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Human Activity Recognition Process
Using 3-D Posture Data

Salvatore Gaglio, Member, IEEE, Giuseppe Lo Re, Senior Member, IEEE, and Marco Morana

Abstract—In this paper, we present a method for recognizing
human activities using information sensed by an RGB-D camera,
namely the Microsoft Kinect. Our approach is based on the
estimation of some relevant joints of the human body by means
of the Kinect; three different machine learning techniques, i.e.,
K-means clustering, Support Vector Machines, Hidden Markov
Models, are combined to detect the postures involved while per-
forming an activity, to classify them, and to model each activity
as a spatio-temporal evolution of known postures. Experiments
were performed on KARD, a new dataset, and on CAD-60,
a public dataset. Experimental results show that our solution
outperforms four relevant works based on RGB-D image fusion,
hierarchical Maximum Entropy Markov Model, Markov Random
Fields and Eigenjoints respectively. The performance we achieved,
i.e., precision/recall of 77.3% and 76.7%, and the ability to
recognize the activities in real-time, show promise for applied
use.

Index Terms—Human activity recognition, Kinect.

I. INTRODUCTION

HERE we present a novel technique to perform user
activity recognition by means of an unobtrusive motion

sensor device. In particular, we adopt the Microsoft Kinect as
motion sensor mainly due to its reliability, competitive cost
and its usage for user tracking. The output of the framework
proposed here (i.e., the probability of the recognized activity)
represents one of the inputs of a more general activity recogni-
tion system which reasons about different information coming
from the sensing infrastructure.

Human activities can be described as spatio-temporal evo-
lutions of different body postures. We model the human body
as a set of joints connecting some relevant body parts (e.g.,
arms or legs) and then the most significant configurations of
joint positions are used to define recurrent postures.

Our solution uses three different machine learning tech-
niques. Firstly, a set of body joints is detected by means of the
Kinect. Then such a set is clustered by applying the K-Means
algorithm in order to discover the postures involved in each
activity. The obtained postures are validated by Support Vector
Machines (SVMs) and Hidden Markov Models (HMMs) are
finally applied to model each activity as a sequence of known
postures.

For more widespread applicability we chose to connect the
Kinect to a miniature fanless computer which is able to process
the scene with minimum levels of obtrusiveness and low power
consumptions (about 7W).
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Our current work includes three contributions. Our first
contribution is to design an activity recognition method able to
guarantee an acceptable accuracy, real-time processing, low
power consumption. The second contribution is the release
of the public Kinect Activity Recognition Dataset (KARD),
which contains 18 Activities, divided into 10 gestures and 8
actions, each performed 3 times by 10 different subjects. The
third contribution is the validation of the proposed method
against a well known public dataset.

The paper is organized as follows: related work is outlined
in Section II. The system architecture is described in Section
III. Section IV presents the experimental scenario and the
results for two different datasets. Conclusions are presented
in Section V.

II. RELATED WORK

First we review some related activity recognition works
based on RGB or RGB-D streams. Then we provide a brief
description of existing activity datasets.

A. Activity Recognition Methods

Early techniques focused on the processing of color images
captured by traditional RGB cameras. In [1] the human body
was represented in terms of silhouettes, extracted from RGB
images, which were used as input to a framework based on
HMM. Silhouettes and Discrete Hidden Markov Models are
also used in [2], where authors applied Fourier analysis to
describe the human silhouettes and SVMs [3] to classify them
into different postures. The general weakness of the methods
based on RGB data is that the complexity of the processing
chain (e.g., background removal, vector quantization, image
normalization), required to obtain adequate silhouette features,
limits real-time use. Moreover such systems are not robust
enough to be applied in unconstrained situations, e.g., environ-
ments with complex backgrounds or low lighting conditions.

Dense approaches, as those based on salient points, which
do not require segmentation have been also proposed. The
authors of [4] addressed the problem of activity recognition by
analyzing the appearance of some points that are salient both in
space and time. Each image sequence is represented in terms
of spatio-temporal salient points and classified by means of
K-Nearest Neighbor (KNN) and Relevance Vector Machines
(RVMs) classifiers. An efficient technique based on a dense
set of scale-invariant spatio-temporal features is proposed in
[5]. The use of temporal scale-invariant features helps to
recognize actions performed at different speeds, but also leads
to errors when the speed is relevant to distinguish between
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similar actions (i.e., running vs walking). These approaches
are useful to capture the most relevant cues of moving objects;
thus they perform well if the observed scene is made of a
single subject acting in front of static background. Such a limit
can be overcome by considering advanced devices capable of
capturing both visual and depth information.

Some works addressed the problem of activity recognition
by using intrusive sensors, i.e., wearable sensors [6], [7].
Such sensors provide more accurate information about the
movements of the body; however totally unobtrusive sensors,
e.g., video sensors, are generally preferable to prevent users
from wearing any electronic equipment and dealing with its
maintenance.

Following these considerations, our perspective is to con-
sider the Kinect as the primary sensor to transparently gather
observations about users’ behavior [8].

The vision system of the Microsoft Kinect is composed of
two cameras (i.e., an RGB camera and an IR camera) with
640x480 resolution, and an IR projector that is responsible for
shooting infrared rays toward the environment. The distortion
degree of each ray projected against the scene is used to
estimate a depth map in which each pixel value represents
the distance of a specific 3D point from the sensor.

Here we review activity recognition approaches based on
data provided by the Kinect. In [9] human bodies are modeled
as a set of kinematic joints and actions are defined by the
interactions that occur between subsets of these joints. The
authors proposed a new feature, called LOP (local occupancy
feature), to describe each 3D joint, and introduced the concept
of actionlet to define a particular conjunction of LOP features.
Due to the great number of possible actionlets, a data mining
technique is used to discover the most discriminative ones
and represent an action as an Actionlet Ensemble, i.e., a
combination of actionlets.

A posture-based approach for action recognition is pre-
sented in [10]. The authors represent salient postures as a
bag of 3D points obtained by projecting and sampling the
depth maps onto three orthogonal planes. Each posture is then
associated with a specific node of an action graph which is
used to model the dynamics of different actions. This method
yields better results than those based on 2D silhouettes; how-
ever 3D projections obtained from the depth maps are usually
quite noisy due to low resolution of the sensor. Thus, further
interpolation steps are generally required to repair corrupted
projections and this compromises the overall recognition time.

A histogram based representation of human postures is
presented in [11]. In this representation, the 3D space is
partitioned into n bins using a spherical coordinate system
so that each of the 12 considered joints belongs to a bin with
a certain level of uncertainty. Linear Discriminant Analysis
(LDA) for C classes is performed to reduce the dimensions of
the feature space from n to C − 1 and the obtained features
are clustered into K visual words. The activities are then
represented as sequences of visual words and recognized using
discrete HMM classifiers. The features are detected in real-
time using a C language program, whilst activity recognition is
simulated in Matlab. The main limitations of this approach are
the adoption of a complex model for representing the joints,

and the consequent need for reducing the dimensionality of the
feature vectors by means of LDA. In [8] we observed that if the
feature space already contains an optimal set of features, the
attempt of further reducing such a space by means of Principal
Component Analysis (PCA) or LDA does not increase the
overall performance of the system, but may instead prevent
the achievement of real-time processing.

An improved spherical angular representation is used in
[12], where a gesture recognition for Natural User Interface
(NUI) is described. Different poses are defined according
to the position of 9 joints (six torso joints are discarded),
each represented by a pair of spherical angles. A multi-
class classifier is applied to identify relevant poses; then
gesture recognition is performed by means of a decision tree
whose nodes represent key poses and leafs are associated with
gestures. The main limitation of this approach is the need for
designing and training the set of key poses, which is often
infeasible in dynamic environments occupied by occasional
users, e.g., offices.

The authors of [13] addressed the problem of reconstructing
valid movements from incomplete, i.e., noisy, postures cap-
tured by the Kinect. In particular, broken postures are corrected
by searching through a motion database for similar postures
which are kinematically valid. Although the method improves
wrongly detected postures, it assumes that the motion database
always contains postures similar to the ones performed by the
user, that is not always true in practical situations.

A method to obtain silhouettes from depth information only
is presented in [14]. This solution is motivated by the fact
that depth images are intensity invariant and then more robust
to appearance variations of the human body than RGB ones.
The authors trained their system by creating a codebook of
body poses, so that a new human pose can be represented by
its most similar codeword. The major issue of this approach
is related to the background removal routine which needs
background images to be known previously, or users to be
located away from the background. Such constraints are not
always applicable to real contexts.

The authors of [15] proposed an algorithm based on hi-
erarchical Maximum Entropy Markov Model (MEMM) to
represent a single activity as a composition of a set of sub-
activities. Each sub-activity is initially modeled by analyzing
about 700 features extracted from RGB and depth images, then
it is associated to a high-level activity by means of a two-
layer MEMM. In [16] the problem of understanding human
activities and their association with object affordances was
addressed. Activity recognition was performed by means of
Markov Random Fields whose nodes represent objects and
sub-activities, and edges their mutual relations. A comparison
with [15], [16] and other methods using the CAD-60 dataset
is reported in Section IV-E.

The framework proposed in [17] aims to demonstrate that
using both depth and grayscale data can improve the perfor-
mance of recognizing complex activities, e.g., users interacting
with objects in the environment. Experimental results show
that promising recognition and localization accuracies can
be obtained, but a computation time analysis is missing. So
suitability for real-time applications is unknown.
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The effectiveness of using both color and depth information
for activity recognition is also reported in [18]. The authors
collected a dataset, called RGBD-HuDaAct, which contains
12 activities performed by 30 different subjects at a distance
of about 3 meters from a Kinect device. Results obtained by
applying multi-modal feature representation, i.e., combining
color and depth information, are compared to the uni-modal
counterparts; however neither an evaluation of time consump-
tion nor a comparison with other approaches is provided.

B. Activity Recognition Datasets

In [19] it is shown that to achieve good recognition rates,
collected data should ideally contain both correct examples
(correctness) and the set of the natural variations of the
movements associated with a gesture (coverage). We next
provide an overview of some public activity datasets.

The MSRC-12 dataset [19] consists of 12 gestures per-
formed by 30 people. The gestures are organized into two
abstract classes: iconic gestures that have a correspondence
between the gesture and the reference (crouch or hide, put
on night vision goggles, shoot a pistol, throw an object,
change weapon, kick); and metaphoric gestures that represent
an abstract concept (start system/music/raise volume, navigate
to next menu / move arm right, wind up the music, take a bow
to end music session, protest the music, and move up the tempo
of the song / beat both arms). The provided files contain the
coordinates of 20 joints captured at a sample rate of 30fps,
however some sequences are not useful since the estimation
of the joints is not accurate.

The MSRDailyActivity3D dataset [20] contains 16 activities
performed in front of the Kinect sensor: drink, eat, read book,
call cellphone, write on a paper, use laptop, use vacuum
cleaner, cheer up, sit still, toss paper, play game, lie down on
sofa, walk, play guitar, stand up, and sit down. Each activity
was performed twice, once in standing position and once in
sitting position, by 10 different subjects. Three channels were
recorded: depth maps (.bin), skeleton joint positions (.txt), and
RGB video (.avi). However, the RGB and depth channels were
recorded independently, so they are not strictly synchronized.
Another lack of this dataset is that for each action only 2
different sequences (acquired in standing/sitting positions) are
provided; therefore it is difficult to train and test a robust
classifier having just these few examples.

The MSRAction3D dataset [10] contains 20 actions re-
peated 3 times by 10 different subjects: high arm wave,
horizontal arm wave, hammer, hand catch, forward punch,
high throw, draw x, draw tick, draw circle, hand clap, two
hand wave, side-boxing, bend, forward kick, side kick, jogging,
tennis swing, tennis serve, golf swing and pickup and throw.
Its main limitation is that it was recorded by means of a depth
sensor (similar to the Kinect) which was not able to capture
RGB information.

The dataset presented in [21], called LIRIS, was used for
the ICPR 2012 human activities and localization competition
which focused on the problem of recognizing complex human
behaviors involving several people. LIRIS was captured by
means of two different cameras: a Kinect device mounted on

a mobile robot mobile delivering grayscale and depth images,
and a consumer camcorder delivering high resolution videos.
The actions available in the dataset are: discussion of two or
several people, a person gives an item to a second person, an
item is picked up or put down, a person enters or leaves a
room, a person tries to enter a room unsuccessfully, a person
unlocks a room and then enters it, a person leaves baggage
unattended, handshaking of two people, a person types on a
keyboard, and a person talks on a telephone.

In [22] a multimodal dataset (Multimodal Human Action
Database MHAD - MHAD) is proposed. The MHAD database
contains 11 actions, performed by 12 individuals, captured by
means of: an optical motion capture system based on 43 LED
markers; 12 multi-view stereo vision cameras; 2 Microsoft
Kinect cameras; 6 three-axis wireless accelerometers; and 4
microphones. The method proposed in [10] has been applied
to model the action sequence captured by each modality, whilst
[23] was used to combine various modality (e.g., motion
capture and Kinect, motion capture and accelerometers and
Kinect, motion capture and accelerometers and Kinect and
audio). Results show that using multimodal data increases the
recognition rate because multimodal features usually compen-
sate for each other. However hardware costs and the needs
for continuous maintenance (i.e., preserving both geometric
calibration and temporal synchronization) limit use for real
world activity recognition purposes.

The Cornell Activity Dataset (CAD-60) [15] contains 60
RGB-D videos of 4 subjects performing 12 activities (rins-
ing mouth, brushing teeth, wearing contact lens, talking on
the phone, drinking water, opening pill container, cooking-
chopping, cooking-stirring, talking on couch, relaxing on
couch, writing on whiteboard, and working on computer) in
5 different environments (office, kitchen, bedroom, bathroom,
and living room). The authors also maintain a website [24]
with reported results of activity recognition techniques.

In [25] an activity recognition method based on a bag-
of-words model is proposed. The authors used SVMs with
Dynamic Time Warping (DTW) kernel functions to restore
temporal relationships within time series of codeword his-
tograms. Tests were performed on three different datasets
including ReadingAct, a novel dataset (not yet available for
download) captured by means of 2 Kinect devices, which
contains 19 actions performed by 20 subjects. Results show
that the DTW-SVM approach slightly improves the results on
long actions sequences, whilst it performs as other state-of-
the-art methods in general.

III. ACTIVITY RECOGNITION SYSTEM

The system proposed here (see Fig. 1) aims at automatically
inferring the activity performed by the user according to a
set of known postures. The system can be decomposed into
three components addressing three different aspects. The first
is responsible for features detection, that is for the extraction
of a set of points to be used for distinguishing different body
postures. The detection and classification of such postures is
accomplished by the posture analysis techniques, based on K-
means and SVM, and finally activity recognition is performed
by means of HMMs built on the set of known postures.
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Fig. 1. The images captured by the Kinect are processed to detect a set of
joints, which are subsequently normalized with respect to scale and position.
These joints represent the features used to define a set of postures which are
detected by applying a K-means clustering and classified by means of Support
Vector Machines. Hidden Markov Models are finally used to model an activity
in terms of postures and classify new sequences coming from the Kinect.
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Fig. 2. (a) The 15 joints detected by means of the Kinect. Reference joints
(grey): neck, torso. Selected joints (black): head, elbows, hands, knees, feet.
Discarded joints (white): shoulders, hips. (b) The 11 joints of the feature set.

A. Features Detection

The first processing step consists in identifying the features
of interest. Since our goal is to understand what activity the
user is performing at a given time, we need to track movements
focusing on those body parts which are mostly involved while
executing a particular activity.

The human body consists of many interacting systems,
none of which can work in isolation. In particular, we started
from the musculoskeletal system, which is responsible for
supporting the human body and enabling its movements in
accordance to the stimuli provided by the nervous system. To
describe the user’s movements, we chose to track the human
skeleton focusing on significant parts such as head, neck, torso,
arms, legs, hands and feet. The different parts of the human
skeleton can be modeled as segments connected to each others
by nodes, called joints, which limit the movement of each body
part in the 3D space.

Thus, the 3D positions of some relevant joints can be
used to describe different movements of the body. To extract
these features, we adopted the Kinect device, which has been
demonstrated to be an unobtrusive sensor to perform real-time
detection (i.e., to determine the 3D coordinates) of a number
of body joints (see Fig. 2).

Unfortunately, due to the intrinsic noise of the sensor and
the peculiarities of the human body, not all joints are equally

informative; thus a mechanism to select the most promising
ones is required. In [26] this task is accomplished by means
of an evolutionary algorithm which determines the optimal
subset of skeleton joints according to a specific training set.
Although such an approach improves the recognition rate in
the specific case, the joint selection process is too data centric
and any variation on the activity set causes the selection of
different subsets of joints.

Since we are interested in a more general representation
suitable for a dynamic environment, we performed some
preliminary tests to measure the relevance of the set of joints
provided by the Kinect. In [8], due to the sensitiveness of the
IR sensor, some joints are misdetected if two segments overlap
(e.g., hands touching other body parts), or not detected at all
due to the presence of objects between the sensor and the
user. For this reason, we evaluated the system by measuring
the recognition rates achieved on a limited number of selected
subset of joints.

Some noisy joints which are redundant (i.e., wrists, ankles)
due to their closeness to other joints (i.e., hands, feet), or not
relevant at all for activity recognition (i.e., spine, neck, hip
and shoulders) have been discarded. The final set of joints we
chose as features is shown in black in Fig. 2(a), while the
joints we discarded are white.

Since the appearance of the skeleton depends on several
factors, as for example the distance between the user and
the sensor, the detected features need to be normalized for
scale. For doing that, we moved the detected joints to a
new coordinate system fixed at the torso (considering as x-
direction the left-right hip axis) and all features have been
scaled according to a reference distance, h, between the neck
and the torso joints. The reference joints are shown in grey in
Fig. 2(a).

Thus, let Ji be one of the 11 joints detected by means of
the Kinect, the feature vector f is defined as:

f = [ j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11 ] (1)

where each ji is the vector containing the 3D normalized
coordinates of the i-th joint Ji detected by the Kinect. Thus:

ji =
Ji
s

+ T, 1 ≤ i ≤ 11 (2)

being s the scale factor which normalizes the skeleton accord-
ing to the distance, h, between the neck and the torso joints
of a reference skeleton (detected offline)

s =
‖J4 − J2‖

h
(3)

and T the translation matrix needed to set the origin of the
coordinate system to the torso.

We do not normalize for rotation since some preliminary
results showed that the angle between the user and the Kinect
is an important cue for our method. This is mainly due to
two aspects. The first is that the rotation of the user with
respect to the Kinect is important for recognizing some full-
body activities such as walk or take umbrella. In these cases,
a rotation invariant representation would produce flat poses
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which could be more frequently misclassified. The second
is that, even if it is usually convenient to adopt a rotation
invariant representation, we can overcome this limitation by
placing the Kinect within the office so that almost frontal
activities are observed.

B. Posture Analysis

As already mentioned, our idea is that each activity can be
considered as a sequence of different configurations of joints.
In order to identify those configurations which are effectively
related to meaningful users postures, a classification procedure
is needed.

Support Vector Machines [3] are supervised learning models
used for binary classification and regression, which aim to find
the optimal separating hyperplane between two classes accord-
ing to some labeled training samples. Unfortunately, building
the training set on large scale data is a costly operation which
may also lead to worse performance because of the presence
of noise. Thus, a more effective way of building the training
set could be to select the most informative samples, that is,
in our case, the most recurrent joint configurations. We chose
to perform such a selection process by means of a cluster-
ing algorithm. In particular, given the set of feature vectors
(f1, f2, · · · , fn), the K-means algorithm is applied to partition
the n observations into k sets, C = (C1, C2, · · · , Ck), so as
to minimize the intra-cluster error

E =
k∑

j=1

∑
fi∈Cj

‖fi − µj‖2 (4)

where µj is the mean value of the j-th set, i.e., cluster, Cj .
The k generated clusters are representative of recurrent

postures and can be used to train a multi-class SVM classifier
on the set T = {(C1, L1) , (C2, L2) , · · · (Ck, Lk)}, where
(Ck, Lk) is the k-th pair (cluster, cluster label) produced by
K-Means.

A multi-class SVM is usually implemented by combining
several binary SVMs according to three main strategies: one-
versus-all, one-versus-one and Directed Acyclic Graphs SVM
(DAGSVM). Several studies addressed the issue of evaluating
which is the best multi-class SVM method and both [27] and
[28] claimed that the one-versus-one approach is preferable
to other methods. For a problem with k classes, this strategy
consists in constructing k(k−1)/2 SVMs classifiers which are
trained to distinguish samples from two different classes. After
all k(k − 1)/2 classifiers are constructed, the classification is
done according to a “max wins” voting strategy.

The process of classifying the detected features into k
classes can be viewed as building a k-words vocabulary.
Each posture can be represented as a single word of the
vocabulary, i.e., cluster centre, and, therefore, each activity can
be considered as an ordered sequence of vocabulary words.

Transforming sequences of joints configurations into se-
quences of k-words, allows merging all repeated instances of
a same posture; that is, we focus only on posture transitions.
Thus, we have two advantages: the first is that a more compact
representation of the sequences is obtained; the second is that

Fig. 3. Posture sequence from one repetition of the “High arm wave” gesture.

we overcome the problem of recognizing the same activities
performed at different speeds. Moreover, the posture-based
representation does not affect the capacity of the system to
distinguish among different activities with different durations.
In those cases, a greater number of postures would be involved
making longer activities intrinsically different from the shorter
ones. In Fig. 3 an example of the posture sequence extracted
from one repetition of the “High arm wave” gesture is shown.

C. Activity Recognition

In order to fully satisfy the design requirements, the system
should also correctly classify multiple instances of the same
activity, which may generally involve different sequences of
postures.

The activity recognition process is based on HMMs sim-
ilarly to what is described in [29], [11]. We modeled each
activity using a discrete HMM, whose observed symbols are
the postures we have previously extracted.

In a system whose instantaneous condition may be repre-
sented as belonging to one of N distinct states, we denote the
different states as S = {S1, S2, · · · , SN}, and the state at time
t as qt.

Given the set of prior probabilities π = {πi}

πi = P [q1 = Si] , 1 ≤ i ≤ N, (5)

where πi are the probabilities, assumed equiprobable, of Si

being the first state of a state sequence; the state transition
probability A = {aij}, from the state Si to the state Sj , is

aij = P [qt+1 = Sj |qt = Si] , 1 ≤ i, j ≤ N. (6)

Let M be the the number of distinct observation symbols
per state, the individual symbols are V = {v1, v2, · · · , vM}
and the observation symbol probability distribution in state j,
B = {bj(k)} is

bj (k) = P [vk at t | qt = Sj ] , 1 ≤ j ≤ N
1 ≤ k ≤M.

(7)

The complete parameter set of the model is the triplet

λ = (A,B, π) . (8)

The idea is to encode each activity in terms of postures
and build the corresponding HMM. Once each HMM has
been trained on the posture sequences of each activity, a
new (unknown) sequence is tested against the set of HMMs
and classified according to the largest posterior probability.
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Fig. 4. The activity recognition process. During the training, each activity is analyzed to extract a set of postures which are used to build an HMM. A new
activity is recognized by testing the corresponding posture sequence against the set of HMMs and selecting the model with the largest posterior probability.

Otherwise, if such a probability is below a fixed threshold,
the sequence is marked as “unknown”.

The parameters (k,N) have been experimentally computed
by performing an exhaustive search through a subset of values.
In particular, a Grid Search [30] guided by a Leave One Out
Cross Validation [31] has been applied.

The activity recognition process is described in Fig. 4. The
training phase consists of four steps: (i) for each activity the
features of interest are detected; (ii) the features space is
organized into k clusters which represent the most significative
postures; (iii) the detected postures are refined by means
of SVMs classification; and (iv) a HMM which models the
activity is built. To recognize an activity we need to: (i) detect
the features; (ii) detect and classify the postures involved in the
activity; (iii) test the posture sequence against all HMMs; (iv)
select the model which maximizes the posterior probability;
and (v) compare such probability against a threshold to classify
an activity as known or unknown.

IV. RESULTS

A. Case Study

The activity recognition technique discussed here was de-
veloped as part of an AmI system [32] designed to perform
timely and ubiquitous monitoring of a complex of buildings
to optimize energy consumption [33]. From a logical point
of view, the reference model of the AmI system is composed
of three layers: the sensing layer, responsible for monitoring
and controlling the environment by means of heterogeneous
sensors and actuators [34]; the middleware layer, which pro-
vides a standard interface between physical sensors and AmI
algorithms; the intelligent layer, which implements the AmI

functionalities and produces the necessary actions to adapt the
environment to the user requirements [35]. A prototype of the
system was built at the Networking and Distributed Systems
Lab of the University of Palermo.

The office is equipped with wireless and wired sensor nodes,
which monitor the environment conditions and the status of
the actuators respectively [32]. For example, RFID readers are
installed close to each office door providing information about
the presence of a particular user, whilst software sensors are
installed to detect the users’ activities on their workstations.
In this scenario, the Kinect is one among several sensors
deployed in the office and its specific assignment is to provide
information about the activities performed by the user.

B. Data Analysis Apparatus

The activity recognition module ran on an Intel Atom Z530
1.6GHz CPU and Linux OS with kernel 2.6.32. Such a small
device guaranteed real-time processing of the observed scene
with low levels of obtrusiveness and low power consumptions,
demonstrating both the effectiveness of the solutions and the
efficiency of the algorithms.

The results presented have been obtained by simulating the
overall system in MATLAB on a desktop PC equipped with a
2.6GHz dual-core microprocessor.

C. KARD - Kinect Activity Recognition Dataset

We collected a new dataset, called KARD (Kinect Activity
Recognition Dataset), paying special attention to the correct-
ness both of the acquired data itself and the ground truth
[36]. KARD contains 18 activities, divided into 10 gestures
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Fig. 5. Results of Grid Search for k ∈ [15, 51] and N ∈ [3, 17].

(horizontal arm wave, high arm wave, two hand wave, high
throw, draw x, draw tick, forward kick, side kick, bend, and
hand clap) and 8 actions (catch cap, toss paper, take umbrella,
walk, phone call, drink, sit down, and stand up).

The distinction between these two classes of activities is
useful to better evaluate the performance of the system both
on simple sequences which separately involve specific parts of
the body, i.e., gestures, and on complex actions where different
parts of the body interact to each other.

Each activity was repeated 3 times by 10 different individ-
uals (9 males and 1 female) with ages ranging from 20 to 30
years and height from 150 cm to 185 cm. Instructions were
given to the users about what activity to perform, e.g., “clap
your hands”, “catch the cap”, without providing information
on how to perform it, so as to guarantee the naturalness of the
movements.

The dataset was captured by means of a Kinect device
placed about 2-3 meters from the subject, in a office scene
containing a desk, a phone, a coat rack and a waste bin.

KARD is made of 540 sequences for about a total of 1
hour of videos captured at a resolution of 640x480 pixels at
30fps. For each sequence, we provide both the RGB and depth
images, and the list of the detected joints in real world and
screen coordinates.

D. Experiments on KARD

We investigated both the ability of the system to distinguish
between similar activities, and the scalability of our solution.
Two different classes of tests are described. The former,
called model test, aims to evaluate how the accuracy of our
framework depends on the complexity of the chosen model,
that is how much the recognition rate is influenced by the
model parameters (i.e., the number of postures and the hidden
states). The latter, called data test, aims to evaluate if the
accuracy is related to the properties of the training set, that is
how much the recognition rate is influenced by the number of
the observed subjects and the characteristics of the performed
activities.

1) Model test: The first test aimed to find the best pair
of values for the number of clusters k (i.e., the number of
postures) and the number of the HMM states N . A Grid Search
approach [30] was applied to search for the values of k, in the

TABLE I
ACCURACY ON KARD TESTED FOR k = 39 AND N = 5

Gestures Actions

Horizontal arm wave 92% Catch Cap 100%
High arm wave 96% Toss Paper 90%
Two hand wave 96% Take Umbrella 96%
High throw 80% Walk 100%
Draw x 96% Phone Call 96%
Draw tick 90% Drink 86%
Forward Kick 96% Sit down 100%
Side Kick 100% Stand up 100%
Bend 96%
Hand Clap 100%

range [15; 51], and N , in [3; 17]. The value (k, N ) of each
node of the grid was computed as the mean rate of a Leave
One Out Cross Validation (LOOCV) [31] repeated ten times
to overcome the randomness of the clustering algorithm.

We used 539 training sequences and 1 testing sequence.
The results are shown in Fig. 5. The best recognition rate is
obtained for k = 39 and N = 5, with a mean accuracy of 95%
and standard deviation of 2.45 between the different runs of
the LOOCV.

Table I shows the results obtained for the 18 activities.
The highest recognition rate is 100% (side kick, hand clap,
catch cap, walk, sit down, and stand up), whilst the worst is
80% (high throw). Since the recognition rate appears to be
stable, we can conclude that there is no bias of the proposed
method towards a particular activity or subset of activities.
This indicates the effectiveness of both the chosen feature
space and its representation; that is, the model we used is
able to capture the key points of different kinds of activities,
regardless of the parts of the body they involve.

In Table II the confusion matrix for this experiment is
shown. In some cases, the system failed in recognizing similar
activities that involve similar postures, e.g., a few times high
throw was recognized as drink since the performed movements
are very similar, whilst only a few instances of five activities
(i.e., two hand wave, forward kick, take umbrella, bend, phone
call) were classified as “unknown”.

The experiment was also repeated including all 15 joints
depicted in Fig. 2, and we observed a reduction of the mean
recognition rate of about 4%. This confirms that excluding
joints which are not relevant improves the performance both in
terms of accuracy and dimension of the representation space.

2) Data test: The second class of tests aimed to measure
the performance that the system can achieve while varying the
training set. In particular, the goals are:
• to measure the recognition rate of the system for actions

and gestures separately;
• to measure the recognition rate when considering gestures

or actions based on very similar postures.
The dataset is divided into subsets and each subset is tested

three times similar to [10]:
• Experiment A: 1/3 of the samples of each subject is used

for training and the rest for testing;
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TABLE II
LEAVE ONE OUT CROSS VALIDATION CONFUSION MATRIX FOR THE KINECT ACTIVITY RECOGNITION DATASET TESTED FOR k = 39 AND N = 5
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Horizontal arm wave .92 .04 .04
High arm wave .96 .02 .02
Two hand wave .96 .04

Catch Cap 1
High throw .80 .08 .12

Draw X .02 .96 .02
Draw tick .04 .02 .04 .90

Toss Paper .90 .10
Forward Kick .96 .04

Side Kick 1
Take Umbrella .96 .04

Bend .02 .96 .02
Hand Clap 1

Walk 1
Phone Call .96 .02 .02

Drink .06 .04 .04 .86
Sit down 1
Stand up 1

TABLE III
ACCURACY (%) FOR THE MODEL TEST CONSIDERING GESTURES AND

ACTIONS SEPARATELY

Gestures Actions

Experiment A 86.5 92.5

Experiment B 93.0 95.0

Experiment C 86.7 90.1

• Experiment B: 2/3 of the samples of each subject is used
for training and the rest for testing;

• Experiment C: 1/2 of the samples is used for training set
and the rest for testing.

Each of the above experiments was repeated ten times, ran-
domly choosing the sequences or subjects of the training and
testing sets. Results are shown in Table III.

Our second goal was to measure the performance of the
system in analyzing similar activities. Thus we divided the
data into three subsets with different levels of difficulty (see
Table IV). In particular, the Activity Set 1 is made up of very
different activities, the Activity Set 2 contains more similar
activities than the previous one and the Activity Set 3 is
composed of very similar activities. The system performed
as we expected, that is better results are obtained on Activity
Set 1, as shown in Table V. Test B showed better results over
the three activity sets, while worst performances are obtained
with Test C. Test A showed that the system performs well
when it uses only one repetition of each activity per subject,
that is the system is able to capture a general model of the
activity regardless to the user that performed it. This is also
confirmed by the results of Test C, where it is shown that
once the system has been trained, it can recognize activities
performed by new subjects.

TABLE IV
KARD ACTIVITIES ORGANIZED INTO THREE ACTIVITY SETS WITH

DIFFERENT LEVELS OF DIFFICULTY

Activity Set 1 Activity Set 2 Activity Set 3

Horizontal arm wave High arm wave Draw Tick
Two hand wave Side Kick Drink

Bend Catch Cap Sit Down
Phone Call Draw tick Phone Call
Stand Up Hand Clap Take Umbrella

Forward Kick Forward Kick Toss Paper
Draw x Bend High throw
Walk Sit Down Horizontal arm wave

TABLE V
ACCURACY (%) FOR THE MODEL TEST USING THREE DIFFERENT

ACTIVITY SETS.

Activity Set 1 Activity Set 2 Activity Set 3

Test A 95.1 89.9 84.2

Test B 99.1 94.9 89.5

Test C 93.0 90.1 81.7

E. Experiments on CAD-60

The Cornell Activity Dataset, CAD-60, as described in
Section II, contains data collected from four different people.
Results are expressed in terms of precision and recall measured
according to the “new person” scenario, that is by training the
system on three of the four people from whom data were
collected, and testing on the fourth. We selected five works
whose precision and recall values are summarized in Table
VI. The results are shown in Table VII. This test is useful to
evaluate the performance of the system in analyzing activities
which involve similar postures. The results of the overall
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TABLE VI
STATE OF THE ART PRECISION AND RECALL VALUES (%) ON CORNELL

ACTIVITY DATASET CAD-60

Precision Recall

Sung et al. [15] 67.9 55.5

Koppula et al. [16] 80.8 71.4

Yang and Tian [37] 71.9 66.6

Ni et al. [17] 75.9 69.5

Gupta et al. [14] 78.1 75.4

Our method 77.3 76.7

TABLE VII
PRECISION (%) AND RECALL (%) OF OUR METHOD IN THE FIVE

ENVIRONMENTS OF CAD-60

Location Activity “new person”
Precision Recall

bathroom

rinsing mouth 98.3 97.8
brushing teeth 97.0 96.4
wearing contact lens 78.1 77.6
Average 91.1 90.6

bedroom

talking on phone 72.7 73.5
drinking water 63.4 61.3
opening container 76.0 73.2
Average 69.7 69.3

kitchen

cooking (chopping) 72.6 75.3
cooking (stirring) 59.3 58.0
drinking water 74.3 72.7
opening container 78.1 75.8
Average 71.1 70.5

living room

talking on phone 69.0 66.4
drinking water 73.4 71.1
talking on couch 78.2 76.9
relaxing on couch 73.4 77.2
Average 73.5 72.9

office

talking on phone 72.3 73.4
writing on whiteboard 84.3 87.4
drinking water 78.4 75.3
working on computer 90.0 85.6
Average 81.3 80.4

Overall Average 77.3 76.7

system evaluation on CAD-60 are reported in Table VIII.
Some activities, characterized by postures which involve

very similar subsets of joints, e.g., brushing teeth and drinking
water, or cooking (chopping) and cooking (stirring), are more
difficult to be recognized, whilst others are correctly classified.
The overall precision and recall of our method are 77.3% and
76.7% respectively. Comparing such values with the works
listed in Table VI, we outperform four out five whilst we
achieve comparable results with [14].

In order to make a comparison with the results obtained on
CAD-60, we repeated the evaluation of our method on KARD,
according to the “new person” scenario. The corresponding
confusion matrix is reported in Table IX. The overall precision
and recall we achieved are 84.8% and 84.5% respectively.
When comparing these results with the ones obtained on CAD-
60, we noticed that the proposed system performs better with
KARD data. The main reason is that the 12 activities of CAD-
60 are more complex in terms of the involved postures than
those contained in KARD. Thus the single pose estimation
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Fig. 6. Average processing time for each activity recognition step.
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Fig. 7. Performance variations (%) measured by altering the joint estimation
process with a Gaussian noise, centered on the joint with σ ∈ [0, 20] pixels.

errors accumulate making the recognition process less reliable.

F. Performance

The JAVA implementation of the system allows us to capture
the Kinect stream at 30fps and perform the recognition of a
sequence (i.e., posture analysis and activity recognition) in
about 1 second, with a power consumption of about 7W, that
is just 1W more than the 6W consumed during idle time.

Fig. 6 shows the average processing time measured for each
step involved in the activity recognition module. The most time
consuming algorithms are those responsible for detecting the
joints and modeling the activity by means of HMMs, whilst
posture detection and classification take less than half of the
overall processing time.

G. Limitations

Most recognition issues are mainly due to the intrinsic
limitations of the tracking algorithm [38]. In particular, when
a body part is misdetected (e.g., due to partial occlusions), the
skeleton tracker tries anyway to estimate its position according
to a global body model. However, such a compensation process
produces a domino effect which makes the detection of the
whole skeleton unreliable.

In order to evaluate how much the system performance is
dependent of noisy joints, some experiments were performed
by adding a Gaussian noise to each joint and measuring the
system accuracy for different noise levels.

The results obtained both on the proposed dataset and on
CAD-60 (see Fig. 7) show that when the noise is characterized
by a standard deviation less than 10 pixels, slight accuracy
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TABLE VIII
CONFUSION MATRIX FOR THE “NEW PERSON” TESTS ON CAD-60, IRRESPECTIVE OF DIFFERENT ENVIRONMENTS
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Brushing teeth .48 .33 .19
Rinsing mouth .04 .96

Wearing contact lens 1
Working on computer 1

Cooking (chopping) .79 .17 .04
Cooking (stirring) .43 .55 .02

Talking on the phone .22 .10 .43 .25
Drinking water .20 .04 .13 .63

Opening pill container .02 .20 .78
Talking on couch .73 .27

Relaxing on couch .15 .85
Writing on whiteboard 1

TABLE IX
CONFUSION MATRIX FOR THE “NEW PERSON” TESTS ON KARD
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Horizontal arm wave .83 .08 .07 .02
High arm wave .81 .05 .07 .07
Two hand wave .02 .83 .03 .05 .07

Catch Cap .05 .85 .10
High throw .75 .05 .07 .13

Draw X .10 .80 .10
Draw tick .12 .10 .76 .02

Toss Paper .84 .16
Forward Kick .90 .02 .08

Side Kick .02 .98
Take Umbrella .02 .92 .06

Bend .02 .06 .92
Hand Clap .06 .10 .84

Walk .05 .05 .90
Phone Call .05 .02 .83 .10

Drink .08 .10 .04 .04 .74
Sit down .87 .13
Stand up .15 .85

variations can be observed, while the performance drops sig-
nificantly for greater noise levels. This trend is not surprising
given that the Kinect sensor is affected by an intrinsic noise;
thus slow variations on the left side of the curves suggest
that our model is quite robust as long as the combination of
intrinsic and additive noise is below a certain critical value.
Greater values of sigma correspond to what happens when
partial occlusions occur; for example, if σ = 20, the position
of a joint is estimated with a precision of about ±60 pixels;
that is similar to what we observed when legs are hidden
behind a desk.

Finally, Fig. 7 also shows that accuracy variations on CAD-
60 are greater than those observed on KARD. Our dataset
appears to be more reliable being characterized by a lower
noise level.

V. CONCLUSION

In this work we presented a framework for human activity
recognition using 3-D posture data. In particular, we referred
to a scenario where the whole environment is equipped with a
number of sensory nodes capable of unobtrusive monitoring of
some raw measures such as temperature, humidity, and light
level. In this context, the Kinect is responsible for gathering
high-level information about what the user is doing.

In order to obtain a suitable representation of the human
body, we detected 11 relevant joints and encoded a relevant
set of joints into postures. Thus, since each posture represents
a recurrent pattern of joints positions, an activity can be
described as a sequence of known postures.

To support a real office environment we mainly focused
on a solution made of simple processing blocks which are
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functional in the scenario we considered. Other approaches
could perform better on single tasks, e.g., providing more
reliable posture representation mechanisms or more complex
activity models, but we aimed to develop a framework which
can be easily integrated in a more general AmI system.

To this end we evaluated the effectiveness of our technique
using two different datasets. The first is KARD, a new public
dataset we collected to overcome the unreliability of some
other existing data collections. The second is CAD-60, which
allowed comparison with some state-of-the-art techniques.

The experiments showed that our method is able to capture
a general model of the activity regardless of the user. In
particular, the activity models we built are independent of who
performs the action, independent of the speed at which the
actions are performed, scalable to large number of actions,
and expandable with new actions. Moreover, since repeated
sequences of the same posture are merged, the proposed
method is able to recognize the same class of activities
performed with different time durations.

Using the public Cornell Activity Dataset we obtained an
overall precision and recall of 77.3% and 76.7% respectively,
demonstrating that our framework outperforms four of the
techniques we considered as reference.

Due to the requirements of the overall AmI system, we
implemented a real prototype of the activity recognition mod-
ule by connecting the Kinect to a miniature computer getting
a real-time processing of the observed scene with minimum
levels of obtrusiveness and low power consumptions.

Analogously to other approaches, the main limitations or
our system are primarily related to the capacity of the Kinect
of providing a stable video stream and, consequently, a reliable
joint detection mechanism. In this regard, future work can
concern the improvement of the pose estimation process in
order to deal with frame loss and body occlusions, which are
the main causes of misclassification.
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