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Abstract—Ambient Intelligence (AmI) systems are constantly
evolving and becoming ever more complex, so it is increasingly
difficult to design and develop them successfully. Moreover,
because of the complexity of an AmI system as a whole, it
is not always easy for developers to predict its behavior in
the event of unforeseen circumstances. A possible solution to
this problem might lie in delegating certain decisions to the
machines themselves, making them more autonomous and able
to self-configure and self-manage, in line with the paradigm of
Autonomic Computing. In this regard, many researchers have
emphasized the importance of adaptability in building agents
that are suitable to operate in real-world environments, which
are characterized by a high degree of uncertainty. In the light
of these considerations, we propose a multi-tier architecture
for an autonomic AmI system capable of analyzing itself and
its monitoring processes, and consequently of managing and
reconfiguring its own sub-modules to better satisfy users’ needs.
To achieve such a degree of autonomy and self-awareness, our
AmI system exploits the knowledge contained in an ontology that
formally describes the environment it operates in, as well as the
structure of the system itself.

I. INTRODUCTION

Ambient Intelligence (AmI) is an application paradigm of
Artificial Intelligence, which focuses on users and their needs,
with the aim of designing intelligent pervasive systems capable
of providing the best possible environmental conditions for
end-users. In order to achieve such objectives, small intelligent
devices are pervasively deployed in the environment, and,
by exploiting Artificial Intelligence techniques, they are pro-
grammed to act autonomously or in a collaborative approach
to learn and satisfy user preferences [1]. The goal is to create
an intelligent environment which feels natural and with which
people can interact easily and effortlessly [2], [3]. However,
traditional programming techniques may not be able to cope
with the AmI paradigm [4], which require more autonomous
systems that can manage and reconfigure themselves, thereby
freeing designers from these demanding tasks. Thus, self-
configuring may well be the key to building truly autonomous
and self-aware agents, capable of acting in an uncertain world,
as suggested by a body of research carried out in the field of
Artificial Consciousness in recent years [5].

Within such a scenario, we propose a multi-layer cognitive
architecture for an autonomic AmI system, which expands on
previous work [6] and is characterized by a sense of self-
awareness, incorporating some aspects of introspection. The
work presented in [6] described a multi-layer architecture

inspired by the structure of the human nervous system [7], but
lacked introspection and autonomic behaviors. In this paper,
our goal is to develop an adaptive system inspired by features
such as self-awareness, embodiment, situatedness, integration,
attention and self-reasoning. It is thought advisable that even
machines and software agents should exhibit these properties,
so as to be more autonomous, thereby reducing operating costs
as well as improving the performance of the system [4].

With these considerations in mind, the introspective behav-
ior of our system is achieved by continuous self-modeling
and self-monitoring activities, performed according to the
Autonomic Computing paradigm. That is, a truly autonomous
agent should rely on an explicit model of itself, of the
environment in which it operates, and of its interactions with
users. Exploiting such extensive knowledge, the system is
thus able to understand the state of the environment and user
preferences, as well as using this knowledge to decide what
actions should be performed next. Furthermore, the internal
model of the agent and the model of the external world should
be described using a common conceptualization, so as to
simplify introspection and self-reasoning [8].

To this end, we decided to exploit ontologies to model
the domain knowledge in a unified and machine-computable
format, in order to drive the process of knowledge abstraction
from raw sensory data up to higher-level concepts. In this
way, the system is better able to understand the interactions
between its cognitive subsystem, its physical subsystem (i.e.,
sensors and actuators) and the environment, thus acting in an
appropriate manner to achieve its goals. By exploiting a rule-
based inference engine to analyze the ontology and reason
about its internal structure, the system is thus able to self-
configure its sub-modules and modify its own behavior at
runtime, in order to minimize energy consumption.

This paper presents the implementation of our proposal in
the context of a Building Management System (BMS) capable
of handling environmental conditions, such as temperature,
humidity and lighting in an office environment, with the
twofold goal of maximizing user comfort and minimizing the
energy consumption of sensors and actuators.

The remainder of this paper is organized as follows. Sec-
tion II analyzes some relevant approaches in the fields of
adaptive behavior and Autonomic Computing. Section III
introduces the paradigm of Ambient Intelligence and presents
Sensor9k, a testbed designed to facilitate reasoning about
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user comfort and energy saving in an office environment.
Section IV outlines the general architecture of the system
proposed here, highlighting the aspects that ensure its adaptiv-
ity and context-awareness. Section V describes the proposed
ontology, which defines the concepts used by the system, that
relate to the environment, the user and its interactions with
it. Section VI gives an outline of the rule-based inference
engine, which allows our system to configure and manage
itself. Finally, Section VII presents our conclusions.

II. RELATED WORK

In the field of Ambient Intelligence, as shown by [9], it is
very difficult, if not practically impossible, to build accurate
mathematical models capable of grasping the complexity and
dynamism of the real world. Therefore, it is necessary to adopt
advanced techniques of Artificial Intelligence to manage the
multitude of devices placed in the environment and build a
layer of distributed intelligence able to handle the uncertainty
inherent in the data collected. Some of the most common AI
techniques used in previous research to study the behavior
of users and learn their preferences have been Bayesian
networks [10], fuzzy systems [11] and neural networks [12].

In such a scenario, the Autonomic Computing paradigm
might be the key to developing truly adaptive and self-aware
agents [13]. The paradigm was originally proposed by IBM,
in analogy to the autonomic nervous system [14], which
allows the human body to maintain the balance between all of
its complex subsystems, responding to unpredictable external
stimuli and overcoming the dangers caused by external agents.

Similarly, computational architectures inspired by such a
model are composed of autonomic elements that are able to
respond to changes autonomously, adapting to the environment
in order to better achieve their goals. A self-configuring
and self-managing AmI system should therefore include and
analyze knowledge about itself and the environment in which
it acts, so as to constantly update its model of the world [15].
By describing concepts from both domains in a machine-
computable way [8], the agent is able to unify the mechanisms
that it uses to reason about the world and about itself,
exploiting the semantic enrichment of processed data.

One issue on which many researchers agree is that an
autonomous agent should not be limited by fixed criteria,
because real environments are characterized by uncertainty,
and not all contingencies can be foreseen at design time.
In this regard, a key aspect of every autonomous and self-
aware agent is its capacity for adaptive decision-making [16],
which allows it to make correct decisions based on the current
situation. That is, it improves its context-awareness so as to
achieve its goals in the best possible way. Several researchers
use concepts such as agency [17] or cognition [18], [19] to
define a set of conditions that an agent must have in order
to be considered truly autonomous and capable of “minimally
cognitive behavior” [20]. The function of cognition, in partic-
ular, is considered a key feature for improving the capabilities
of perception, learning, memory and decision-making of every
autonomous agent [21], and thus constitutes a prerequisite to

developing systems that are truly context-aware and adaptive.
Research into the relationship between the agent and the
environment has also focused on other important features
of autonomous machines, including situatedness, embodiment
and attention [22], [23].

To implement these paradigms, various approaches have
been proposed in the literature. For example, the authors of
[24] propose an architecture based on neural networks that
allows a robot to learn complex sequences of actions so
as to coordinate vision and arms movements. Others have
used genetic algorithms [25], Bayesian networks [26] and
reinforcement learning techniques such as Q-learning [27] to
build robust agents capable of operating in an uncertain world.

III. AMBIENT INTELLIGENCE AND BMS

Ambient Intelligence envisages innovative scenarios in
which intelligent systems assist human beings in their daily
activities, but without the inconvenience of intrusive tech-
nologies which, in this paradigm, remain confined to the
background [3].

AmI techniques are currently used in different contexts
such as care for the elderly, medical assistance, kindergartens,
farm automation, the car industry and Building Management
Systems (BMSs). Our work focuses on the design of intelligent
BMSs, whose main goal is the control of environmental con-
ditions in buildings (e.g., temperature, humidity and lighting),
in order to satisfy user requirements and minimize energy
consumption. In order to accomplish their goals, BMSs need
a sensory and actuator infrastructure constituting their direct
link to the real world. Sensors acquire environmental data
(e.g., temperature, light intensity, noise, humidity, etc.) and
context information (e.g., user presence and user activities),
whereas the actuator infrastructure will consist of all those
physical devices in the building that can influence the state of
the environment (e.g., artificial lighting systems and heating,
ventilation and air conditioning (HVAC) systems).

One fundamental requirement of AmI systems is the low
intrusiveness of the underlying technology. This means that
the sensory and actuator infrastructure have to be character-
ized by a low degree of physical invasiveness. Moreover, its
management should require little interaction with the user, the
requirement which inspired the proposed autonomic behavior.

In this paper, we took as our reference the BMS architecture
proposed in Sensor9k [28], a pervasive testbed whose aim is
to support the development of energy-aware Ambient Intelli-
gence systems. The name of the testbed recalls the fictional
HAL 9000 artificial intelligent system, whose sensory and
actuator terminations permeated the spaceship in “2001: A
Space Odyssey”. The system proposed in this article represents
a further step towards this visionary target, paving the way
for the design of systems aware of their own physicality and
cognitive processes. The physical infrastructure of Sensor9k
exploits the technology of Wireless Sensor and Actuator
Networks (WSANs) [29]. These networks are composed of
a set of small devices, called nodes, which are in most cases
energetically autonomous, programmable, and able to perform
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Fig. 1. High-level scheme of a Wireless Sensor and Actuator Network
(WSAN) installed in an office environment.

small computations on boards and to wirelessly communicate
with each other. Each node can be equipped with different
sensors and can control certain connected actuators.

In our settings, sensors installed on nodes make it possible
to gather information about the environmental state and about
the context, as well as information about the state of the
node itself, such as, for instance, residual battery energy.
Furthermore, by exploiting a set of ad-hoc sensors, it is
possible to monitor the energy consumption of all the electrical
appliances installed in the monitored environment.

Appliances are controlled by the actuators installed on sen-
sor nodes, by means of the transmission of opportune control
signals. Moreover, Sensor9k also lets the user manually control
the available appliances, and apposite sensors capture each of
these interactions. The simpler actuators provided by Sensor9k
are represented by remotely controllable power relays enriched
with the capability of providing information about their cur-
rent state (e.g., the artificial lighting relay controller). More
complex forms of actuators are those controlling domestic
appliances (typically by means of IR remotes) typically found
in homes or offices, such as HVAC systems.

The sensory information acquired by the WSANs, through
the hierarchical communication infrastructure provided by
Sensor9k, is sent to a centralized server, which hosts the
reasoning components. The choice of centralizing reasoning
activity makes it possible to preserve its consistency and
uniqueness [30], even in the presence of a distributed and per-
vasive physical layer. A high-level scheme of the Sensor9k’s
WSAN for an office environment is shown in Fig. 1.

Furthermore, the middleware provided by Sensor9k enables
dynamic tuning of the sensors’ behavior by means of control
messages sent at runtime. By means of these control messages
it is possible, for instance, to tune the sampling rate of
sensor nodes, or to switch nodes to a low-power mode in
order to minimize their energy consumption. In order to
reduce the sensory infrastructure handling effort for the user,
programmability is also exploited by the adoption of replicas
of critical WSAN devices, thereby guaranteeing fault tolerance
and robustness. The whole sensory infrastructure comprises a
set of fully active sensor nodes and a complementary set of
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World	  
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Fig. 2. Architecture of the autonomic Ambient Intelligence system.

duplicate nodes. Replica nodes are started in low-power mode
with data gathering and transmission functionalities disabled.
Listening to control messages is the only active functionality
in low-power mode. A specific control message can switch a
node from this condition to normal functioning mode in order
to activate ambient monitoring. The adaptive system exploits
such features in order to resume its full operability when a
given node switches into fault condition.

IV. ARCHITECTURE DESIGN

The architecture proposed in this paper is inspired by the
paradigms of Ambient Intelligence and Autonomic Comput-
ing. Our goal is to design an AmI system that is able to
self-configure and self-manage, by taking advantage of certain
intrinsic features of human beings, such as introspection and
self-awareness, to improve the adaptivity of the resulting
agent. Using the information represented by the ontologies and
instantiated in the knowledge base of the system, the agent can
then monitor the status of its own sub-modules, dynamically
adapting its behavior to the context, so as to best suit the users’
requirements, according to the high-level policies defined by
administrators.

To achieve this result, the system must be able to aggregate
the raw data fed to it by its own sensory infrastructure,
integrating heterogeneous and distributed information to get
a unified view of the current situation and efficiently plan the
actions that must be performed to satisfy the needs of the
users. Although the Artificial Intelligence literature includes
several techniques for representing the knowledge necessary
for the functioning of such a system [31], [32], the amount
of data collected by sensors in a realistic setting is too great,
and would lead to serious problems in terms of computational
efficiency.

For this reason, our system filters information from sensors,
by using modules that operate at different levels of abstraction
and data mining techniques for the efficient fusion, modeling
and interpretation of these data. As shown in Fig. 2, the



architecture we propose here consists of five main modules,
each of which has a highly flexible and configurable structure:

• a Sensing module, based on Wireless Sensor Networks
(WSNs), which is responsible for collecting the raw
sensory data about the relevant features of the surround-
ing environment and sending that information to higher
levels;

• an Understanding module which processes sensory data,
aggregating and representing them in gradually increasing
levels of abstraction, so as to describe the environment
through high-level concepts, which summarize in a suc-
cinct way the huge amount of data extracted by sensors;

• an Intentional module that directly accesses the ontolog-
ical models of the environment and of itself, and updates
them according to the data collected, deciding the short-
term goals of the system in compliance with a high-level
policy;

• a Reasoning module, which plans the most appropriate
sequence of actions that the system must perform to
achieve the goals set by the Intentional module, so as
to better satisfy user needs;

• an Actuation module that makes it possible to change
the status of the environment, by operating heating, ven-
tilation, air conditioning (HVAC) and lighting systems,
as well as other elements that affect the environmental
parameters.

The key element of the architecture is the feedback loop,
which requires that the system is aware of itself, of the sur-
rounding environment and of their interactions with each other.
This allows the system to keep its world model and self model
constantly updated, based on the interactions between the
physical subsystem, the cognitive subsystem and the external
world.

In other words, by using an appropriate sensory infras-
tructure, continuous monitoring allows the system to identify
relevant events concerning the users and the environment, so
as to start the reasoning and planning processes, and then
initiate the actions that are carried out by means of suitable
actuators. In addition, each of the main modules consists of
sub-modules performing specific tasks within the feedback
loop. The behavior of the system as a whole emerges from
the interaction and collaboration of these subsystems.

As shown in Fig. 3, the Reasoning module is organized into
three different sub-modules, named Planner, Self-reasoning
and World-reasoning. The Understanding module is also di-
vided into three tiers, namely the Subsymbolic, Conceptual
and Symbolic tiers.

The sub-modules implementation can vary depending on
how the architecture is instantiated. For example, as regards
the representation of sensory measurements, the Subsymbolic
tier is responsible for pre-processing the data coming from
sensors, by uniforming the sampling rate and eliminating out-
liers. The Conceptual module is an intermediate tier between
the Subsymbolic and the Symbolic levels, similarly to what
has been proposed in [33], [34]. This tier uses appropriate
clustering and classification techniques in order to identify

Planner	  module

Self-‐reasoning	  
module

World-‐reasoning	  
module

Fig. 3. Details of the Reasoning sub-module.

fuzzy concepts which are then represented in the Symbolic
level.

Fig. 4 shows the data flow among the modules, highlighting
the process of knowledge abstraction from raw sensory data
up to higher-level symbolic data.

The basic sensors deployed in the monitored premises
represent the input devices of the system, and their collected
data are sent to the Understanding module. In addition, the
nodes of the Wireless Sensor Network send information about
their status, thus allowing the AmI system to achieve full self-
awareness and to reason about its own sub-modules. Symbolic
data constitute the input of the Intentional module, which up-
dates the world and self models according to the data collected,
planning the short-term goals of the system and triggering
the Reasoning module and its sub-modules, which carry out
the reasoning and self-reasoning activities. Finally, in order
to close the loop, the World-reasoning module sends action
commands to the actuators, while nodes and sensors receive
configuration commands from the Self-reasoning module.

It is important to note that the Self-reasoning and the
World-reasoning modules can be implemented using different
Artificial Intelligence approaches. For example, in the solution
described here, the Self-reasoning module is a rule-based
system, while the World-reasoning module is based on fuzzy
logic.

V. ONTOLOGY-BASED SELF MODELING

In order to dynamically adapt its behavior to the context
where it is running, an autonomous agent should possess an
explicit model of itself, of the surrounding environment, and of
the ways it can interact with users [35]. Therefore, the system
has to manage a large amount of information that may change
quickly and often. In order to represent such knowledge in
an efficient and machine-computable way, then, it is advisable
to use ontologies, which are documents that formally define
the relationships among a set of terms belonging to a specific
domain [36].

Our ontology, written in the OWL 2 language [37], provides
a uniform terminology to describe the environment and its
properties, the user and his interactions with it, as well as the
system components and their interconnections. Furthermore, it
describes how data flows within the system, highlighting the
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relationships between the sensors and the monitored environ-
mental properties, and accomplishes several objectives:

• it represents in a formal and machine-computable way the
relationships between concepts belonging to the domain
of interest;

• it enables the system to dynamically and autonomously
reconfigure itself, according to the goals defined by the
Intentional module;

• it allows system administrators to define high-level poli-
cies affecting the overall behavior of the system;

• it makes it easy to represent the rules needed to infer
appropriate control actions, taking into account the status
of the environment and the current goals of the system;

• it provides the system with some form of self-awareness,
which in turn allows it to better understand its relation-
ships with the environment.

We adopted a semantic representation that is carried out
by two different ontologies. The first describes the structure
of a generic building management system, and can be easily
reused for several applications, since it is not tied to a specific
scenario. The second ontology extends the more general one
by defining subclasses and individuals, which describe a
specific instance of our application scenario, namely the BMS
for controlling ambient conditions in an office environment.

The ontological description provides important information
about sensors, such as energy consumption, sampling rate,
continuity of monitoring and the node on which the sensor
is installed. Each device perceives a specific environmental
attribute, or acts upon it. These properties can be related to
physical phenomena such as light and temperature, observable
events like user activity, or the status of a particular environ-
mental element, such as a window or an air cooler.

To represent the system architecture within the domain
ontology, we first extended the taxonomic organization defined
in the top-level one with new subclasses, and then instantiated
the actual modules as individuals of these subclasses, so as
to reflect the topological and semantic organization of the
monitored environment. In contrast to the top-level ontology,
in fact, the domain ontology has to be modified according to
the environment, with the involvement of a domain expert. If

the structure of the system changes, the domain ontology must
be updated manually.

As an example of such a process, the domain ontology
particularizes a class of sub-symbolic modules capable of
processing the temperature information, and this class is
instantiated in a set of specific individuals. Each of these
individuals is devoted to the monitoring of a given managed
room. The same process is followed for all other monitored
environmental properties, such as humidity and lighting.

VI. RULE-BASED REASONING

Our implementation of the Autonomic Computing paradigm
is based on the classic monitor-analyze-plan-execute cycle,
which underlies an intelligent control loop [14], as explained
above in the description of the data flow within the sub-
modules constituting the AmI system. The self-reasoning
module uses rule-based reasoning to reconfigure the sensors on
the basis of certain parameters, such as the user’s presence, the
degree of accuracy of the monitored information, the state of
the sensors, their energy consumption, and the residual lifetime
of the battery-powered sensor nodes. A rule-based approach
has been successfully adopted for management tasks in several
distributed systems [38], [39], but this choice is not necessarily
imposed to the other components of the reasoning module, as
explained in Section IV.

Using the knowledge contained in the ontology, the AmI
system is able to understand which sub-modules are needed
to infer certain concepts, and identifies the relationships be-
tween the environmental properties of interest and the specific
sensors that perceive them. The Self-reasoning module, then,
exploits a set of rules in order to infer new evidence and to plan
the sequence of actions that the system must perform. Finally,
at the end of the planning process, the resulting configuration
commands are sent to the sensors.

In order to perform automated reasoning on the domain
and to infer new evidence from the available information, it is
necessary to employ an inference engine capable of processing
ontologies and their logical rules. In particular, to implement
the operations of reasoning and self-reasoning, we adopted

DRAFT



Jess (Java Expert System Shell) [40], a rule-based inference
engine developed in Java.

Jess makes it possible to express logical rules with a LISP
similar syntax, and uses a pattern-matching algorithm to query
the knowledge base and extract the information required by
the system. Each fact contained within the knowledge base is
a true proposition about the world or the system itself, and
belongs to a template, just as every object is a member of a
class in the object-oriented programming style.

Jess templates define the name of a fact, the properties that
a fact possesses and, optionally, the corresponding range of
values that the properties may assume. Four types of templates
are used in our system:

• static knowledge templates, representing the initial facts
known by the reasoner during the setup of the system,
such as the locations of nodes and sensors;

• dynamic knowledge templates, relating to information that
is continuously updated at runtime, such as the status of
sensors and actuators or the presence of users;

• templates representing action commands for the actuators
and configuration commands for the sensors;

• templates relating to the alerts that are sent to admin-
istrators when the self-monitoring modules report any
inadequacy of the system.

Besides generating configuration commands for sensors, the
Self-reasoning module also yields alerts for system adminis-
trators, such as insufficient sensing capability or short sensing
time. This latter event occurs if all the sensors capable of
measuring a particular environmental phenomenon are battery-
powered, and currently register a low level of residual energy.

Jess allows an easy implementation of rules that produce
new knowledge, starting from the information already ac-
quired. Each rule takes the form of an “if <conditions>
then” construct, and it is activated when all its conditions are
satisfied, that is, when the knowledge base contains facts that
match all the antecedents of the rule. Rules are executed only
once for any given set of facts, and are reconsidered only after
the insertion of new facts within the knowledge base.

In order to minimize energy consumption, the system dy-
namically decides whether and how to change the sampling
rate of sensors, depending on the current value of a property
called system-condition, that describes the state of a room.
Considering such a property as input, the system adapts to the
current situation by changing its configuration, its behavior
and its goals so as to focus on the most important aspects
of the external environment. In particular, each condition
is associated with a different set of rules, so the system
responds differently to the same external stimuli depending
on its current condition. In this way, limited resources such
as residual energy in battery-powered nodes can be managed
efficiently, minimizing energy consumption and increasing the
survivability of the whole system. The finite state machine in
Fig. 5 illustrates the possible values of the system-condition
property and the transitions between states.

A stress condition occurs when the amount of energy
currently used is no longer sustainable, i.e., when all the

sensors devoted to monitoring a given environmental variable
are installed on sensor nodes that are battery-powered, and
such devices can guarantee a low level of residual energy.

When the system falls into a stress condition, the Reasoning
module activates a set of special rules in order to minimize
energy consumption and put the system back into a condition
of normal functioning, indicating balanced behavior, and im-
proving the chances of meeting both the short-term and long-
term goals of the system. Finally, the attentive condition is
triggered when users are occupying the monitored premises. In
this state, the system gives priority to user comfort, activating
a set of special rules in order to maximize the accuracy of
monitoring. Some rules are described below which govern
state transitions. For example, when the sensory infrastructure
signals that the user is not present in his office, and the
knowledge base contains at least one statement of short-
sensing-life for a sensor node in the same room, the following
rule places the system into the stress condition:

defrule setStressCondition:
if (no user is in room R) and (∃ “low” battery node in R) then

system-condition ← “stress”

For each environmental property, the following rule checks
that there exists at least one sensor node with a sufficient
residual charge. If this is not the case, the rule sends a short-
sensing-life alert to administrators:

defrule computeSensingLife:
if (all sensors that monitor ambient property AP are installed on

“low” battery nodes) then
send short-sensing-life alert to administrators

More specifically, the system finds all the sensors that
monitor a given property within a room. If all of these sensors
are installed on battery-powered nodes, and if all these nodes
have a low level of residual energy, the system sends an alert
to administrators, warning them in a proactive way.

The minimizeRoomSensing rule makes it possible to infer
that, if the system is in a stress condition, it is necessary
to minimize the monitoring activities for all the measured
quantities in the room in question.

defrule minimizeRoomSensing:
if (system-condition is “stress”) then

for each sensor S in room R do
set minimum sampling rate for S

The previous rule sets the sampling rate of all the sensors
installed in the room at the minimum value, thus minimizing
energy consumption. This is an example of a rule that is only
triggered when the system is in a particular condition, thus
improving adaptability and context awareness.

The attentive condition is accomplished when the following
rule succeeds, triggered by a user entering an office. As shown
by the finite state machine in Fig. 5, this condition has the
highest priority. That is, the system switches to the attentive
condition when the user enters his office, and remains in this
state until the user leaves, regardless of other factors, thus
prioritizing the accuracy of monitoring.

defrule setAttentiveCondition:
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if (user U is in room R) then
system-condition ← “attentive”

When in such a condition, the system triggers a set of rules
that increase the sampling rate of sensors in order to better
monitor the environment and satisfy users’ needs. For instance,
the increaseRoomSensing rule detailed below increases the
monitoring rate of any ambient property characterized by a
low level of accuracy. The rule is triggered only if the system
is in the attentive condition, and hence, indirectly, if a user is
in his office.

defrule increaseRoomSensing:
if (system-condition is “attentive”) and

(∃ “low” accuracy ambient property AP in room R) then
increase sampling rate for AP in R

The rule increases the sampling rate of the sensors, so as
to maximize the accuracy of monitoring. If the sampling rates
of all available sensors are already at their maximum value,
the rule sends an insufficient-sensing alert to administrators,
informing them that the sensory infrastructure of the system
can not adequately achieve the goals set by the reasoner.

The setNormalCondition rule puts the system into the
normal condition, being triggered when the user is not present
in his office and the knowledge base does not contain short-
sensing-life statements related to the current room:

defrule setNormalCondition:
if (no user is in room R) and ( @ “low” battery node in R) then

system-condition ← “normal”

Finally, in cases where any active node consumes all the
residual energy, the activateBackupNode rule leverages the
redundant sensory infrastructure of the WSAN, as described
in Section III, to enable the backup sensor nodes to operate. In
particular, the rule searches all sensor nodes with a very low
battery level and tries to activate the corresponding backup
nodes. If the operation is successful, the system can delegate
the gathering and transmission of sensory measurements to the
backup nodes, which then become fully active and replace the
original nodes in all respects.

defrule activateBackupNode:
if (∃ “very low” battery node N in room R) then

activate backup node of N

The purpose of this special rule is to restore the system from
a stress condition to a normal one, thus implementing the self-
healing capabilities required by an autonomic system. If the
activation of the backup nodes is not successful, the system
signals a discharged-battery alert to administrators, warning
them about the energy shortage and urging the replacement of
the uncharged batteries.

Considering that the activation of the backup nodes in-
creases the survivability of the system and does not involve
a decrease in monitoring accuracy, the activateBackupNode
rule is independent of the active condition, and can therefore
be activated even if the user is present in his office and the
system is currently attentive.

It is worth noting that the rules described here are static
and there is no mechanism for learning them automatically.
The adaptivity of the system lies in the ability to dynamically
modify the state of its sensory infrastructure. Nevertheless, the
proposed rules are generic and do not depend on a particular
instance of the system. Moreover, they implicitly manage
the conflicting goals of maximizing sensing accuracy and
minimizing energy consumption.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes a multi-tier cognitive architecture that
envisages the construction of an autonomous AmI system,
capable of self-configuring and self-managing its sensory
infrastructure. It self-adapts to continuous changes in the
environment for an optimal fulfillment of its own goals. Due
to the great complexity of such systems, their overall design
and specific deployment is becoming increasingly difficult for
human developers. These systems therefore need to be devel-
oped according to the paradigm of Autonomic Computing.

For this reason, the architecture we propose allows for the
representation of heterogeneous sensory information received
as input. Moreover, the entire hardware and software system is
represented in increasing levels of abstraction, so as to describe
the environment and interactions with the system through
high-level symbolic concepts. The system is thus capable
of focusing on those aspects of the external environment
considered the most important at different times, depending on
the context, and thus to manage its resources intelligently and
minimize energy consumption. The ontological representation
adopted here permits prompt modeling and formalization of
the knowledge required to plan the action sequences to be
performed by a rule-based inference engine in order to interact
with the environment.

The self-reasoning module is seamlessly integrated into the
system architecture, thus allowing the autonomic paradigm to
handle the complexity of the external real-world environment.
The system is also able to manage conflicting objectives such
as maximizing the sensing accuracy and minimizing the energy
consumption of sensors and actuators. As future development,
we are interested in studying how to automatically learn and
update the rules used by the Self-reasoning module, so as
to make the system even more adaptive. Finally, the use of
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meta-programming and reflection techniques would allow the
system to self-instantiate only on the basis of the ontological
description provided by the administrators, greatly simplifying
the stages of development and setup of the system.
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