC
block at time t C 1) to infer any subsequently generated random number.

In order to improve the original TRNG module, our recent proposal [22] suggested that the task
of providing source data for the random number generator was shared among multiple nodes, so as
to hide the actual source of data from potential attackers. The random number generation process
was made to depend on multiple sources via an authenticated readings collection (ARC) protocol,
so that the attacker would be forced to tamper with a higher number of sensor boards before being
able to gather a sufficient amount of information and break the TRNG.

We now discuss a further extension that provides an optimization for resource-constrained
devices, such as sensor nodes. Similarly to the original proposal, we rely on an ARC protocol ini-
tiated by a requester, but we focus on reducing the required bandwidth and the overall message
exchange in order to meet the tight resource constraints.

Because the RNG data source is scattered among many of the requester’s neighboring nodes,
for the sake of clarity, we will refer to the original proposal as ScatterRNG, whereas our current
improvement will be called ScatterRNGlight; the core of both algorithms is the ARC protocol coupled
to the TRNG module.

In the following, we describe ScatterRNG, with special focus on its ARC protocol, and the novel
addition obtained by combining an enhanced version of the original TRNG module with an ARClight
protocol.

3.1. ScatterRNG

Our original proposal for a secure TRNG consisted in the addition of an ARC protocol to the basic
core TRNG module, as depicted in Figure 1. The ARC protocol is in its turn composed of two
main phases: request dissemination and readings collection. The aim of the dissemination phase is
to notify the request for fresh ADC readings to the nodes within a k-neighborhood of the requester;
such k-neighborhood is built via a greedy tree construction algorithm. During the collection phase,
each of the neighbors will send a set of readings to its parent, which will select one of such sets
out of all the ones it received from its children (including the one generated by itself) and repeat

Figure 1. Block diagram for ScatterRNG.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

Figure 2. Fields of the authenticated readings collection message.

the same operation. The process terminates when the selected readings are delivered back to the
requester, so that the data can be used as input to its TRNG module.

The format for messages of both phases of the ARC protocol is shown in Figure 2, where the
fields have the following meanings:

! type: can take either of two different values: request or reply;
! requester: the identifier of the node initiating the dissemination phase;
! sender: the identifier of node actually sending the current message;
! payload: contains ADC readings when type is set to reply; it is unused for request messages;
! TTL: the number of remaining hops before reaching the leaf nodes in the neighborhood;
! subtree cardinality: in reply messages, it indicates the number of nodes belonging to the

tree rooted at the sender; it is unused for request messages;
! nonce: used to ensure authentication;
! hashcode: used to ensure integrity; computed as the 8 least significant bytes of the SHA-1

digest of previous fields.

In order to provide confidentiality for the ARC messages, we choose here to encrypt them accord-
ing to CBC mode of operation of the DES using a 64-bit shared symmetric key, externally set by a
pairwise key management scheme, as discussed in Section 4.3. The protocol also provides authenti-
cation and integrity by the combined use of the hashcode and nonce; in particular, the nonce value
is increased by 1 for reply messages, following the typical challenge-response pattern.

Finally, to ensure timely termination of the protocol, any node (including the requester) relies on
a timer representing the maximum allowed round-trip time for a request, computed as

T D 2 " TTL " dmax; (3)

where dmax is a predefined time constant indicating the maximum allowable single-hop delay.

3.1.1. Request dissemination. This phase is basically a flooding algorithm with limited scope,
with the additional capability of constructing a tree over the k-neighborhood of the requester. The
requester encrypts the initial message with the shared keys and sends it to its direct neighbors. Each
receiver node decrypts the message and checks its validity against the hashcode, simply discard-
ing it if not genuine. Upon passing the validity checks, the receiver stores the current values of the
requester, sender, and nonce fields; the sender identifier will be assumed as the parent of the tree
built for the requester node, while the requester identifier will allow to prevent loops by rejecting
any subsequent request message with the same requester. The receiver will forward a new encrypted
ARC request message to all of its neighbors but the sender, only if TTL is greater than zero; before
encrypting such request, the node will set itself as the sender, decrease the TTL, recompute the
hashcode, and then start the timer.

3.1.2. Readings collection. An expired TTL triggers the beginning of the collection of readings.
Any leaf node creates a reply message by encapsulating its ADC readings in the payload, setting

the subtree cardinality to 1, and modifying the nonce value to prevent replay attacks, as we
previously described; the encrypted message is finally forwarded to the previously set parent node.

Any non-leaf node collects reply messages from its children until the timer T expires and adds its
own readings to the received ones; finally, it randomly selects one set of readings to be forwarded to
its parent node. The probability according to which any of the nodes is selected as the provider of
the readings is set to be proportional to the cardinality of the subtree rooted at that node.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

Letting n."/ denote the function computing the cardinality of a subtree given its root node, and
considering a sender node j , whose children set is C.j /, then the probability that readings coming
from node ´ will be forwarded to the parent node is computed as

psel.´/ D

8<
:
n.´/
n.j / ; 8´ 2 C.j /
1
n.j / ; if ´ D j

(4)

As will be proved in Section 4, such selection rule ensures that the probability of selecting any
of the reading sets is uniform and equal to 1/N where N is the total number of nodes in the
k-neighborhood; this means that the actual source of data is obscured to the potential attacker, which
would be thus forced to tamper with all of the neighboring nodes to break the algorithm, if able to
do so.

Authenticated readings collection messages during the collection phase are updated by the replier
nodes by setting the sender value to their own id’s, the payload to the chosen reading set, by
updating the subtree cardinality, by setting nonce to the value of the previously received one
plus 1, and by recomputing the hashcode via the SHA-1 function; finally, the reply message
is encrypted.

3.2. ScatterRNGlight

ScatterRNGlight is a lightweight version of the security framework described earlier and is specif-
ically addressed to resource-constrained devices, such as wireless sensor nodes. The improvement
consists in the use of the ARClight protocol together with an enhanced version of the basic TRNG.

It is well known that, for WSNs, sending/receiving a bit via radio transmission corresponds to
about a few thousands of program instructions in terms of energy consumption [23], so the general
guideline consists in trading communication for computation. In our case, the only software module
involving radio transmissions is the ARC protocol, so we chose to reduce its complexity at the
expenses of the TRNG module, which is completely computation-bound, thus reducing the overall
energy requirements.

The ARClight protocol is tightly related to its forerunner, but we now limit the scope for choosing
the source of data to the node’s direct neighbors (i.e., the 1-neighborhood, as opposed to the k-
neighborhood of the previous version). The random selection process is no longer needed, and the
requester now simply concatenates all of the received reading sets before forwarding them to the
RNG module, instead of choosing only one.

ARClight is a bit-oriented protocol, and its message format is depicted in Figure 3. It strikingly
differs from ARC message in that the requester, TTL, and subtree cardinality fields have been
suppressed; the newly added payload length field takes on two different meanings for request
and reply messages: it indicates the number of octets the requester wishes to receive for the former
type or the exact number of octets contained within the payload field for the latter. The payload

field is entirely unnecessary and is suppressed for request messages. Unlike ScatterRNG, messages
are no longer encrypted but just authenticated: only the pair .nonce k hashcode/ is encrypted using
the CBC DES; the total size of those fields is set to 64 bits, as required by DES, so we accordingly
set the length of hashcode to be 56 bits (whereas it was previously set to 64).

With respect to the previous version, the timer T has been modified to be adaptive and is computed
with the same formula used for the well-known Transmission Control Protocol (TCP) round-trip
time estimate: such choice provides adaptability to potential changes in the neighborhood topology,

Figure 3. Fields of the ARClight message.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

as is common in the context of WSNs. The value of T is guaranteed not to diverge, by thresholding
it to a maximum value Tmax and is computed as follows:

T D min¹RTTC 4 " Dev; Tmaxº; (5)

where RTT D .1$˛/ "RTTC˛ "RecRTT is the current round-trip time estimate, RecRTT is the round
trip of the last received reply message, Dev D .1 $ ˇ/ " DevC ˇ " jRecRTT-RTTj is the variation of
RT T , and ˛, ˇ weigh the importance given to the past RTT and Dev values.

3.2.1. The enhanced RNG module. The basic RNG module has been enhanced in ScatterRNGlight

by adding a hash block, a local clock (LC), and a XOR operator, as depicted in Figure 4. The
motivation behind the addition of the hash block is that the physical random source could provide
biased input to our system (i.e., an unbalanced amount of 0’s and 1’s), so a practical deskewing
technique is to use a hash function as suggested in [24]; moreover, we inserted the LC in the random
generation process to prevent an attacker with complete control of the sensory input from turning
the module into a periodical RNG.

The enhanced RNG module accepts as input the concatenation of the reading sets Xi pro-
vided by the ARClight protocol and computes their digest (160 bits) via the SHA-1 function:
Y DSHA-1.X1 k X2 k : : : k Xn/.

The BB (256 bits) is updated as follows:

BB D .BB << 160/C Y; (6)

where << represents the bitwise left-shift operator.
The outcome of the BB represents the input for the CMAC algorithm, and the 64-bit result is,

in its turn, XOR-ed with the content of a 64-bit register block (RB) to generate the true random
number RN . The key of the CMAC is computed as RB ˚ LC , where LC is the least significant
16-bit value of a local clock, with !-second precision.

In summary, the random number is generated as follows:

RN D CMAC.BB;RB ˚ LC/˚RB: (7)

Figure 4. Block diagram for ScatterRNGlight, where dashed blocks represent the new additions to the
previous proposal.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

4. THEORETICAL AND EXPERIMENTAL ASSESSMENT

In order to prove the validity of our approach and its feasibility in a real scenario with resource-
constrained distributed nodes, we assess the implementation of both versions of the ARC protocol
in terms of their message and computational complexity; moreover, we will prove that the source
data from the random numbers are uniformly scattered over the chosen neighborhood; that is, the
dependency of the generated random sequences is equally spread across the neighboring nodes, thus
increasing robustness to attacks. We also provide a detailed explanation of the main security features
of our proposal, and finally, we report the results of the experiments we conducted for testing the
randomness of the generated sequences by using the NIST Test Suite.

4.1. Message and computational complexity

The complexity of the ARC protocol can be analyzed by considering its two main phases: request
dissemination and readings collection. Because nodes at each level of the tree need to send messages
both to their parent and children nodes, the time complexity for both phases is O.k/, where k is
the depth of the neighborhood. The message complexity is instead O.n/, where n is the number of
nodes within the k-neighborhood, because each node (but the leaves) sends a request, and each node
(but the root) sends a reply.

As regards ARClight, the time complexity is equal to O.1/ because only a 1-neighborhood will be
chosen to receive node readings; the message complexity is still O.n/, as for the previous version
of the algorithm; it is worth noting however that, for all practical purposes, the amount of nodes in
the considered 1-neighborhood will be typically much lower than in the previous case.

From the viewpoint of energy efficiency, a comparison of the message format of the two protocols
(Figures 2 and 3) makes it clear that ARClight outperforms the original ARC protocol by at least a
factor of 2: the ARC message has a fixed length of 256 bits while its lightweight counterpart ranges
from 80 up to 128 bits, for request and reply messages respectively. This means that the ARClight

protocol cuts the radio consumption at least to a half as compared with the previous version; more-
over, the computational burden of transmitting ARClight messages is reduced by a factor of 4 because
the CBC mode of operation of DES needs to encrypt only one 64-bit block .nonce k hashcode/
instead of four.

4.2. Uniform scattering

The ScatterRNG infrastructure generates the random sequences by ensuring that the reading sets
coming from a k-neighborhood of the requester are all chosen with equal probability.

As previously mentioned, every node applies the selection rule described by Equation (4). Now,
suppose that a specific reading set originating at node i is forwarded across the levels of the k-
neighborhood and passes through nodes i1; i2; ::; it until it arrives at the requester r ; by applying the
product rule of probability, we obtain that the probability of such reading set to be chosen by the
requester is

pchoice.i/ D
1

n.i/
" n.i/
n.i1/

" n.i1/
n.i2/

" : : : " n.it /
N
D 1

N
: (8)

This is sufficient to prove that the chosen data source for the RNG module is uniformly scattered
with probability of 1=N , given thatN is the number of nodes within the requester’s k-neighborhood.

The ScatterRNGlight implementation restricts the depth of the neighborhood to 1 and avoids the
use of random sampling during the selection of the input reading set; the requester just concatenates
the received reading sets with the one coming from its own sensor board and then processes them
via the SHA-1 hash function. Because an inbuilt property of all secure hash functions is to make the
digest equally dependent on all the input bits of the message, this is sufficient to prove that it is true
also for the case at hand that all the nodes belonging to the 1-neighborhood (including the requester)
will equally contribute to the random sequence.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

Table I. Threat model for the attacker.

Attack Description

Sniffing Observes data exchanged among nodes
Replay Sends old and trusted information
Greyhole Forces sensor node to drop some packets
Blackhole Forces network traffic to pass through a

specific sensor node, which will drop all
packets

Radio tampering Disrupts the nodes’ communications
Sybil attack Places malicious (Sybil) nodes next to legit-

imate ones
ACK spoofing Forges ACK messages to trick the sender

into believing that a dead node is alive
Sensor board tampering Reads/corrupts the output of the ADC of a

sensor board

4.3. Security analysis

For the purpose of assessing our proposal from the standpoint of security, we provide here a detailed
explanation of its main features. In order to customize the implementation of our TRNG for the
context of WSNs, we followed the guidelines reported in [18] and assumed a formal threat model
(i.e., a description of the capabilities of the attacker), which is summarized in Table I. The threat
model will now be used to show how our infrastructure is capable of resisting to individual attacks
or combinations of them.

Both ScatterRNG and ScatterRNGlight assume the presence of a particular key distribution
scheme, where sensor nodes are supposed to share pairwise symmetric keys to encrypt/authenticate
their transmissions. A management scheme relying on a master shared symmetric key is not viable
because as soon as the key is stolen from a single node all network communications would be
revealed, so that forging trusted information would become trivial for the attacker. Unfortunately,
public key cryptography schemes are unpractical for WSNs, because they require large amounts of
memory and computation, thus unacceptably shortening the overall network lifetime. According to
current literature, the most practical approach is the use of a transitory master key scheme where
sensor nodes are pre-set by node programmers with a master symmetric key, that in its turn allows
for the distribution of pairwise shared keys. The master key is ‘transitory’ in that it is destroyed by
sensor nodes after the distribution phase to prevent a node-capture attack. Although the master key
is removed from all nodes, this does not force the network to be static, provided that newly added
nodes own the original master key: this prevents an untrusted attacker from joining the network. The
computational burden due to the key distribution phase is sustainable by sensor nodes as the process
only needs to be performed once at the beginning. Detailed description of such schemes is out of
the scope of our proposal, but the interested reader can find all the technical details in [25–28].

The security goals of ScatterRNG and ScatterRNGlight are as follows: (i) confidentiality, (ii)
authenticity, and (iii) integrity.

ScatterRNG achieves confidentiality by using the DES CBC mode of operation; originally, this
was intended to prevent the attacker from guessing the content of the reading set to be used as
the RNG data source. On the other hand, ScatterRNGlight does not actually require to encrypt the
incoming readings, because the order in which readings are received (or indeed whether they are
received at all) is not predictable, which makes the problem of guessing the correct input to the RNG
module computationally unfeasible for the potential attacker. Let us suppose the 1-neighborhood is
composed of N nodes, then the different ways the reading sets can be supplied to the RNG module
amount to

NX
jD1

N

j

!
" j Š D

NX
jD1

N Š

.N $ j /Š ; (9)

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

where j is the number of received reading sets (1 6 j 6 N),
!N
j

"
is the number of combinations

of N elements out of j , and j Š is the number of permutations for the received reading sets. We
therefore chose not to provide confidentiality because, for sufficiently high values of N (N > 21),
the system is no less robust than its encrypted counterpart.

Both versions of the protocol make use of a 1-byte nonce n to guarantee that reply messages are
not a replay of old ones (i.e., authenticity). Any node receiving a request will update the nonce field
with noncenew D nonceold C 1 to let the sender node know that the previous value of n was cor-
rectly decrypted. Finally, integrity checks are provided by using the hashcode field; in particular,
the receiver node only needs to compare the decrypted hash value with the recomputed one, thus dis-
carding the message if they are not equal. ScatterRNGlight uses a shorter hash value than ScatterRNG;
security is however not hindered because the attacker would on average need to generate as much
as 256=2 messages to forge a valid one.

We now provide an overview of the threats the attacker can devise against the secure random
number generator and the adopted countermeasures.

Sniffing. The attacker might try to infer some information by observing messages containing the
readings received by the requester sensor node. As regards ScatterRNG, such attack would be
completely ineffective because the node-to-node communications are encrypted. The second ver-
sion, instead, just provides message authentication, so the attacker could in fact observe the
readings while they are received at the requester node; however, because the generation process
still depends on the order of the received messages, the RB value, the data sensed by the requester
node, and finally on the clock value, such attack would not provide sufficient information to
guess the generated random number.

Replay. Trusted messages, previously observed using the sniffing attack, might be sent as fresh
ones, thus ‘freezing’ the output of the RNG module, which would appear to be continuously
using the same readings. Both versions of the RNG are secured against such type of attack thanks
to the use of nonces; in particular, replayed messages would be discarded because the encrypted
nonce would not agree with those sent by the requester node. The probability the attacker sends
a trusted message is 1=28, given the size of the nonce field.

Greyhole/blackhole. The attacker might try to isolate a specific sensor node (the requester) from the
rest of the network thus lowering the randomness of the generated sequence. ScatterRNG is sen-
sitive to such type of threats, as the attacker could force the requester to use only the requester’s
own readings as sources, thus breaking the random source selection algorithm, and potentially
the whole system, if the attacker can additionally breach into the sensor board. ScatterRNGlight

prevents the attacker from gaining control of the generation process because we had the random
numbers depend also on the internal clock value.

Radio tampering. The attacker might tamper with the radio component of the requester, thus caus-
ing the failure to receive reply messages from neighboring nodes, which would result into an
indefinite wait for the requester node. Both versions of the algorithm solve the issue by using a
timer that forcibly triggers the production of the node’s own readings to keep the process going.
The attacker can only slow down the generation process, because the value of T will rapidly
reach the upper bound set by the node programmer. (Equations (3) and (5)).

Sybil attack. The attacker could resort to place a malicious node near some other sensor node and
try to trick the receiver into believing that is a trusted node. ScatterRNG is robust against such
type of attack thanks to the use of encryption; only trusted nodes know the pairwise keys, so
any message sent by a Sybil node would be discarded by the requester node with a probability:
pdiscard D 1 $ 1=264. ScatterRNGlight uses a lightweight solution relying on authentication to
solve the issue. The attacker’s probability of generating a trusted message is still p D 1=264,
as the hashcode and nonce fields together amount to 64 bit. The Sybil attack differs from a
replay attack only for the rate of authenticated messages sent by the malicious user; similarly to
what happens during a replay attack, a flood of authenticated messages is ineffective because the
randomness of the generated sequence is not substantially altered.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

ACK spoofing. The attacker aims to make the requester node believe that a dead node is instead
still alive. Both versions of the algorithm were protected by such attack by the use of the nonce
technique.

Sensor board tampering. The attacker might read the content of the sensor board or directly tamper
with the readings from the ADC, forcing them to be set to specific values. Both ScatterRNG and
ScatterRNGlight behave quite similarly by making use of the readings coming from the requester’s
neighborhood just to obscure the actual data source to the attacker. The attacker would thus be
forced to violate all the neighboring sensor boards before they can entirely control the selection
of the readings to be used as input to the RNG: as a consequence, ScatterRNG would turn into a
PRNG, and the generated sequence would simply be periodic; on the other hand, ScatterRNGlight

would continue to exhibit aperiodicity thanks to the use of the LC. However, we want to point
out that the 16-bits LC, when taken as the single source of randomness, cannot guarantee the
same quality of a generator that is not under attack. The issue is discussed in detail in Section 5.

Combined sensor boardC radioC clock tampering. The attacker could prevent any new readings
from being delivered to the RNG module. In this case, both versions of the algorithm would
collapse into a cryptographic PRNG. The only source of randomness would be provided by
the RB, which is however dependent on its past values, and the generator would be completely
compromised when the sequence restarts. Such suite of attacks, when enacted at once, is usu-
ally known as the node-capture attack that was proved to be hard to counteract by [15]; also,
Jing et al. [25] have shown that the attack is viable using common devices, such as a laptop,
a programming board, and JTAG debugging device. Whenever the node is physically captured,
there is no way to restore its proper working status; nevertheless, thanks to the use of the
transitory master key scheme, the attacker will be unable to compromise the communications
of the remaining network nodes, because the master key is no longer available after the key
distribution phase.

4.4. Randomness quality assessment

We experimentally assessed the performance of both ScatterRNG and ScatterRNGlight in terms of
the randomness of the produced number sequences; namely, we used the NIST Test Suite to check
that the generated sequences may be classified as truly random. Such suite implements 15 different
tests allowing to check for the presence of statistical anomalies within a random sequence; a brief
description of them is provided in Table II.

Each statistical test takes a sequence of bits as input and generates the so-called P-value, which
indicates the probability for a perfect random number generator to produce a sequence that is less
random than the tested one. To guarantee that any statistical anomaly of the random number gen-
erator is revealed, it is necessary to perform the tests on a large number of sequences (at least 55)
in order to obtain a more informative histogram of the P-values. The P-values are usually plotted
in the x-axis of the resulting histogram, which is divided into 10 equally spaced bins, while the y-
axis represents the number of sequences belonging to that bin. The histogram is thus expected to be
nearly uniformly distributed, and its #2 index is computed as follows:

#2 D
10X
iD1

.Fi $ s=10/2
s=10

; (10)

where Fi is the number of P-values belonging to the i -th bin and s is the number of tested sequences.
It is then necessary to compute a new index defined as P -valueT D igamc.9=2;#2=2/, where
igamc."; "/ is the ‘incomplete gamma function’; if such index is greater than 10!4, then the sequences
may be considered uniformly distributed.

The uniform distribution of the P-values, however, is just a necessary condition to claim a random
number generator as true. Another important index to be computed is the ratio, which indicates the
amount of sequences with a P-value greater than a certain threshold $. Typically, the value of the

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

Table II. NIST Test Suite.

Test Description

Frequency Tests whether the same number of zero and one appears in the sequence.
Block frequency Quite similar to the previous test but differs from it because the test is

performed within blocks of fixed length
Runs Computes the number of runs of zero and one for different lengths
Longest run Tests whether the longest run of ones is not longer than a specific

threshold for a given sequence length
Binary matrix rank The sequence is partitioned into submatrices whose rank should be full.

Such test is used to check the existence of linear dependencies among
chunks of the sequence

Discrete Fourier transform Peaks in the frequency domain indicate some kind of periodicity within
the random sequence

Non-overlapping template matching Counts the number of occurrences of a specific pattern within the ran-
dom sequence. Whenever the pattern is found, the search continues
after the last bit of the sequence that matched with the pattern

Overlapping template matching Quite similar to the previous test; however, when the target pattern is
found, the search will continue by shifting only 1 bit within the random
sequence

Maurer’s universal statistical Checks whether the sequence is compressible without loss of infor-
mation. Compressibility of the sequence would indicate some kind of
non-randomness

Linear complexity The focus of the test is to compute the length of a linear feedback
shift register (LFSR) that reflects the complexity of the sequence. If the
length of LFSR is too low with respect to the length of the sequence,
then the sequence is non-random

Serial Tests whether all possible m-bit patterns are equally distributed within
the random sequence

Approximate entropy Quite similar to the previous test, but its aim is to check the frequency
of pairs of overlapping blocks of consecutive length (m and mC 1)

Cumulative sums Computes the sum of a biased sequence .$1; 1/ that should be near zero
for all the length of the sequence

Random excursion Computes the cumulative sums and checks if particular states
(+4,+3,...,-3,-4) are visited with the distribution probability that should
have a random sequence

Random excursion variants The same as the previous test, with the difference that the states that
will be analyzed vary among a wider range (+9,+8,....,-8,-9)

(a) (b)

Figure 5. The network topology for experiments: (a) ScatterRNG and (b) ScatternRNGlight; the requester
node is the dark one.

threshold is chosen to be $ 2 Œ0:001; 0:01%. For a given value of the threshold, the constraint on the
minimum required ratio is the following:

ratio > p $ 3
r
p.1 $ p/

s
; (11)

where p D 1 $ $.
We tested both ScatterRNG and ScatterRNGlight on a network consist of 10 TelosB nodes

deployed within a 25%15 m2 area in our laboratory; the actual deployment is shown in Figure 5. We

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

arranged nodes into a 2-neighborhood of the requester (dark node) for the purposes of ScatterRNG,
whereas we imposed a star topology in the case of ScatterRNGlight. For conducting these experi-
ments, we run both algorithms and collected readings from the sensor boards about the ambient
light (8 bit) for a period of 10 consecutive days; as the RNG module at the requester generated the
random numbers, we let it store them into a connected workstation, until 10 Mbits of data were
accumulated. For the aim of validation, we finally partitioned such data into 1000 sequences, each
104 bits long, and processed them using the NIST Test Suite.

The network parameter settings for both sets of experiments are summarized in Table III, and the
parameter settings for the NIST tests are reported in Table IV. Table V shows the corresponding
results in terms of P -valueT and of the obtained success ratio. In both sets of experiments, the
resulting values forP -valueT and ratio are above the pre-set thresholds, which allows us to conclude
that both security frameworks perform satisfactorily in terms of true randomness degree; moreover,
ScatterRNGlight is more efficient, for the reasons discussed earlier, thus proving overall preferable
in the context of a resource-constrained scenario.

Table III. Network parameter settings for ScatterRNG and ScatterRNGlight.

Parameter Setting for ScatterRNG Setting for ScatterRNGlight

Size of each reading (l) 8 bits 8 bits
Number of readings per message (p) 16 6
Number of nodes (N) 10 10
Hop delay (dmax) 0.5 s $
Maximum round-trip time (Tmax) $ 1 s
Weight for RT T (˛) $ 0.125
Weight for Dev (ˇ) $ 0.25

Table IV. Parameter settings for the NIST Test Suite.

Parameter Value

Length of each sequence (L) 104 bits
Number of tested sequences (s) 1000
Threshold for P-values ($) 0.01
Ratio value (ratio) 0.9806

Table V. Results for P -valueT and ratio for the two versions of the random
number generator.

ScatterRNG ScatterRNGlight

Test name P -valueT Ratio P -valueT Ratio

Frequency 0.9015 0.9840 0.1223 0.9830
Block frequency 0.2133 0.9810 0.3508 0.9910
Runs 0.3512 0.9910 0.1223 0.9810
Longest run 0.5341 0.9900 0.5341 0.9910
Binary matrix rank 0.5341 0.9920 0.7351 0.9850
Discrete Fourier transform 0.0674 0.9890 0.2135 0.9910
Non-overlapping template matching 0.2137 0.9960 0.4602 0.9890
Overlapping template matching 0.2120 0.9810 0.3509 0.9830
Maurer’s universal statistical 0.8175 0.9810 0.8065 0.9990
Linear complexity 0.9310 0.9990 0.8965 0.9920
Serial 0.3508 0.9840 0.5348 0.9970
Approximate entropy 0.9903 0.9950 0.7451 0.9950
Cumulative sums 0.3507 0.9930 0.7392 0.9880
Random excursion 0.6529 0.9880 0.6402 0.9810
Random excursion variants 0.7543 0.9890 0.7502 0.9940

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

5. COMPARISON AGAINST OTHER TRNGs

The characteristics of our two proposals are now compared in terms of resilience against three dif-
ferent RNGs for WSNs using the threat model of Table I. We also discuss the behavior of both the
original ScatterRNG and of its lightweight version when they are stripped off of the ARC=ARClight

communication protocols. Finally, we exclude node capture from the resilience analysis as we
assume that the node is definitively under control of the attacker after that all of its components
are tampered.

Table VI shows the results of the comparison: for different threats, each cell shows whether the
method indicated in the heading of the column is resilient to the threat () or not (); an empty cell
means that the threat is not applicable.

The first two columns contain the results for the versions of ScatterRNG and ScatterRNGlight

without the respective communication protocols: because of the absence of radio communica-
tions, the only viable attacks could be performed against the sensor or the clock components. As
regards ScatterRNG, sensor tampering would turn it into a periodical RNG; on the other hand,
ScatterRNGlight is resilient to clock tampering and sensor tampering when performed individually.
Indeed, under sensor tampering attack, we observed that the generated sequences do not pass the
Overlapping template test (ratio is below the threshold) while the Maurer’s universal statistical test
shows a bad distribution of the P-values. In particular, as regards the template matching test, the
results indicate that, sometimes, the attacker might be able to infer subsets of the generated outputs
as the size of the templates is small as compared with the output (6–8 vs. 64 bits). As regards the
Maurer’s universal statistical test, the distribution of P-values of the output sequences was very poor
(all sequences have a P-value between 0.3 and 0.4); however, the ratio was over the threshold for
all sequences. The use of the clock in ScatterRNGlight, anyway, avoids that sensor tampering turns it
into a periodical RNG.

The third and fourth columns consider ScatterRNG and ScatterRNGlight combined with
ARC=ARClight protocols: they were designed to be resilient to each of the threat we listed in Table I,
and as regards security issues, they behave equivalently; however, we proved that ScatterRNGlight

is better than ScatterRNG in terms of message and computational complexity as well as the energy
consumption, so the light version should be preferred to the basic one.

The remaining columns list three other approaches for RNG in WSNs. The proposal of Francillon
et al. [13] generates random numbers by exploiting the bit errors of the communication packets; the
authors proved that such bit errors are unpredictable using sniffing attacks even though the attacker
is placed very near to the victim node. Their method is not resilient to blackhole as the attacker could
easily stop the reception of fresh bits (using jamming), thus turning the RNG into a periodical one;
the same consideration holds for the radio tampering attack. Although their proposal implements
the CMAC and rekeying techniques and adds the physical source as generator of randomness, the

Table VI. Comparison of different random number generators against common security threats.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

authors did not assess the output sequences using statistical tests, so we can only hypothesize about
the true randomness of the method.

Latif et al. [11] propose a quite similar approach that relies on the RSSI of radio packets as source
of randomness; the method assumes sensor nodes that move within the field so RSSI changes over
the time. RSSI is computed onboard thus sniffing would be ineffective; replay, Sybil, and ACK
spoofing attacks cannot lower the randomness of the sequences provided that the node continues to
receive packets from other trusted nodes; on the contrary, their method is sensitive to radio tampering
and blackhole as it uses only the radio component as source of randomness. Authors tested the
single stream output using NIST Test Suite and successfully passed all the tests; the NIST software
documentation [29] however specifies that in order to obtain statistically meaningful results, at least
55 sequences should be analyzed; thus, also in this case, we cannot be completely confident about
the quality of the generator.

The generator proposed by Rhee et al. [14] generates random sequences combining randomness
coming from radio and clock components. They use an 8-bit clock as random seed generator and the
8-bit CRC of the received packets to implement rekeying. In principle, the method could be resilient
to combined attacks as the randomness comes from different physical sources; however, the work
in [30] showed that such generator suffers of many design flaws. First of all, under clock tampering
attack, the sequence restarts each three time steps; that is, RN.t/ D RN.t C 3 &m/ for any m 2 Z
and the generator becomes completely predictable; the authors propose to rekey the method every
10 time steps, but a blackhole attack and radio tampering force the generator to remain within its
three values forever. The only attacks that appear to have no effect are sniffing and ACK spoofing as
they do not affect the internal state of the generator. Finally, the method was tested using the ENT
batteries of tests [31] that clearly showed its non-randomness also when not under attack.

6. CONCLUSIONS

This work proposed a secure true TRNG in the context of WSNs, relying on the sensed measure-
ments as the source of randomness. Our TRNG may be effectively employed for multiple purposes,
such as the generation of keys, nonces, and random primes, which are all very relevant for the
security of a WSN.

The RNG module might represent a critical part of the system because an attacker might focus on
it to break the whole framework; this is why we implemented an ARC protocol to hide the actual data
provider and eliminate the presence of a single weak point, thus improving the overall robustness.

We particularly focused on the optimization of transmissions, which usually cause the highest
energy burden in WSNs, and developed a lightweight version of the protocol that significantly
reduces the energy requirements while maintaining the same degree of randomness, as discussed in
Section 4.

The use of a transitory master key scheme prevents network communications from being com-
promised by a node-capture attack; at the same time, the use of symmetric key encryption keeps the
computational burden limited as compared with public key schemes.

The randomness tests were conducted over many input sequences using the NIST Test Suite and
have shown that the method generates true random numbers; moreover, the comparison with other
recent methods clearly demonstrates that our proposal is the only one to be resilient to a large suite
of attacks described in the formal threat model. As a further development, in order to gain additional
robustness, we plan to allow the requester to choose which neighbors should be selected as potential
sources, regardless of the network topology, always keeping the energy constraints in mind.

APPENDIX A: ARC AUTOMATON

In order to provide a formal and unambiguous description of the operations of ARC=ARClight pro-
tocol, we will regard it as a distributed algorithm run concurrently by each network node i ; loosely
following the notation provided by [32], each node’s ARC module will be seen as a process i running
the same I/O automaton.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

An I/O automaton A is formally defined by five components:

1. sig.A/, a set of actions involving the automaton;
2. states.A/, a set of states;
3. start.A/, a nonempty subset of states.A/ also known as initial states;
4. trans.A/, a relation of type states.A/ % sig.A/ % states.A/; for each state s and input action
& , the transition .s; &; s0/ 2 trans.A/ leads to the new state s0; and

5. tasks.A/, an equivalence relation on local.sig.A//, where local.sig.A// represents the
set of locally controlled actions; the automaton is also supposed to give fair turns to
each task.

In this formalism, the actions performed by the automaton (i.e., its signature, sig.A/) act on the
state variables and change their values by triggering the corresponding transitions. Actions may be
classified as input actions, which are triggered by external processes, as opposed to output, internal,
and external ones, which are locally controlled by the automaton using tasks: they can be thought as
thread of control and model the concurrent execution of internal operations within the automaton.
It is worth noting that the external actions should be thought as third-party library functions; for
simplicity’s sake, we will omit their implementation details. Finally, whenever required, we will
split up the automaton code for ARC (left column) and ARClight (right column).

The complete signature for the ARC=ARClight automaton, AARC, is presented in Table A1.
In order to keep trace of individual ARC requests, it is useful to introduce the concept of session,

defined as the following set of variables:

! requester: the id of the starter node;
! parent: the node from which the request is received (same as requester for ARClight);
! TTL: the number of remaining hops before reaching the leaf nodes in the neighborhood;
! T : a decreasing timer that forces the termination of the protocol if needed;
! replies: the reading sets received by the neighbors;
! cardinalities: the cardinality of subtrees rooted at neighbors (useful for ARC only); and
! nonce: used to ensure authentication of reply messages.

In principle, multiple nodes might start the random number generation process at the same time,
and each node should be capable of managing multiple requests concurrently; we thus chose to
group all the pending sessions within the state array S . In the following text, we will suppose S is
indexed by the requester component or by a numerical index, so S.´/ indicates a particular session
with requester D ´ or the session at the position ´ in the array (the indexing type will be clear from

Table A1. The signature for the AARC automaton.

Type Interface Description

Input init.v/i Starts the protocol for process i
receive.m/j;i Indicates i receives a message from j

Output send.m/i;j Indicates i sends a message to j
decide.v/i Terminates the protocol for process i

Internal

tick./i Decreases timer and increases clock
makeInput.v/i Creates the reading set to be sent to the RNG module
makeRequest./i Creates a request message
makeReply.r/i Creates a reply message for requester r

External
encrypt.m; k/ Encrypts a message m using key k
decrypt.m; k/ Decrypts a message m using key k
sense./ Generates fresh readings using the sensing module
radioSend.m; dest/ Transmits a message to the specified destination using the

radio module
estimateRTT.TTL;Delay/ Estimates the RTT given the TTL and a maximum allowed

single-hop delay
randPMF.domain; range/ Random sampling from probability mass function (for ARC only)

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

Table A2. Description of the AARC automaton state variables.

Variable Description Accessed by

Clock A local clock init, tick
RdSet The readings to be sent to RNG module if i is a requester, or decide, makeInput, makeReply

to i ’s parent otherwise
LocReadings The reading set sensed by the i ’s sensor board makeInput, sense
ToEncrypt A message to be encrypted before transmission decide, init, makeReply,

makeRequest, receive
ToTransmit A message to be immediately transmitted send, encrypt
Secret The array of the secret pairwise shared keys used to encrypt makeReply, makeRequest,

communications receive, send
Delaymax The maximum allowed single-hop delay estimateRTT
S An array of sessions allowing to manage different requesters decide, init, receive, tick

at the same time
RTT An estimation of the round-trip time (fixed for ARC and estimateRTT, init, receive

variable for ARClight)
Nonce A random value used to ensure authentication init, makeRequest, makeReply
Cardinality The number of nodes belonging to the tree rooted at i (useful makeInput, makeReply

for ARC only)
Joined A boolean variable (ARC only) receive
Desired The number of readings that the requester makeReply

wishes to receive from each neighbor (ARClight only)

the context). In addition, we will use dot notation to extract a particular component from a given
session (for instance S.´/; parent represents i ’s parent for the session started by ´ or the i ’s parent
for the ´-th session). As regards the Secret array, its j -th component indicates the pairwise shared
key between i and j . Table A2 reports the complete set of variables composing the AARC internal
state. Note that the Delaymax and Desired variables are externally set by the node programmer, while
the Secret array is provided by the chosen pairwise keys management scheme.

A.1. Transitions

Here, we report the most relevant transitions: init, receive, decide, and makeInput. The remaining
transitions are very easy to be derived and lack of interesting implementation details. The init tran-
sition starts the request dissemination protocol and accepts as input the TTL value. The light version
must be invoked with TTL D 1. The precondition block ensures that node i is not running another
request for random number generation for itself. The effect block creates a new session by set-
ting the related parameters as in the scheme provided earlier. The value of the timer T is set by
the estimateRTT function that uses Equations (3) or (5) based on the running protocol. Clearly, if
TTL > 0, node i sends a request message to its neighbor nodes nbrsi .

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

The second transition of the AARC automaton is receive, which is triggered by the two input
messages request (received during the dissemination phase) and reply (received during the readings
collection phase).

Whenever i receives a message, it immediately decrypts its content using the decrypt function.
The fields of the decrypted message m are accessed still using the dot notation. If the received mes-
sage is a reply, i firstly checks for its authenticity by comparing the recomputed hashcode against
the received one and then also controls if the message is not an old replay, by verifying that the
received nonce is equal to those sent during request dissemination plus one. If the message is gen-
uine, i adds the payload and cardinality fields to the related session of ARC and only the payload
field for ARClight.

As regards the reception of a request message, the precondition block checks that m:type D
request, recomputes the message hashcode, and compares it against the received one. If the two
values do not match, i discards the message considering it as not genuine. The 00 symbol means that
the considered field is filled with a NULL value.

The effect block of the ARC version builds a tree, so i accepts a request message if and only
if the joined variable signals that there is no other pending session for the same requester. If the
request is accepted, i creates a new session, and if it is not a leaf (TTL > 0,), it also sends
a request message to every neighbor but the parent j . In the opposite case, request message is
simply discarded.

The ARClight effect block is much more simple and only requires to set the RTT to zero and to set
up the incoming session. In this case, no messages are sent to the immediate neighbors because the
TTL is fixed to 1.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

Another important transition is decide; it is triggered whenever the timer T expires and behaves
in two different ways, depending on whether i is a requester or not. If i is a requester, its output
parameter is the RdSet variable, which the reading set to be sent to the RNG module; otherwise,
RdSet is forwarded into a reply message to i ’s parent.

The makeInput action accepts as input the arrays .replies; cardinalities/ and computes the vari-
ables RdSet (to be sent to the RNG module) and Cardinality (ARC only). As regards ARC, the RdSet
is chosen among the received sets of reading exploiting the selection rule described in Equation (4).
In order to include itself in the selection of RdSet, i also adds its LocReadings to the proposal list.
Note that LocReadings is set by calling the external sense./ function wired to the sensory compo-
nents of the node. The for loop allows to compute the cardinality of the subtree where i is rooted. The
´ variable is used as a random index to select a reading set from replies; it is sampled from a proba-
bility mass function whose domain is Œ1; 2; :::; length.replies/% and the range is Œcardinalities.1/; :::%
(note the use of the randPMF./ external function).

The ARClight version instead computes the concatenation of the readings received by children
nodes plus those sensed by itself.

Finally, tasks are the set of operations driving the execution of the automaton until it terminates.
The list of those one for the AARC automaton is as follows:

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

G. LO RE, F. MILAZZO AND M. ORTOLANI

REFERENCES

1. Estrin D, Girod L, Pottie G, Srivastava M. Instrumenting the world with wireless sensor networks. In Proceedings
of IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, USA, 2001;
2033–2036.

2. Anastasi G, Lo Re G, Ortolani M. WSNs for structural health monitoring of historical buildings. In Proceedings of
2nd Conference on Human System Interactions, Catania, Italy, 2009; 574–579.

3. Camtepe SA, Yener B. Key distribution mechanisms for wireless sensor networks: a survey. Technical Report ,
Rensselaer Polytechnic Institute, Computer Science Department: Troy, NY, USA, 2005.

4. Chen TH, Shih WK. A robust mutual authentication protocol for wireless sensor networks. ETRI Journal 2010;
32(5):704–712.

5. Benenson Z, Gedicke N, Raivio O. Realizing robust user authentication in sensor networks. Proceedings of the first
Workshop on Real-World Wireless Sensor Networks, Stockholm, Sweden, 2005.

6. Jakobsson M, Shriver E, Hillyer BK, Juels A. A practical secure physical random bit generator. In Proceedings of
the 5th ACM Conference on Computer and Communications Security, San Francisco, CA, USA, 1998; 103–111.

7. Jun B, Kocher P. The INTEL random number generator, 1999.
8. Stefanov A, Gisin N, Guinnard O, Guinnard L, Zbinden H. Optical quantum random number generator. Journal of

Modern Optics 2000; 47(4):595–598.
9. Callegari S, Rovatti R, Setti G. Embeddable ADC-based true random number generator for cryptographic applica-

tions exploiting nonlinear signal processing and chaos. IEEE Transactions on Signal Processing 2005; 53(2):793.805.
10. Vasyltsov I, Hambardzumyan E, Kim YS, Karpinskyy B. Fast digital TRNG based on metastable ring oscillator. In

Cryptographic Hardware and Embedded Systems. Springer: Washington, D.C., USA, 2008; 164–180.
11. Latif R, Hussain M. Hardware-based random number generation in wireless sensor networks (WSNs). Advances in

Information Security and Assurance 2009; 5576:732–740.
12. Gaglio V, De Paola A, Ortolani M, Lo Re G. A TRNG exploiting multi-source physical data. In Proceedings of the

6th ACM Workshop on QoS and Security for Wireless and Mobile Networks, Bodrum, Turkey, 2010; 82–89.
13. Francillon A, Castelluccia C. TinyRNG: a cryptographic random number generator for wireless sensors network

nodes. In Proceedings of the 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks and Workshops, Limassol, Cyprus, 2007; 1–7.

14. Seetharam D, Rhee S. An efficient pseudo random number generator for low-power sensor networks. In Proceedings
of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, Florida, USA, 2004; 560–
562.

15. Becher A, Benenson Z, Dornseif M. Tampering with motes: real-world physical attacks on wireless sensor networks.
Security in Pervasive Computing 2006; 3934:104–118.

16. Awerbuch B, Scheideler C. Robust random number generation for peer-to-peer systems. In Principles of Distributed
Systems. Springer Berlin Heidelberg: Bordeaux, France, 2006; 275–289.

17. Sunar B, Martin WJ, Stinson DR. A provably secure true random number generator with built-in tolerance to active
attacks. IEEE Transactions on Computers 2007; 56(1):109–119.

18. Yu Y, Li K, Zhou W, Li P. Trust mechanisms in wireless sensor networks: attack analysis and countermeasures.
Journal of Network and Computer Applications 2011; 35(3):867 –880.

19. Li Z, Gong G. A survey on security in wireless sensor networks. Technical Report , Department of Electrical and
Computer Engineering, University of Waterloo: Canada, 2011.

20. Perrig A, Stankovic J, Wagner D. Security in wireless sensor networks. Communications of the ACM 2004; 47(6):
53–57.

21. Zhu WT., Gao F, Xiang Y. A secure and efficient data aggregation scheme for wireless sensor networks. Concurrency
and Computation: Practice and Experience 2011; 23(12):1414–1430.

22. Lo Re G, Milazzo F, Ortolani M. Secure random number generation in wireless sensor networks. In Proceedings of
the 4th International Conference on Security of Information and Networks, Sydney, Australia, 2011; 175–182.

23. Anastasi G, Conti M, Di Francesco M, Passarella A. Energy conservation in wireless sensor networks: a survey. Ad
Hoc Networks 2009; 7(3):537–568.

24. Menezes AJ., Van Oorschot PC., Vanstone SA. Handbook of Applied Cryptography. CRC press: Boca Raton, Florida,
USA, 2010.

25. Jing D, Hartung C, Han R, Mishra S. A practical study of transitory master key establishment for wireless sensor
networks. In Proceedings of the First International Conference on Security and Privacy for Emerging Areas in
Communications Networks (SecureComm) 2005, Athens, Greece, 2005; 289–302.

26. Shen AN, Guo S, Chien HY, Guo M. A scalable key pre-distribution mechanism for large-scale wireless sensor
networks. Concurrency and Computation: Practice and Experience 2009; 21(10):1373–1387.

27. Zhu S, Setia S, Jajodia S. LEAP+: efficient security mechanisms for large-scale distributed sensor networks. ACM
Transactions on Sensor Networks 2006; 2(4):500–528.

28. Lim CH. LEAP++: a robust key establishment scheme for wireless sensor networks. In Proceedings of the 28th
International Conference on Distributed Computing Systems Workshops, Beijing, China, 2008; 376–381.

29. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A,
Dray J, Vo S. A statistical test suite for random and pseudorandom number generators for cryptographic applications,
NIST-National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

SECURE RANDOM NUMBER GENERATION IN WIRELESS SENSOR NETWORKS

30. Peris-Lopez P, Hernandez-Castro JC, Tapiador JM, San Millán E, Van der Lubbe JC. Security flaws in an efficient
pseudo-random number generator for low-power environments. In Security in Emerging Wireless Communication
and Networking Systems. Springer: Athens, Greece, 2010; 25–35.

31. Walker J. Randomness battery, 1998. (Available from: http://www.fourmilab.ch/random/). [Accessed on May, 29,
2014]

32. Lynch NA. Distributed algorithms. Morgan Kaufmann: San Francisco, CA, USA, 1996.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

DR
AF
T

