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Abstract—The paradigm of pervasive computing is gaining
more and more attention nowadays, thanks to the possibility
of obtaining precise and continuous monitoring. Ease of de-
ployment and adaptivity are typically implemented by adopting
autonomous and cooperative sensory devices; however, for such
systems to be of any practical use, reliability and fault tolerance
must be guaranteed, for instance by detecting corrupted readings
amidst the huge amount of gathered sensory data.

This paper proposes an adaptive distributed Bayesian ap-
proach for detecting outliers in data collected by a wireless sensor
network; our algorithm aims at optimizing classification accu-
racy, time complexity and communication complexity, and also
considering externally imposed constraints on such conflicting
goals. The performed experimental evaluation showed that our
approach is able to improve the considered metrics for latency
and energy consumption, with limited impact on classification
accuracy.

Index Terms—WSN, Bayesian Networks, Outlier Detection.

I. INTRODUCTION

G IVEN their pervasiveness, ease of use, and reduced
costs, Wireless Sensor Networks (WSNs) are nowadays

increasingly used in many industrial and research applications;
they are composed of small devices with limited power supply,
named sensor nodes, able to sense the environment, perform
small on-board computations and communicate with each
other in order to collaboratively detect possible events of
interest.

Despite their many advantages, such as flexibility, one of the
main drawbacks of WSNs is the possibility of faults occurring
during sensing [1], which could limit their effectiveness as
pervasive monitoring tool. Such faults may be due to several
causes, such as harsh environmental conditions that can dam-
age hardware, lack of energy that can affect the values of the
sensory readings and the quality of communications, or sensor
miscalibration that may affect the ADC transducer.

In our work, we focus on the task of detecting outliers in the
flow of sensory data; they negatively affect the performance
of the WSN since transmission and processing of corrupted
data inevitably result into a waste of energy and time. Early
detection of outliers might constitute a pre-filtering phase,
necessary for reducing the amount of data to be processed
by high-level systems; for such reason, in-network outlier
detection becomes a crucial functionality for many WSN-
based applications [2], [3].

The main contribution of this paper is the proposal of the
“Adaptive Distributed Outlier Detection” (ADOD) algorithm
to detect data faults in a WSN. Unlike other approaches
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presented in literature, ADOD allows designers to fine tune
classification accuracy, time complexity and communication
complexity, according to application-specific requirements.
Each sensor node might choose to cooperate with other nodes
to perform outlier detection; higher classification accuracy
is achieved as the set of cooperating nodes grows larger,
whereas limited cooperation leads to lower time and communi-
cation complexity. We address the issue of combining several
conflicting goals, namely maximizing classification accuracy
and minimizing both time complexity and communication
complexity by exploiting constrained Pareto optimization.

Outlier detection is carried out by a set of Bayesian Net-
works (BNs) scattered over the WSN. The structure of each
BN is distributed over a set of cooperating sensor nodes,
and the novelty of our approach consists in the dynamic
construction of the cooperating set according to superimposed
constraints and to variations in the observed physical phe-
nomenon. As a consequence, a single WSN may contain areas
where outlier detection is performed by simpler BNs, due to
the presence of few outliers, and other ones where the BNs
present a more complex structure.

The remainder of the paper is organized as follows: Sec-
tion II discusses approaches in literature for outlier detection
in WSNs; Section III states some assumptions that guarantee
the correct behavior of our algorithm; Section IV describes
the proposed approach while Section V shows the results of
performed experimental evaluation; finally Section VI reports
the conclusions of our work.

II. RELATED WORK

According to the definition proposed in [4], an outlier is a
pattern that does not match the expected trend in analyzed data.
The correct detection of outliers in data acquired by a WSN
may provide useful information about the state of the network
and about the surrounding environment, e.g., residual WSN
lifetime, malfunctioning nodes and unexpected environmental
events.

It is possible to identify different types of data outliers in
WSNs [5]–[7], such as follows.
• spike: characterized by one or more out-of-bound read-

ings in a very limited amount of time;
• noise: a sequence of data characterized by a greater

variance as compared to the environmental one;
• stuck-at: a pattern characterized by quasi zero variance.
Most outlier detection algorithms for WSNs exploit correla-

tion among sensed data. The temporal correlation within read-
ings from a single node allows to compare the current behavior
of the device with the past one. The spatial correlation allows
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to analyze the trend of the physical phenomenon monitored
by the WSN in a wider area, and requires the comparison of
sensory readings gathered by different nodes.

According to the authors of [8], outlier detection in WSNs
can be categorized into five main classes, namely: statistical,
nearest neighbor, clustering, classification, and spectral de-
composition.

Statistical approaches [9], [10] build mathematical models
for the data and compute the probability that a sensory reading
is generated by that model; if such probability falls below
a given threshold, the reading is classified as an outlier.
Statistical methods are characterized by low computational
complexity, but generally require supervised learning and an
ad-hoc fixed threshold.

Nearest-neighbor algorithms [11], [12] use a distance metric
to express similarity in data. An outlier is a reading which
appears dissimilar from the rest of the data. Such approaches
exhibit low computational complexity and do not require
supervised learning, but they are characterized by variable and
unpredictable detection accuracy.

Clustering approaches [13] rely on similarity metrics, but
are additionally able to provide identification for the outlier
class. Inter/intra-cluster distance thresholds are however not
easy to determine, and their values can significantly affect
performance.

All the mentioned approaches are heavily dependent on the
choice of specific thresholds, so classification methods [14],
[15] have been proposed to overcome such drawback. They
learn mathematical models both for regular data and for
outliers during a training phase, and classify previously un-
seen data according to those models. This class includes,
for instance, Bayesian Networks (BN) [16]–[18] and Neural
Networks [19]–[21]. The main advantage of such approaches is
that classification accuracy is predictable during the learning
phase; however, in general, they require high computational
effort.

Methods based on spectral decomposition [22] exploit Prin-
cipal Component Analysis (PCA) to reduce data dimensional-
ity and to build a structure that represents normal data trend.
Each reading which does not respect the structure expressed
by the significant components is classified as outlier. Such
methods are characterized by a very high computational effort
for performing the PCA reduction.

The outlier detection algorithm proposed here belongs to
the category of classification approaches and, in particular is
based on BNs. We chose to adopt a distributed implementation
where the nodes of a WSN cooperate with each other in
order to classify their readings and discard outliers before they
are transmitted toward the base station. This choice allows
to reduce the energy waste resulting from the unnecessary
transmission of outliers.

The collaborative distributed approach adopted for the de-
velopment of several WSN applications [23]–[25] has proven
effective to deal with the intrinsic limitations of such networks,
and has been successfully used in many applications such as
target detection and tracking, node localization and outlier
detection. Cooperating sensor nodes are able to exploit the
correlation among their respective sensory readings, and be-

come aware of the conditions of the surrounding environment.
To the best of our knowledge, other works in the literature

adopting BNs for classification [16]–[18], [26], [27] consider
a static structure of the BN; as a consequence, they are not
able to tune classification performance based on the scenario
conditions or to application constraints. On the contrary, our
algorithm periodically adapts the structure of its BNs in order
to find the best trade-off with respect to classification accuracy,
time complexity and communication complexity.

Other works in the literature propose dynamically tunable
algorithms for WSNs based on the evaluation of some quality
metrics. For instance, the authors of [28] propose a clustering
algorithm which evaluates the reliability, lifetime and coverage
of the WSN, in order to select the optimal set of nodes which
should be active for their tracking application. In [29], the
adoption of such quality metrics as reliability, cost, scalability,
communication load is proposed to compute the optimal
placement of WSN nodes. However, part of the novelty of
our proposal consists in the adoption of a dynamic structure
for the cooperating sets of sensor nodes, over which dynamic
BNs are scattered in order to perform outlier detection.

III. BASIC ASSUMPTIONS

In this section, we discuss the necessary assumptions to
ensure the correctness of our algorithm.

We assume that the WSN is constituted by N nodes capable
of sensing the same physical phenomenon, which is character-
ized by a spatio-temporal dependency among readings. This
is not a strong assumption, as plenty of evidence shows that
it holds for quantities commonly monitored by WSNs (e.g.
temperature, air humidity, atmospheric pressure) [30], [31].

A more constraining assumption concerning the adopted
routing protocol is made to guarantee the computational feasi-
bility of our approach. ADOD is based on a set of distributed
BNs built on the WSN communication graph. Inference on
BNs generally requires solving a NP-hard problem; however,
if the BN is structured as a polytree then the computational
complexity is reduced and the problem becomes tractable, as
shown in [32], [33]. In order to guarantee this acyclic structure,
we assume that the underlying routing algorithm produces
a connected loop-free network. To this end, it is sufficient
to adopt a hierarchical routing algorithm [34]. Hierarchical
routing is a common solution for WSNs, with a view to
minimizing the communication overhead and, consequently
the overall energy consumption; moreover, it is often exploited
in order to support data aggregation and to increase the
resilience to faults [35].

Finally, for the sake of simplicity, we will assume that all
sensor nodes adopt the same sampling rate, ∆t, that is used
as a basic time unit in the rest of the paper. It is worth noting
that such assumption does not imply a strong synchronization
among sensor nodes. As each node performs outlier detection
on its latest sensory reading, in the worst case the timestamps
of the readings from two sensor nodes performing the same
round of the algorithm could differ by at most ∆t.
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Fig. 1. Node-centric view of the ADOD algorithm.

IV. ADAPTIVE DISTRIBUTED OUTLIER DETECTION

The main goal of the ADOD algorithm (Adaptive Dis-
tributed Outlier Detection) is in-network detection of data
outliers in a WSN, in order to avoid wasting energy for
useless transmissions toward the base station. Outlier detection
is performed by means of a set of BNs distributed over the
WSN. Each BN relies on a group of collaborative sensor nodes
to perform distributed probabilistic inference; moreover, the
subset of collaborative nodes is chosen dynamically and in a
fully decentralized way, since each node makes its decision
autonomously.

From the point of view of an individual node, ADOD
consists of two main phases, namely outlier detection and
neighborhood selection, as shown in Figure 1. The first phase,
which occurs after each sensing event, detects a possible
outlier by collaborating with neighboring nodes and results
into the evaluation of three metrics: classification accuracy,
time complexity and communication complexity. The second
phase, which is performed periodically, aims at identifying the
best set of neighbors to cooperate with, and thus corresponds
to a reconfiguration of the BN structure.

The higher the number of cooperating nodes, the higher
the classification accuracy; such higher accuracy comes at the
cost of an increase in time and communication complexity and,
consequently, in detection delay and energy consumption. The
dynamic reconfiguration of the BNs allows to adapt the system
performance to the features of the specific application and of
the current scenario.

If a node chooses not to cooperate, its outlier detection
phase only needs to exploit time dependency among local
measurements; otherwise, spatial dependency among measure-
ments gathered by different nodes is used by the BN for
classifying sensory readings.

The effect of the BN structure on time complexity is due
to the delay for sharing both the set of measurements and
the belief about the correctness of sensory readings within
a cooperating set of nodes. Its influence on communication
complexity arises from the higher number of messages to be
sent to as many nodes during the outlier detection phase.

Figure 2 shows the evolution of the cooperation network
used by ADOD. From the viewpoint of node 1, the exam-
ple shows how decisions taken by a single node affect the
composition of the cooperating set. Initially (t = 0), the
cooperation network consists of a single group including all

t=0 t=T 

Node 1 Quality Indices 
Decision Accuracy Comm. 

Compl. 
Time 
Compl. 

Disconnect node 2 0.97 4 2 

Disconnect node 3 0.97 4 1 

Disconnect node 4 0.97 4 2 

No changes 0.97 6 2 

Node 1 

Node 2 Node 4 Node 3 

Node 5 Node 6 

Node 1 

Node 2 Node 4 Node 3 

Node 5 Node 6 

Fig. 2. The dynamic evolution of the cooperation network at two different
time instants, for a network composed of six sensor nodes. Hexagons represent
sensor nodes, and links represent cooperation relationships. The upper part of
the figure highlights which considerations drive node 1 not to cooperate with
node 3.

sensor nodes. Such configuration corresponds to the best case
for classification accuracy, and to the worst case for time and
communication complexity. When optimization is performed
(t = T ), node 1 computes the values of the quality metrics
for all of its possible decisions about cooperation. Multi-
objective optimization results into disconnection from node 3,
as this decision allows to reduce both time and communication
complexity while leaving classification accuracy unmodified,
as shown by the table on top of the figure.

A. Outlier Detection

Using Bayesian networks for outlier detection allows to take
into account the probabilistic dependency between random
variables. Formally, BNs are represented as a direct acyclic
graph whose nodes correspond to such variables, and are con-
nected by directed links representing causal relations among
them.

In ADOD, each node of the WSN implements only a
portion of a BN, and whenever a sensor node cooperates
with other nodes, its portion of the BN is connected to those
residing elsewhere. A single BN portion consists in a hidden
variable and a group of local evidence variables. The hidden
variable is associated with the class of the current sensory
reading, while the local evidence variables depend on temporal
correlation within readings gathered by a single node. The
connection between two BN portions occurs via the insertion
of shared observable variables, expressing spatial correlation
within readings gathered by different nodes.

This approach can be instantiated in different ways by
varying the set of classes to be detected, as well as lo-
cal and shared variables. In our proposal, the hidden vari-
able c in each node can take upon one of the follow-
ing values: {spike, noise, stuck-at, correct}. The
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Fig. 3. Bayesian network structure for: (a) single node, where the evidence
consists only of local features and (b) two cooperating nodes, where the
evidence consists of two set of local features, one for each node, and a set of
shared features.

set of local observed variables is L = {l1, l2, l3} =
{inner-gradient, repetitions, variance}, where l1 is
computed as the difference between the last two readings;
assuming that rt indicates the last reading, l2 is computed as
the number of consecutive repetitions of rt; l3 is computed
as the variance of the last K readings. Finally, the set of
shared observed variables contains just one component which
depends only on the last readings of nodes i and j, defined as
Si,j = {si,j,1} = rit − r

j
t .

It is worth pointing out that the structure of BNs in ADOD
strictly relies on the active cooperations between sensor nodes.
Let us represent the communication network as a graph G =
(V,E), where V indicates the set of sensor nodes, and E is
the set of communication links; the cooperation network is a
graph G′ = (V,E′), where E′ ⊆ E, and the presence of a link
ei,j in E′ indicates the active cooperation between nodes i and
j. In order to build the BNs, as a first step, each sensor node
i is mapped onto a BN composed by a hidden variable ci, a
set of local observed variables Li, and a set of causal links
from the hidden variable to the observed ones, as shown in
Figure 3(a), where the set of local variables is represented as a
single node. As a second step, each link ei,j in the cooperation
network is mapped onto a new node Si,j representing a set of
shared variables, and the corresponding causal links from ci
and cj toward variables in Si,j . Figure 3(b) shows the Bayesian
network resulting from the cooperation of two sensor nodes,
composed by two naive Bayes classifiers connected through a
set of shared variables.

More formally, if the Bayesian network is represented as
B = (X,R), where X is the set of random variables and R is
the set of links representing causal relations, the mapping from
the cooperation network to the Bayesian Network is defined
according to the following rules:

1) i ∈ V → ci ∈ X ,
2) i ∈ V → Li ∈ X ,
3) i ∈ V → 〈ci, Li〉 ∈ R,
4) ei,j ∈ E′ → Si,j ∈ X ,
5) ei,j ∈ E′ → 〈ci, Si,j〉 ∈ R,
6) ei,j ∈ E′ → 〈cj , Si,j〉 ∈ R.
Figure 4 shows how the decisions taken by a single node

affect the whole set of BNs. When optimization occurs (t =
T ), the shared variables S1,3 are deleted to reflect the choice
by node 1 about disconnecting from node 3. As a result, two
independent BNs are created.

Given the BNs built as described, outlier detection amounts
to finding the most probable classes for sensory readings of
participating nodes. With regards to a single BN, it means
determining the set of optimal classes c∗ = (c∗1, ..., c

∗
N ) char-

acterized by the maximum value of the a posteriori probability
conditioned by the considered evidence. This may be defined
as a Maximum a Posteriori (MAP) problem as follows:

p(c1, ...., cN |L1, .., LN , S1,2, ..., SN−1,N ) =

=
∏

i
j∈CN(i)

p(Li|ci)p(Si,j |ci, cj)p(ci), (1)

where CN (i) represents the set of neighbors of node i in the
cooperation network.

The conditional probabilities p(Li|ci), p(Si,j |ci, cj), and
p(ci) are computed for each node through off-line supervised
learning, via a frequentist approach based on a set of previ-
ously collected and classified readings.

It is worth noting that in practice no sensor node is explicitly
aware of the structure of the whole BN, which is rather
distributed over the sensor network. Its definition as a whole
has the sole purpose of defining the distributed inference
process and the rules that each sensor node applies in order to
compute its own belief. Whenever a node gathers a reading,
it initially computes local observed variables, and then it
exchanges its reading with cooperating nodes to compute
shared variables; finally they all run the distributed inference
procedure to compute the solution of the MAP problem.

In our implementation, we chose to use the well-known
“max-product” inference algorithm [32], [36], that is a
convergecast-broadcast message-passing procedure based on
a flow of belief within the cooperating cluster. We chose to
adopt the “max-product” algorithm, which has been defined
for probabilistic graphical models, such as Bayesian networks,
Markov random fields, chain graphs, because it allows to
exactly compute the joint probability over a BN, and because
of its formulation as a message passing procedure, which
naturally prompts for an implementation as as a distributed
algorithm. Moreover, if the BN is structured as a poly-tree,
the algorithm is characterized by a polynomial computational
complexity, which is particularly suitable to the strict require-
ments of a WSN.

In the max-product algorithm, each sensor node plays one
of the following three roles, according to the information
provided by the hierarchical routing algorithm, and to the
structure of the cooperation network:

• leaf: a node that has no child;
• intermediate: a node that has a parent and at least one

child;
• root: a node that has no parent.

Each leaf starts the inference algorithm by setting its initial
belief about the class of its last reading to p(ci|Li), thus
exploiting only its local evidence; then it starts the converge-
cast message-passing procedure. At each step of the converge-
cast procedure, each node i, after receiving all convergecast
messages from its children, sends the following convergecast
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Fig. 4. Evolution of the BNs for a simple WSN consisting of six nodes, according to the decision of node 1 disconnecting from node 3, as described in
Figure 2.

message µi→j(cj) to its parent j:

µi→j(cj) = max
ci

φ(ci, cj), (2)

where µi→j(cj) is a vector dimensioned as the set of possible
values of cj , and the matrix φ(ci, cj) represents the joint belief
about the class of the last reading sensed by i and j, given
the local evidence of i, the shared evidence of i and j, and all
the local and shared evidences of the subtree rooted at i.

The φ(ci, cj) matrix is computed as follows:

φ(ci, cj) = p(ci)p(Li|ci)p(Si,j |ci, cj)
∏

z∈CN (i)/j

µz→i(ci),

(3)

where the product is replaced by 1 if node i is a leaf.
At the end of the convergecast phase, the root node r

computes its optimal class label assignment as:

c∗r = argmax
cr

p(cr)p(Lr|cr)
∏

z∈CN (r)

µz→r(cr). (4)

Afterwards, the root node starts the broadcast procedure that
allows intermediate and leaf nodes to compute their optimal
class given the one of their respective parent. Each child node
i computes its optimal label, after receiving the optimal class
of its parent, c∗j , as follows:

c∗i = argmax
ci

φ(ci, c
∗
j ). (5)

Moreover, each node is able to compute the probability of
classification error pierr as follows:

picorr = p(c∗i |L1, ..., LN , S1,2, ..., SN−1,N ) = φ(c∗i , c
∗
j ),

pierr = 1− picorr, (6)

where picorr is the probability that the chosen class label c∗i is
correct, given all the evidence within the cluster. The previous
formula represents the marginalization of Equation 1, with
respect to the other class labels, and is equal to the belief
φ(c∗i , c

∗
j ).

For the sake of simplicity, the above description assumes
that computation in nodes is triggered after each reading;

however, especially when considering high-rate phenomena,
it is more efficient to buffer a number of consecutive readings
before transmission; in our practical implementation we used a
slightly modified version which runs the inference algorithm
on data tuples, thus minimizing the overall number of ex-
changed messages.

B. Neighborhood Selection
In order to find the optimal structure for the cooperation

network, we propose a dynamic and distributed algorithm,
where each sensor node chooses the neighbors to cooperate
with, on the basis of the values of some quality metrics
associated with the different configurations. Our algorithm
aims to identify the network configuration which corresponds
to the optimal trade-off among classification accuracy, time
complexity and communication complexity. Neighborhood se-
lection is performed locally by each sensor node, through
Pareto optimization that allows to consider more than one
conflicting objective function. Pareto optimization is suited for
problems involving multiple objective functions that require
to be simultaneously optimized, when these functions are
characterized by non-comparable measurement units, and thus
it is not possible to combine them into a single objective
function [37], [38]. In a multiple-objective problem, a single
solution which simultaneously optimizes all the considered
functions may not exist. In such case, Pareto optimization
allows to find a set of optimal solutions, named Pareto
optimal front, which can be detected through a polynomial
algorithm [39], [40]. The choice of a single solution inside the
Pareto front has to be made according to specific application
criteria.

In our system each node can select its neighborhood by
making a decision d about connecting to or disconnecting
from some nearby node. The node evaluates the fitness of
each available decision by means of a quality vector Qd. In
order to determine the best decision to be taken, we adopt the
Pareto dominance as an order relation.

A decision d1 Pareto dominates another decision d2, if d1
outperforms d2, with respect to all the considered quality met-
rics. If Qd1 and Qd2 are the quality vectors of the considered
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decisions, and a minimization problem is considered, then the
Pareto dominance of d1 with respect to d2 is expressed by the
following equation:

d1 � d2 ⇔ {∀k = 0, . . . , n⇒ Qd1(k) 6 Qd2(k)} . (7)

A decision can be considered Pareto optimal if it is not worse
than (i.e., dominated by) any other decision:

d∗ = {di ∈ D : ∀dj ∈ D, dj 6= di ⇒ di � dj}. (8)

Furthermore, we propose to consider a constrained op-
timization problem, where it is possible to impose some
application-specific constraints about the quality metrics. If
v is the vector of such constraints, then a decision d is said
to be admissible if and only if d � v, that is:

∀k = 0, . . . , n⇒ Qd(k) 6 v(k). (9)

Neighborhood selection aims to find the best decision d∗

that steers the cooperating node list CN (i) toward the config-
uration characterized by an optimal quality vector Qd∗ without
violating the constraints v.

Each decision by node i corresponds to a single atomic
action; in particular i can choose to connect to or disconnect
from one of its neighbors, or to leave the cooperating node
list unchanged (this decision is named do-nothing).

The method proposed here can be generalized with respect
to any set of quality metrics. We propose to consider classifi-
cation error, time complexity and communication complexity,
so that the quality vector is defined as:

Qd = (qerr, qtime, qcomm). (10)

Considering a specific time t, the first metric, qerr, repre-
sents the average classification error of cooperating neighbors,
over a time window of size T , and is defined for node i as:

qierr =

∑
j∈CN(i)

t∑
t̃=t−T+1

pjerr(t̃)

|CN(i)| · T
. (11)

The second metric, qtime, is the time complexity, measured
as the number of rounds necessary for a node to classify its
current readings [41]; such metric is related to the delay of

the outlier detection algorithm. As shown in [33], the time
complexity of max-product algorithm for node i is

qitime = 1 + depth+ disti, (12)

where depth is the depth of the whole tree underlying the
cooperation network and disti is the distance of node i
from its root node, as will be detailed later. Such value, for
the current configuration of the cooperation network, can be
simply evaluated by piggybacking some counters during the
max-product algorithm; during the convergecast phase, leafs
start individual counters which are incremented at each hop
toward the root, and let nodes store the depth of the subtrees
rooted at their children in a vector named ST . Each node
informs its parent about the maximum depth of its subtrees
in order to allow the root node to compute the depth of its
cluster within the cooperation network (as the maximum depth
of its subtrees). In order to assess possible modifications of the
cooperation network, each node needs to predict how a change
in its cooperation list may affect qtime, as described in Table I.

The third metric, qcomm, corresponds to the communication
complexity of the outlier detection algorithm, that is the num-
ber of messages required for the algorithm to converge [41].
Such metric is directly related to the energy consumption of
the WSN, and thus to its lifetime. Indeed, since radio is the
most energy-hungry component for WSN nodes, the greater
the number of messages exchanged by the algorithm, the
greater the energy consumption for a single sensor node, as
stated by the authors of [42]. In the following, we will prove
that the number of messages required by ADOD (per sensor
node) is proportional to the number of cooperating neighbors;
thus the heuristic adopted by node i for estimating the third
metric is:

qicomm = |CN(i)|. (13)

The computation of these metrics requires that each node
collects ST and the mean values of pjerr, dist

j and qjtime
from its neighbors in the communication network, before
performing the neighborhood selection algorithm.

In summary, node i evaluates the impact of changing its
cooperating node list by predicting the future values of the
quality metrics for the decisions of connecting to or discon-
necting from each neighbor in the communication network;
all decisions violating the specified constraints are filtered out.

TABLE I
PREDICTED CHANGES FOR qtime FOR DIFFERENT RECONFIGURATION ACTIONS.

Action Description qtime

action = (connect, j) and j
will become the new parent

i is the root of its cooperation network, and has to evaluate how its
subtree affects the structure of the new cooperation network

qitime = max{qitime + 2 + 2distj , qjtime + 1}

action = (connect, j), and j
will become a new child

i has to evaluate how the subtree of the new child affects the structure
of the new cooperation network

qitime = max{qitime, q
j
time + 1 + 2disti}

action = (disconnect, j), and
j is the current parent

i will became the root of its cooperation network; it has to evaluate the
depth of the subtrees rooted in its children k

qitime(action) = max
k
{ST (k)}+ 1

action = (disconnect, j), and
j is a child

(1) if the subtree rooted in j is the main cause of the current qtime, then
in the new configuration another child k will affect such value;

qitime = max
k 6=j
{ST (k)}+ 1 + 2disti

(2) otherwise, the current qtime is due to another area of the cooperation
network, and thus such change does not affect the qtime metric.

qitime = qitime
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Finally, the surviving decisions are ordered by using the Pareto
sorting algorithm proposed in [39] that computes the Pareto
optimal front. If several solutions belong to the Pareto optimal
front, one among them is selected randomly.

C. Complexity Analysis of ADOD
ADOD is a fully distributed algorithm and each sensor node

runs the same code, as described by the high-level description
reported in Figure 5.

In order to perform outlier detection, the module takes
as input the K most recent sensory readings and computes
the most probable class to which the last reading belongs,
the probability of a classification error and the estimated
quality metrics for the current configuration of the cooperation
network. Those K readings are used to compute the set of
local observable variables Li. Moreover, node i shares its
last reading with its cooperating neighbors and receives their
readings in order to compute the set of shared observable
variables Si,j . Finally, node i performs the convergecast and
the broadcast phases of the max-product in order to update its
belief about the classification of its last reading, and to acquire
some structural information about the current cooperation
network, namely cluster depth, the depth of its subtrees, and
its distance from the cluster root.

Every T time steps, a reconfiguration of the cooperating
node list CN occurs; the neighborhood selection module uses
the current cooperating node list CN to compute the conve-
nience of the possible actions (connecting/disconnecting/do-
nothing) by means of Pareto optimization. Non satisfactory
actions are rejected by comparison against the constraint
vector v. Neighborhood selection eventually produces a new
cooperating node list, which will be used by outlier detection
for the subsequent T time steps. If a node decides to connect
to or disconnect from another node, it sends a message in order
to allow that node to properly update its own cooperating node
list.

In order to prove the suitability of ADOD for a WSN we
performed a complete complexity analysis of ADOD.

Computational Complexity. The computational complexity
of ADOD is assessed by individually considering the compu-
tational complexity of its functional blocks.

The outlier detection module performs probabilistic infer-
ence over a distributed Bayesian network. Such inference has
been proved to be NP-hard; however, if the BN is loop-free,
it becomes polynomial. The following theorem proves that
starting from a loop-free communication network also the
resulting Bayesian network is a loop-free graph.

Theorem 1: If the routing algorithm builds a connected loop-
free graph G = (V,E), then the resulting Bayesian network
B = (X,R) is also loop-free.

Proof : For the sake of simplicity, and without loss of
generality, let us consider the particular case G′ = G, i.e.
E′ = E. Proving that, when E′ = E, B is loop-free, implies
that this stays true also when E′ ⊆ E. This theorem is proved
by induction:
• Base case 1: If G = ({1},∅) then the mapping G→ B,

imposed by the construction rules, produces a loop-free

Data: i the node id; t, the current time step;
Z the vector of the last K readings;
CN , the current cooperating node list;
v, the vector of constraints.

Msg from i to j: Mmeas :
[
rit
]
;

Mconv : [µi→j(cj), STi];
Mbroad : [c∗i , depth, disti];
Mnotif : [decision] .

begin block Outlier Detection:
Compute local observable variables Li;
Exchange the last reading with nodes in CN (send and receive
Mmeas msgs);
Compute shared observable variables Si,j for all j ∈ CN ;
//— convergecast phase —
if i is a leaf

Compute the initial belief bel using Equation 3;
Set ST ← [0];
Send Mconv to parent node in CN ;

else
Wait for Mconv from children in CN ;
Updated bel and ST according to received messages;
Send Mconv to parent node in CN ;

//— broadcast phase —
if i is the cluster root

Compute depth according to received messages;
Set disti = 0;
Compute c∗ using Equation 4;
Send Mbroad to children in CN ;

else
Wait for Mbroad from parent node in CN ;
Compute c∗ using Equation 5;
Update disti and depth according to received messages;
Send Mbroad to children in CN ;

Compute pierr;
Compute current quality metrics Q.

return → c∗, pierr , Q, disti, depth

begin block Neighborhood Selection:

if received Mnotif messages
Update CN ;

do (every T time steps)
Compute qitime;
Exchange distj , qjtime, and pjerr , averaged over last
K readings, with neighbors in the
communication network;

for all decision d ∈ D
Compute quality vector Qd;
Filter d if not d � v;

Pareto sort (d1, d2, ..., dn)→ d∗;
Update CN according to the decision d∗;
if d∗.action==disconnect || d∗.action==connect

Send Mnotif to d∗.id-neighbor;
return → CN

Fig. 5. ADOD Algorithm.

graph (see rules 1, 2, 3 for the definition of a BN on page
4), as shown in Figure 3(a).

• Base case 2: Let us consider G = ({1, 2}, {e1,2}). For
the base case 1, node 1 and node 2 correspond to a pair of
loop-free structures. The mapping of e1,2 adds the shared
variables set S1,2 and two links from c1 and c2 directed
toward S1,2 (rules 4, 5, 6). This construction produces a
loop-free structure (see Figure 3(b)).

DRAFT



8

• Inductive case: Let us assume that for |V | = N the
corresponding B has a loop-free structure. When a new
node j is added to the communication network, its new
representation is Gnew = (V ∪ j, E ∪ ei,j). This is
due to our assumption that the communication network
is a connected and loop-free graph, the new node has
to be connected exactly to one node i belonging to V .
Adding node j, according to the construction rules, again
produces a loop-free structure: the mapping of node j
corresponds to a loop-free structure (rules 1, 2, 3) and
the mapping of ei,j (rules 4, 5, 6) produces a loop-free
structure according to the base case 2. Thus Bnew built
over Gnew has a loop-free structure.

We demonstrated in a previous work [33] that, in the
worst-case, the computational complexity of the max-product
algorithm running over a loop-free Bayesian network is equal
to O(|C|2(kf + |N(i)|)) for sensor node i, where |C| is
the number of outlier classes, kf is the number of observed
variables and |N(i)| is the number of neighboring nodes of i
in the communication network.

The neighborhood selection block relies on the Pareto sort
algorithm proposed in [39], whose complexity is O(M |D|2),
where M is the number of objective functions and |D| is the
number of decisions to be analyzed. Since, in our approach,
the possible actions for a node only include either toggling its
connection to a neighbor, or do nothing, then the number of
possible actions is equal to the size of the neighborhood in
the communication network incremented by one. The compu-
tational complexity therefore is O(M(|N(i)|+ 1)2).

The average number of operations of ADOD, for any sensor
node at each time step, is:

O

(
|C|2 (kf + |N(i)|) +

1

T
M
(
|N(i)|+ 1)2

))
=

= O

(
42 (4 + |N(i)|) +

3

T

(
|N(i)|+ 1)2

))
=

= O

(
|N(i)|+ 1

T
|N(i)|2

)
, (14)

since neighborhood selection occurs only every T time steps.
The number of operations per sensor node is polynomial,
which makes ADOD suitable for execution also on devices
with limited resources.

Communication complexity. The communication complexity
per single sensor node corresponds to the number of messages
required by ADOD. Such messages are due to the initial
exchange of readings for the computation of shared variables,
to the convergecast and the broadcast phase of the max-
product, and finally to the communication of reconfiguration
actions after the neighborhood selection.

The initial exchange of readings involves all the cooperative
neighbors for a total amount of |CN (i)| messages. The con-
vergecast phase only requires each node to send one message
to its parent, while during the broadcast phase, each node
needs to communicate the chosen class label for its sensory
reading to all of its children, which requires |CN (i)| − 1
messages. The number of messages due to the neighborhood

selection (one message every T time steps in the worst case)
can be considered negligible.

The total number of messages sent by each node running
ADOD amounts to 2|CN (i)|, and its communication complex-
ity is O(|CN (i)|).

Time complexity. ADOD does not require explicit synchro-
nization of the nodes’ clocks, nevertheless the interaction
between nodes requires their coordination during the broadcast
and covergecast phases. More specifically, each step in the
flow of belief within a cooperation network can be regarded
as round of a synchronous algorithm. As a consequence, the
time complexity of ADOD can be evaluated as the number
of rounds between sensory measurement and the relative
classification, according to the definition provided in [41].

One round is required for the evaluation of shared variables,
a number of rounds equal to the depth of the cooperation
network is due to the convergecast phase, and a number of
rounds equal to the distance of the considered node from the
root is due to the broadcast phase. For a generic node i the
required number of rounds is thus expressed by 1 + depth+
disti, whose values vary between 1 + depth for the root and
1 + 2depth for the deepest leaf. Thus, for a given cooperation
network, the time complexity is O(depth).

V. EXPERIMENTAL RESULTS

The experimental evaluation of the ADOD algorithm aims
to prove its adaptivity with respect to different constraints
on the quality metrics, and with respect to different amounts
of corruption on the sensed data. We built a communication
network arranged as a tree, with depth 8 and maximum
branching factor 3, and composed by N = 100 sensor nodes
measuring temperature for five days at ∆t = 120s intervals.

The dataset used for the experiments was built upon a
public repository available from [43] (Mica2Dot sensor nodes
at Berkeley Lab), through the simulator proposed in [44]. In
particular, 10 sensor nodes were selected as real traces. Nine
additional artificial traces per each real one were obtained by
adding a random Gaussian noise signal N (0, σ2

E) (σ2
E = 0.02)

to the original trace, for a total amount of 90 artificial traces,
and 10 unmodified ones.

Outliers were injected by corrupting the obtained dataset,
according to the method proposed in [6] which assumes the
following models of faults:

Spike : r̃(t) = g × r(t),
Noise : r̃(t) = r(t) +N (0, σ2

N ),

Stuck-at : r̃(t+ i) = r(t) +N (0, σ2
θ), i ∈ {1, .., k}, (15)

where r̃(t) is a corrupted reading at time t, g is a gain constant,
N (0, σ2

θ) is a Gaussian noise with zero mean and σ2
θ variance,

and k is the duration of the stuck-at outlier. We set g = 1,
σ2
N = 2.5, σ2

θ = 10−9, and k = 10.
Performance of ADOD has been evaluated for two different

types of scenarios, named standard and critical. A standard
scenario assumes a uniform distribution of outliers over time
and space; different standard scenarios have been considered
by varying the percentage of outliers from 10% to 50% of
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Fig. 6. Performance of ADOD compared with performance of static benchmarks: classification accuracy when the amount of corruption is (a) 10%, (b) 25%,
(c) 50%; time complexity when the amount of corruption is (d) 10%, (e) 25%, (f) 50%; communication complexity when the amount of corruption is (g)
10%, (h) 25%, (i) 50%.

the total number of readings. In a critical scenario, only a
small portion of the sensor network, and for a limited time,
is corrupted by a high amount of outliers, namely 70% of the
total number of readings. For each scenario, the performance
of ADOD, in terms of classification accuracy, time complexity
and communication complexity, has been evaluated. Learning
the parameters required by the outlier detection algorithm,
namely conditional and a priori probability tables for the BN,
has been performed by using the readings of the first two days
as training set; the remaining readings were used as test set.
Both the training and the test sets contain corrupted readings.

Finally, in our experiments, Pareto optimization is per-
formed every T = 30 time steps; the results shown are
averaged over time windows of one hour and over all the
considered sensor nodes.

A. Standard Scenario

The performance of ADOD was assessed for three different
amounts of corruption, i.e., 10%, 25% and 50% of the total
readings, for different constraints on the considered metrics,
and was compared against two static benchmark topologies.
The first benchmark consists in a connected network where
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G = G′, i.e. the cooperation network and the communication
network coincide; in this case the average time complexity
amounts to 14 rounds, while the average communication
complexity amounts to 6 sent messages, i.e. twice the number
of neighbors in the cooperative list of a single node. This
first benchmark (named “100% active links”) marks the up-
per bound for the three considered metrics. In the second
benchmark, nodes do not cooperate with each other, i.e.
E′ = ∅ and the number of clusters is equal to the number of
nodes; in this case both the average time complexity, and the
average communication complexity fall to zero. This second
benchmark (named “0% active links”) identifies the lower
bound for the considered metrics, as sensor nodes exploit
only temporal correlation among their own readings to detect
outliers.

The aim of the experimental evaluation performed in stan-
dard scenarios is to prove that ADOD is able to adapt the
structure of the cooperation network, and thus of the corre-
sponding BN, according to different imposed constraints, at
the cost of penalizing unconstrained objective functions. The
adopted constraints are the following:

v1 = (verr = 5, vtime =∞, vcomm =∞),

v2 = (verr =∞, vtime = 2, vcomm = 2). (16)

Constraint v1 imposes a bound of 5% on the classification
error while time and communication complexity are both left
unbounded; in this case ADOD will increase the dimension
of collaborative clusters until the bound on the classification
error is satisfied. On the contrary, constraint v2 imposes a
maximum of 2 rounds for time complexity and of 2 messages
for communication complexity, while leaving the classification
error unbounded; this means that ADOD will break enough
links in the cooperation network, so as to obtain clusters
composed by two nodes at most.

Figure 6 evaluates the performance of ADOD executed
over the static benchmarks and over the dynamic ones, for
three rates of data corruption; the vertical axis in the first-
row diagrams represents classification accuracy, computed as
the percentage of correctly classified sensory readings; in the
second-row diagrams, it indicates time complexity, evaluated
as the average number of rounds required to complete the
outlier detection; in the third-row diagrams, it represents
communication complexity, evaluated as the average number
of messages that each node has to send to its cooperative
neighbors.

The “100% active links” configuration fully exploits spatio-
temporal dependencies among readings and thus it obtains
the best classification accuracy; on the other hand, it requires
the highest time complexity and the highest communication
complexity.

The “0% active links” configuration achieves the best result
in terms of time complexity and communication complexity,
since no communication is required to classify readings, and
nodes can quickly detect outliers by exploiting only temporal
dependencies. This configuration allows ADOD to adequately
perform outlier detection when the amount of corruption is
limited: in the scenario characterized by 10% corruption,

it correctly classifies 96% of the readings, while when the
amount of corruption is 50%, the classification accuracy drops
to 82%. Obviously, in all considered scenarios, the “0% active
links” configuration achieves the worst result for classification
accuracy.

Analyzing the performance of ADOD with a constraint
over classification accuracy (v1), it is possible to note that it
approaches the constraint when the amounts of corruption is
10% or 25%, while it falls slightly below the threshold when
corruption amounts to 50%. The drawback is an increase in
time and communication complexity as the corruption percent-
age increases. In particular, when the corruption amounts to
10%, the mean value for time complexity is 2 rounds, while
it grows to 12 rounds when the corruption rate rises to 50%;
at the same time, communication complexity rises from 2 to
5 messages. In other words, the higher the corruption rate, the
greater the size of the cooperating clusters necessary to achieve
an adequate classification accuracy. Moreover, while classi-
fication accuracy remains close to the “100% active links”
benchmark, the average time complexity and communication
complexity obtain a significant reduction.

Finally, when ADOD has a constraint on time and commu-
nication complexity (v2), it always satisfies such requirement
at the cost of a small decrease in classification accuracy
as the corruption rate increases. The benefit of constructing
small clusters is evident for the scenario characterized by
50% corruption rate; in this case, the average time complexity
and communication complexity are quite close to the “0%
active links” result, but ADOD achieves an increment in the
classification accuracy of about 88% as opposite to 82% of
the benchmark.

B. Critical Scenario

We aim to prove that ADOD is able to automatically tune its
behavior with respect to different percentages of corruption in
sensory data, even if this occurs in different areas of the WSN.
This adaptability corresponds to trading the unconstrained
objective for the constrained one, only in the areas where this
compromise is required.

In such scenario, the whole network was affected by a
corruption rate of 4%, and an additional 66% rate of stuck-at
and short outliers was added for 12 hours within a limited
area consisting of 8 nodes, highlighted in Figure 7. In such
scenario there are no constraints over the considered metrics,

Fig. 7. Sensor nodes affected by an anomalous amount of corruption with
respect the rest of the WSN.
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Fig. 8. Performance of ADOD for a critical scenario where a limited region of the network is affected by faults: (a) classification accuracy, (b) time complexity,
(c) communication complexity.

and ADOD selects, from the Pareto front, the solution corre-
sponding to the highest classification accuracy.

Figure 8 compares the performance of ADOD for the
nodes within and outside the critical area. As expected, be-
fore the anomalous event occurs, the performance of ADOD
does not relevantly change in the two considered areas; in
particular, the classification accuracy approaches 98%, while
time and communication complexity are both close to zero.
When the unexpected event occurs, the performance within
the critical area dramatically drops, while the rest of the
network maintains a better behavior, with a small increase
in time complexity and communication complexity, due to the
cooperation with nodes on the boundary of the critical area.

VI. CONCLUSION

This paper proposed a distributed outlier detection algo-
rithm for WSNs, able to find the optimal trade-off among
three conflicting goals, namely we intended to maximize
the classification accuracy while minimizing time complexity
and communication complexity. Our proposal is based on a
probabilistic inference on Bayesian networks distributed over
the wireless sensor nodes; a Pareto optimization algorithm
is used to adapt the Bayesian network structure by allowing
sensor nodes to choose the best neighbors to cooperate with.

Experimental results proved the capability of our system
to adapt its behavior depending on different dynamics of the
deployment scenario, thus achieving significant reduction in
time complexity and communication complexity at the cost
of a small decrease in classification accuracy if compared to
non-adaptive approaches.
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