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Abstract

In Wireless Sensor and Actuator Networks (WSANs) sensor and actuator devices are connected through radio
links to perform tasks in many different contexts. Conventionally, applications for WSANs are developed using
traditional operating systems which application code is linked with at the end of a cross-compilation process. We
propose instead an alternative approach for building applications on WSANs that is based on interactivity and does
not require time consuming cross-compilation phases. In our development methodology, it is possible to define
procedures and services according to the application target, simultaneously test them and reprogram the nodes
interactively when needed, even after network deployment. The main advantage of our approach is flexibility since
it lets nodes exchange data and executable code, permits to define new syntactic constructs at runtime, and supports
the creation of application-oriented languages.

1 Introduction

Wireless Sensor and Actuator Networks (WSANs) are gaining considerable interest related to the possibility of
combining the benefits of sensing and monitoring of sensor devices with the ability to interact with and modify the
environment, typical of actuation devices [1]. These distinctive features have been exploited in many applications in
medical, industrial, environmental, and agricultural fields, as well as in ambient intelligence scenarios to control
large-scale systems such as energy efficient buildings [2].

In these networks, the need of collaboration among the networked devices, which may differ both in terms of
architecture and capabilities, gives rise to new challenges concerning the network programming and management [3,
4].

Usually, the application development for embedded systems with constrained resources, such as the devices
composing WSANs, conventionally relies on the support of a general-purpose operating system providing basic
services to applications. On the other hand, an operating system offers a rigid architecture which limits any
modification of the source code meaning a deep knowledge of the operating system architecture and functionalities.
The methodology for developing embedded applications using an operating system consists in a chain of phases that
transform the source code into machine code by using compilers, assemblers, linkers and debuggers, and requires to
upload the executable code on the target node by means of some wired in-system programming tool. This practice
makes the programming phase “static” and time consuming since the nodes must be programmed in advance for
any specific task and every change in the code implies to compile and re-upload the whole application. Application
testing can be thus performed only at a late stage of development, and solving the errors highlighted in this phase
implies to correct the code and redo the previous steps involving the generation of the machine code to be loaded on
the node and its test.

Moreover, interaction among nodes, whether sensors or actuators, plays a crucial role in the adoption of such
networks in several applications. Therefore, it is desirable to provide mechanisms for programming and config-
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uring heterogeneous nodes in a homogeneous way, even after their deployment, instead of reprogramming them
manually [5, 6].

These difficulties are more evident when programming WSANs, due to the intrinsic differences of the devices
composing the network and to the absence of standard high-level abstractions simplifying the programming
phases [1].

To overcome these issues, we propose an approach that is based on interactive development of applications on
sensor and actuator nodes even after their physical deployment. The key idea is to have an interactive environment
that runs on nodes, and that is provided with a high-level programming language and an essential but easy to
expand set of functionalities. The simplicity of programming a heterogeneous network is thus achieved by combining
homogeneous primitives for sensors and actuators with symbolic processing of data and code permitted by the
high-level programming language. Our approach offers the programmer the possibility to define new syntactic rules,
supporting the creation of application-oriented languages. Moreover, being interactive, the software development
phase is faster than the traditional approaches based on cross-compilation.

In Section 2 we introduce our methodology and describe our experimental setup. In sections 3 and 4 we
discuss the application of our development approach to sensing and acting tasks. Section 5 presents a sample case
study consisting of a simple remote shell application to demonstrate how our methodology makes the application
development for WSANs easy and fast. Finally, Section 6 reports our conclusions.

2 Interactive Methodology for Application Development

Since programming WSANs is far from being trivial, it is important to ease the application development maintaining
at the same time a certain degree of flexibility. We propose a methodology that avoids cross-compilation and aims to
minimize the time of development by resorting to interactivity. Developing applications in an interactive manner
offers the programmer the possibility to design an application and simultaneously test it. Errors and failures can
be thus highlighted during code drafting. This tends to reduce the time spent in programming because it avoids
compiling and uploading the executable code to the target node before running and testing it.

The need of a language support that hides the hardware complexity and heterogeneity of WSANs, maintaining at
the same time a high degree of expressivity proves itself crucial [7]. Moreover, the language has to be a very versatile
tool to be fully exploited by the programmer, avoiding to impose rigid constraints.

For this purpose, we decided to adopt a Forth based environment as the basis of our software development
methodology [8]. We begin our discussion providing a brief overview about the Forth programming principles.

2.1 Forth: Language and Principles

Forth is not just a programming language. It has particular characteristics that can be seen as principles to be
followed when programming in Forth [9]. As a programming methodology, simplicity is the key requirement of
the application code since understanding a problem the application target aims to solve, means to decompose
it into simpler basic components easy to prototype and describe. Following this criterion, the primary element
of the language is the word, which is comparable to a subroutine or a function in other programming languages.
Unlike other programming languages, calling a subroutine can be as simple as typing its name in a terminal. Word
names are in fact stored in a dictionary along with their definition in terms of executable code. The interactive
environment evaluates input by looking for words in the dictionary and executing their definition. The dictionary
can be seen as a linked list in which each stored word maintains a pointer to the previous defined word. Each
definition contains also a pointer to the memory area containing the related code to be executed. New defined words
are easily added to the dictionary. Forth is based on the explicit management of two LIFO stacks, the data stack and
the return stack. Forth words use the data stack to pass parameters to each other. After a word has been executed,
the result of its execution is pushed onto the stack and similarly, before its execution, the required parameters are
pulled from the stack. Parameter passing is thus implicit. For this reasons, Forth programmers use comments in
form of “stack effect” notation to describe the parameters required and left by a word onto the stack. Using this
notation, each word definition includes the values it requires on the stack before being executed and the values
left on the stack afterwards, separated by dashes. For example, the built-in word + that performs addition is defined as:

+ ( n1 n2 -- n1+n2 )

The rightmost item on either side of the two dashes is the item on top of the stack. So the word + affects the stack
by picking two values, first n2, then n1, and leaving one, the sum n1+n2, on the top. The return stack is used to
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hold return addresses for nested definitions or to store temporary data. Both stacks are directly controlled by the
programmer, who has full control of the system.

Another peculiar feature closely related to the Forth behavior as an “expandable compiler” is the absence of
a rigid predefined syntax. In many contexts, this lack turns into a powerful feature since it makes it possible to
define and add any new syntactic construct considered appropriate. From a purely semantic point of view, the name
of a word should be representative of the task it performs and therefore a suitable choice of the name makes the
application code to coincide with its high-level description.

From the considerations above, the opportunity given to the programmer to create each time its own language
tailored to the specific application purposes, rather than to the development platform, emerges clearly. Furthermore,
a Forth-derived application language may act directly above the hardware layer while maintaining resemblance to
natural language.

With respect to the development of high level applications, the Forth guiding principle of simplicity is thus
equivalent to “component programming”, based on the idea that understanding a problem implies to simplify it,
by decomposing it. Therefore, the first development phase consists of creating a conceptual model of the system
and analyzing the components satisfying the specifications. Eventually, a problem solution will be in the form of a
sequence of words. Since words are defined in terms of previously defined words, this methodology adapt itself to a
twofold approach consisting of a top-down criterion for the application design and a bottom-up approach for its
coding [10]. Such decomposition grants that successive changes to the code affect just the component under scrutiny
rather than the entire application.

2.2 The Interactive Environment

We developed our interactive environment using the AmForth interpreter [11] that we ported to the IRIS Mote AVR
microcontroller based platform. AmForth is itself written in Forth, with the exception of a few words written in
assembly, and allows to explore the AVR microcontrollers in an interactive way via a shell in a serial terminal.

AmForth inherits from Forth the programming model based on the indirect threading and uses an inner interpreter
for code processing. This interpreter performs an infinite loop consisting in checking for interrupts, reading the
instruction pointer pointing to the next instruction to be executed, executing it and jumping back to the interrupt
check (Fig. 1).

The interactive environment is instead provided by the text interpreter. The text interpreter is an endless loop that
processes the input from the current input device and looks in the dictionary for each word found in the input stream.
Indeed, if the word is found in the dictionary it is executed, otherwise the system tries to convert it to a number.

  

Check for 
interrupts
Check for 
interrupts Execute Execute Read next 

instruction
Read next 
instruction

Figure 1: The AmForth interpreter performs an infinite loop consisting in checking for interrupts, reading the
instruction pointer for the next instruction to be executed, executing it and jumping back to check for interrupts.

Conventionally, applications for WSANs are developed using traditional operating systems [12] written in
languages that need cross-compilation. Any code change involves recompilation before code execution. On the
contrary, in our Forth-based environment, subsequent code changes can be made in a simple and interactive
manner with considerable time saving. Application development time can be significantly reduced since the device
being programmed gives its feedback instantaneously and testing can be performed during code drafting. Our
experimental setup consists of sensor nodes deployed in the environment and reachable only wirelessly, and a bridge
node connected to the user computer. The user interacts with this node through the shell and can send messages to
the other nodes in the network. Messages can transport code to be remotely executed, as shown in Figure 2.

2.3 The Iris Mote Platform

In this section, we provide a brief overview of the Iris Mote [13] platform that we used in our experimental setup.
Indeed, our effort in porting AmForth to this platform can be viewed as an example of constructing a minimal
extensible software layer to support higher layers by exploiting the interactive approach.

3



DRAFT
WSANWSAN

BRIDGE NODEBRIDGE NODE

 Amforth shell
> ok

Figure 2: Our experimental setup. The user interacts with the bridge node through the shell and can send messages
to the other nodes in the network.

Table 1: Summary table of words used for sensing tasks. Words are indicated together with their “stack effect”

Word ( before -- after) Description
temperature ( -- temp value) Measure temperature and push the numeric

value onto the stack
luminosity ( -- light value) Measure light and push the numeric value onto

the stack
mic ( -- mic value) Measure sound level and push the numeric

value onto the stack

As the vast majority of the sensor nodes used in WSANs, the Iris Mote is a device with constrained storage,
processing and energy resources. This platform is based on the Atmega1281 Harvard RISC microcontroller running
at about 8 MHz and provided with a 128 KB Program Flash memory, a 8 KB RAM, a 4 KB EEPROM, and a 512 KB
Measurement Flash. Analog Inputs, Digital I/O, I2C, SPI and UART interfaces are exposed through the Iris Mote
51-pin expansion connector used to connect a wide range of external peripherals, such as the MTS310 sensor board
used in our experimental setup.

For wireless communication Iris Mote is equipped with the AT86RF230 transceiver, a low power ZigBee 2.4 GHz
radio supporting IEEE 802.15.4, 6LoWPAN, RF4CE and ISM applications. The platform also includes a DS2401 chip
containing a 64 bit ROM (storing a 48 bit serial number, an 8 bit CRC, and an 8 bit Family Code) providing a unique
identifier for the device that is used as MAC source address.

Porting AmForth to the Iris Mote platform required us to extend the AmForth dictionary, which is a quite
large subset of the ANS94 Forth standard, in order to create an essential collection of definitions for the common
functionalities usually needed by applications. To achieve this goal, we defined Iris Mote specific words as well as
some more generic and platform-independent words. Some specific words are necessary to deal with the on-board
radio in order to enable frame reception and transmission, and power down. Other words are not tied to specific
hardware implementation and can thus easily work on different platforms. For example, we defined some words to
create valid data frames according to the 802.15.4 standard or to interpret incoming messages directly in the inner
interpret loop. These words –a very small word set, indeed– were all that it was needed to define the primitives for
exchanging executable code among nodes with minimal dependencies on the hardware platform (Section 3).

To deal with different platforms, some words strictly related to the specific underlying hardware have a deferred
implementation. These words are executed indirectly through a vector containing an execution code –briefly, xt– that
points to the word to be actually executed. This technique, called “vectored execution” in Forth parlance, allows
to change the behavior of these words at runtime according to the underlying hardware, without affecting other
words that depend on them. For instance, we used deferred word to switch the interpreter input and output sources.
In fact, incoming radio data interpretation requires to redirect the input from the UART, which is the default input
device, to the radio module. Similarly, it can be useful –e.g. to implement the remote shell application described in
Section 5– to redirect the output device, which again defaults to the UART, to the radio.

A comprehensive view of all the word we defined to build our environment for application development is
provided in Figure 3. Words are grouped in word sets according to the specific purpose they serve and their
interdependencies. Three layers of word sets lie above the AmForth pre-defined dictionary. The the two lower layers
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hold the words needed for the Iris Mote implementation, as described previously, while the layer on top is discussed
in detail in the following sections.

This arrangement is not rigid, with fixed abstracted boundaries between layers, but it rather results from the
adoption of a “cross-layer” design in which higher-layer words use previously defined lower-layer words. For
instance, words of the hardware-dependent RF230 word set use words of the hardware-abstracted FRAME one, for
example to set the destination node address before sending a frame.

Although most of these words directly manage hardware components, the expressivity of their implementation
makes the operation of these modules quite understandable and their verification immediate. Moreover, a platform
change requires to redefine just the blue word sets and to change the deferred words vectors.

  

AMFORTH DICTIONARYAMFORTH DICTIONARY

RF230 RF230 

WORDS FOR  EXECUTABLE CODE EXCHANGEWORDS FOR  EXECUTABLE CODE EXCHANGE

Hardware-abstracted words

Hardware-dependent words

ADCADCFRAMEFRAME

MTS310 MTS310 RADIO I/ORADIO I/O

SPISPI DS2401DS2401

Figure 3: The collection of word sets composing our development environment, including those specific to the Iris
Mote platform, defined on top of the AmForth dictionary. The total flash memory footprint of our word sets is less
than 5 KB.

3 Sensing the Environment

Sensing the environment is an important functionality of WSANs. A set of sensors permits to acquire and gather
significant physical measurements, such as temperature, pressure and so on. Such measurements are useful to
sense the realtime environmental conditions and their changes over time. It is also important to ensure that sensor
readings are available in real time and, more in general, whenever deemed necessary. To make this process simple
and consistent with the methodology of development, we defined the high level Forth word ask, which makes a
remote node measure a physical quantity using the proper sensor and send the sensory data back to the sender.

The word is used as such:

ask 〈physical quantity〉

Assuming to have a sensor node named sensor1 in the network, the programmer may query this node about the
temperature. This can be done by typing in the terminal connected to the bridge node the following code:

sensor1 ask temperature

where temperature is a word performing a local measurement that leaves on the stack the sensor reading. In detail,
ask exploits the

〈destination node〉 tell: 〈code〉 :tell

construct, used to send executable code to a node, either sensor or actuator, through simple shell interaction. The
construct execution sends a message to the destination node, with the code between tell: and :tell as payload.
Messages are simply MAC frames. This choice is not a limiting factor as the implementation of more complex
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>  sensor1  ask temperature 

> .s
30 ok

> _

temperature reply tell: ~ :tell

sensor1
 temperature reply tell: ~ :tell

 
30

sensor2

30

sensor1

Figure 4: Interaction through the homogeneous primitive ask. This word creates a message containing executable
code, i.e. a sequence of Forth words that are performed remotely, along with data placed on the stack. In this example,
the code to be remotely executed includes the word performing the sensory measurement and the creation of a reply
message containing the acquired data. Once the message has been received, sensor1 measures the temperature. The
acquired sensor reading is thus left on top of stack and inserted at runtime in the reply message to sensor2 through
the use of a syntactic placeholder. The word reply references the received message sender so that the tell: 〈code〉
:tell construct could answer back.

protocols, such as TCP/IP, is possible by simply defining new word sets exploiting the provided primitives and the
executable code exchange capability of the environment.

The code to be remotely executed may contain syntactic placeholders, such as the tilde symbol (∼) for a single
cell 1 Forth value. A placeholder is substituted with the value taken from the top of the stack at the time of its
evaluation. The remote execution constructs can be nested. In fact, once the message is received, sensor1 measures
the temperature and then replies with the sensor reading to the requesting node, in this case the one operated by the
user, as shown in Figure 4.

The peculiarity of the remote execution primitives is that they are quite generic and can be used interchangeably
by:

• a sensor node to request a measurement to another node, for example to perform distributed computing or
data aggregation;

• an actuator to request the measurement to a sensor or sensors in its radio range;

• the user to request a measurement to a node.

Table 1 summarizes the words used to perform local measurements along with their meaning and the data stack
effect.

4 Acting on the Environment

The presence of actuators in the network adds novel design opportunities to wireless sensor networks [14]. For
instance it provides the ability to make decisions based on the data acquired by the sensors that, in turn, can be used
to take appropriate actions that influence and modify the environment. Also in this case it is necessary to provide
mechanisms to interact with the actuators that are both simple and expressive, and allow the user to program the
actuators so that conditions could be modified in real time when acting on the environment.

Usually WSANs are highly dynamic, thus interactive programming seems to be the most appropriate development
methodology.

Assuming to have an actuator node in the network named actuator1, the programmer may tell this node to take
a specific action if certain current conditions are met. In our model this is simple and quite understandable. If the

1Forth value sizes are expressed as multiples of a cell, conventionally as large as a host processor data register. Standard Forth arithmetic
operators use either single or double cell values.
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programmer decides to change the action conditions, he can send to actuator1 another message just by typing in
the terminal:

actuator1 tell: sensor1 ask luminosity 30 < if light on then :tell

In the example, actuator1 is told to ask sensor1 about the luminosity value. The sensor reading is thus sent
back to actuator1 which turns on the light if the luminosity value is less than 30. If the programmer decides to
change the action conditions, he sends actuator1 another message by typing in the terminal:

actuator1 tell: sensor1 ask luminosity 50 < if light on else light off then :tell

or by making actuator1 query another node:

actuator1 tell: sensor2 ask luminosity 50 < if light on else light off then :tell

The last two examples show how it is possible to directly interact through the shell with an actuator device just by
sending it code for immediate execution. On the other hand, in order to create more complex applications involving
acting devices, new words may be easily defined, for example to set a different luminosity thresholds, or to store all
the possible actions as new defined words of their dictionaries.

For instance, let us suppose it is required to write the application code for an actuator device that periodically ask
the luminosity value to a sensor node so that if a luminosity measurement is under the minimum required luminosity
threshold, the light be turned on.

First of all, a variable indicating the threshold is defined. The user can interactively change the actuator’s behavior
just by sending it a message for changing its threshold value or, more drastically, by redefining the word representing
the action under consideration.

At a glance, we need a word to ask the luminosity value, a word to set its threshold, and a word to perform
the action triggered by luminosity exceeding the threshold. Listing 1 shows a code sample on the actuator node to
achieve this goal.

Listing 1: Code of a simple application acting on the environment according to the luminosity value

1 : every -minute ( xt -- )

2 60000 every

3 ;

4
5 variable threshold

6
7 : switch -light ( value -- )

8 threshold @ < if light on else light off then

9 ;

10
11 : light -action ( -- flag )

12 sensor1 ask luminosity

13 switch -light

14 stop?

15 ;

16
17 rdefer action

In this code sample, we defined on the remote actuator a minimal word set that is composed of just three words
to perform continuous monitoring of the ambient light at regular intervals. As shown in Listing 1, we defined the
convenient word every-minute using the pre-defined word every that requires on the stack the execution code of
the word to be executed with the time interval expressed in milliseconds as the second stack value. The word to be
executed leaves on the stack a boolean flag to indicate whether or not the repeated execution should be terminated.

The word switch-light describes the action of switching the light to change the environmental luminosity under
the specified condition.

The action to be performed by the actuator device is defined in the self-explanatory code of the light-action

word. The actuator node asks sensor1 about the instantaneous luminosity level and, on the basis of the acquired
value, turns the light either on or off. The word stop? leaves on the stack the flag required by the every word calling
conventions according to some termination rule, as reported in the stack effect of light-action (line 11). For the
sake of completeness, a simple stop? definition to the control-loop end after one hour could be:
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: ++@ ( addr -- value )

dup @ 1+ tuck swap ! ;

variable elapsed -minutes

: stop? ( -- flag )

elapsed -minutes ++@ 59 > ;

For convenience, we also defined the word ++@ used to increment the minute counter while leaving the updated
value on the stack using the standard stack manipulation words dup, tuck and swap.

Since the monitoring action may be performed in different ways according to the application purposes, action is
implemented as a deferred word and therefore its execution code can be set at runtime (line 17). For instance :

actuator1 tell: ’ light -action is action :tell

sets the execution word of action on actuator1 refer to the word light-action.
The application can be made run by typing:

actuator1 tell: ’ action every -minute :tell

Then, if it is required to change the actuator1’s luminosity threshold, the user may type:

actuator1 tell: 50 threshold ! :tell

On the contrary, if it is necessary to change the actuator action, it may be appropriate to remotely define a new word
for the desired actuator behavior, named for example new-action, and then type:

actuator1 tell: ’ new -action is action :tell

Then new-action will be the word to be executed each minute in place of light-action.
The code to trigger the light control interactively on an actuator device may be included in a new word definition

on the bridge node as indicated in Listing 2.

Listing 2: Word defined on the bridge node to initiate the light control application

1 : light -control ( actuator_id -- )

2 [tell:] ’ action every -minute [:tell] ;

Therefore, once the user types

actuator1 light-control

the bridge node sends the code for executing action every minute to the destination actuator device. It is worth
noticing the use of the [tell:] 〈code〉 [:tell] construct for sending code to a remote node which is used inside a
word definition. Figure 5 depicts the interactions described above.

In the end, due to the adopted approach, it is possible to create new words and syntactic constructs for any
application target and to establish adequate action policies –or changing them in real-time– even after the network
deployment.

5 Case Study: A Remote Shell Application

Building applications in an interactive way reduces the development time and allows to simultaneously test the
application. In this regard, the main development tool is provided by the shell. Everything typed at the terminal is
instantly interpreted and executed by the node connected to the shell.

As described in Figure 2, the experimental setup includes deployed sensors and actuators nodes, and a bridge
node connected to the user computer. The user interacts directly with the shell of this node as a means to send both
data and code to be remotely executed.

In this section, we completely describe a simple application to demonstrate the simplicity of the proposed
development methodology. The application is a telnet-like remote shell that allows to transparently interact with the
shell of the bridge node as if it were the shell of a remote node, either sensor or actuator.

This application can be useful in different contexts as well as for debugging operations, to inspect the state of a
remote node or to display the sensor readings as if the remote node were physically connected to the programmer
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actuator1

sensor5
sensor2

sensor3

sensor4

sensor1

> actuator1 light-control
ok
>_

1

2 3

41 ' action every-minute

luminosity  reply tell: ~ :tell

80

1

12

13

Figure 5: Sequence of interactions among nodes in the light control application. Steps 1-2 involve exchange of
messages containing executable code. In step 3 a message containing a single cell value is sent. Actual content of each
message is shown in the legend. Once the first message arrives, actuator1 performs action, sending a message to
sensor1 asking for the luminosity value. Then, sensor1 measures luminosity and sends the value back to actuator1

that executes switch-light. Its threshold value is compares with 80 and the light is turned on (step 4). The sequence
continues indefinitely as execution is restarted every minute from step 2.

console. During code drafting, the programmer can interactively test its operation and verify the application is
working properly.

What we discuss in this section is a coding example with the main purpose to show the readability and expres-
siveness of the code and the simplicity of development. Nevertheless the code is fully functional, and has been
extensively used in our experimentations. Indeed, with hindsight, the remote shell application can be considered as
a completeness and consistency test for our approach. In fact, to implement this essential application, we defined
incrementally the words we needed, testing them during the development phase. Summarizing, we defined:

• words to redirect the output to the outgoing message;

• words for substituting code at runtime;

• syntactic structures to send data and code in a symbolic way;

• words to redirect the input to the radio and inject the ingoing message into the inner interpret input buffer.

The almost complete remote shell application code is shown in Listing 3. A few additional words are omitted and
their description can be found in Table 2.

Listing 3: Code for a simple remote shell application

1 80 constant cmd -maxlen

2 variable cmd cmd -maxlen cells allot

3 variable cmd -len

4 variable node_id

5 variable timeout

6
7 : input -send ( -- )

8 cmd cmd -len @

9 node_id @ [tell:] ∼s [:tell] ;

10
11 : rshell -task ( -- )

12 payld -reset

13 input -send

14 timeout @ wait -answer if
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15 payld -print then ;

16
17 : user -input ( -- )

18 cmd cmd -maxlen accept ( -- len )

19 cmd -len ! ;

20
21 : close ( -- )

22 node_id @ [tell:] -radio -output

23 [:tell] quit ;

24
25 : rshell -loop ( -- )

26 begin

27 cr ." rsh >" user -input

28 close?

29 if close

30 else rshell -task

31 then

32 again ;

33
34 : on-timeout ( -- )

35 ." Connection timeout ." cr ;

36
37 : welcome -msg

38 ." Welcome to the remote shell

39 application !" cr

40 ." Enter ’close ’ to close the

41 application" cr ;

42
43 : rshell ( id -- )

44 welcome -msg

45 2000 timeout !

46 dup node_id !

47 [tell:] +radio -output [:tell]

48 rshell -loop ;

Table 2: Summary table of additional words used in the remote shell application

Word ( before -- after) Description
+radio-output ( -- ) Redirect the output to the radio. This word is

part of the Radio I/O word set
-radio-output ( -- ) Redirect the output to the UART. This word is

part of the Radio I/O word set
radio-input? ( timeout -- flag ) Check for incoming radio messages. If no mes-

sage arrives before timeout milliseconds leave
false on the stack, otherwise leave true

payld-reset ( -- ) Set to 0 the incoming payload length and its
current pointer

payld-print ( -- ) Display the incoming frame content (i.e. the
payload)

wait-answer ( timeout -- flag ) Wait for incoming radio frame for a predefined
period of time specified by the timeout vari-
able. If the timeout expires without receiving
any answer message, an exception handled by
on-timeout occurs

user-input ( -- ) Wait for user input and store its content in
the cmd buffer and its length in the cmd-len

variable for further processing by close? and
input-send
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> node1   rshell
Welcome to the remote shell 
application!
 Enter 'close' to close the 
application 
rsh>  _  

node1

rsh> 1 2 3 .s node1

 1 2 3 .s

rsh> 1 2 3 .s  
 3 2 1 ok
rsh>_

node1

3 2 1 ok

1

2

3

+radio-output

Figure 6: Key steps of the remote shell application execution. First, the welcome message is displayed together with
the remote shell prompt. A message including the code to redirect the remote node output to the outgoing messages
is sent to the remote destination node (1). The user pushes some numbers to the remote data stack and commands to
display the stack content (2). The remote stack is displayed in the terminal (3). The interaction takes place as the
remote node were physically connected with the user computer.

The core word of this telnet-like application is rshell-loop. It consists in an endless loop that displays the
remote shell prompt (line 27) and waits for the input code from the user. If the user types close the application quits,
otherwise the rshell-task word is performed. This word sends the user input to the remote node (line 13). The
bridge node waits for input from the radio, i.e. incoming frames from the destination node (line 14), for at most the
amount of time specified by the timeout variable, which defaults to 2000 ms (line 45). This is implemented as a loop
with timeout. If the timeout expires without receiving an answer from the remote node, a timeout exception handled
by on-timeout occurs, otherwise the bridge node displays the incoming frame content, i.e. its payload (line 15).

To start a remote shell session with the node named node1, using a telnet style convention the user types:

node1 rshell

and an initial welcome message is displayed (line 44). The word rshell stores node1’s address in the variable node id
(line 46) and sends a message to the remote node to switch its output device to the outgoing message (line 47). After
that, it performs the remote shell main loop (line 48).

As a result, the user interacts with the remote node as if the remote node shell were physically connected to the
user computer. Table 2 summarizes the additional words used in the the remote shell application code.

6 Conclusions

The absence of adequate abstractions makes application development on WSANs inflexible and time consuming.
Conventionally, applications for WSANs are in fact developed using traditional operating systems which application
code is linked with at the end of a cross-compilation process. With the aim to obviate these issues, we proposed
an approach to application development based on a high-level interactive programming environment that runs on
nodes and provides an essential but easy to expand set of functionalities. Using our methodology, which avoids
cross-compilation phases, the programmer can count on instantaneous feedback from the system, even after its
physical deployment, that enables the simultaneous verification of the application if code has been modified. The
simplicity of programming a heterogeneous network is achieved by combining homogeneous primitives for sensors
and actuators with symbolic processing of data and code permitted by the high-level programming language, and
by enabling nodes to send executable code to other nodes. The high-level nature of our environment does not
force to use a predefined and rigid syntax, but instead encourages the design of application-oriented languages
through the definition of new syntactic rules. We showed how simply words can be defined that sense and act on the
environment accordingly. We also described the development of a remote shell application for interacting with and
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programming remote nodes. Future work will focus on further use of this approach in order to create complete and
autonomous application working on WSANs.
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