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Abstract—Nowadays, the increasing global awareness of the
importance of energy saving in everyday life acts as a stimulus
to provide innovative ICT solutions for sustainability. In this
scenario, the growing interest in smart homes has been driven
both by socioeconomic and technological expectations. One of
the key aspects of being smart is the efficiency of the urban
apparatus, which includes, among others, energy, transportation
and buildings. The present work describes SmartBuildings, a
novel Ambient Intelligence system, which aims at reducing the
energy consumption of “legacy” buildings by means of artificial
intelligence techniques applied on heterogeneous sensor networks.
A prototype has been realized addressing two different scenarios,
i.e. the management of a campus and of a manufacturing facility.
A complete description of the elements included in the case study
is presented.

I. INTRODUCTION

In recent years, the concept of environmental friendliness
has become more and more popular due to the availability of
new unobtrusive technologies which allow to support the citi-
zens in their everyday life. Sustainability depends on different
key factors including health care, water supply, recycling and,
above all, energy efficiency.

Recent studies published by the European Commission [1]
report that buildings are responsible for 40% of energy con-
sumption and 36% of CO2 emissions in the EU. In particular,
older buildings (about 35% of the EU buildings are over 50
years old) consume 7 times more than newer ones. Thus,
obtaining a reduction in the energy consumption of pre-existing
buildings is of prime importance for improving both local
economies and the citizens’ quality of life. Such a challenging
task can be addressed from many different perspectives, as
is well documented in relevant research in the field of smart
homes and smart offices.

This work presents SmartBuildings, a novel Ambient In-
telligence (AmI) system designed to improve the energy ef-
ficiency of buildings by means of a pervasive monitoring in-
frastructure and artificial intelligence techniques. While being
“smart” is nowadays traditionally stated as the request for an
efficient implementation of building automation, the key idea
of our proposal is instead to move a step forward. Namely,
our aim is to exploit the availability of pervasive monitoring
equipment in order to make the environment responsive to the
users’ needs, and at the same time respectful of the energy
saving requirements.

In this perspective, SmartBuildings is based on a three-
layer architecture, implementing a unifying approach to in-
formation management, ranging from acquiring unprocessed
data from a pervasively distributed monitoring equipment up

to performing centralized abstract reasoning. At the lowest
level, a Sensor and Actuator Network (SAN) is used both
to gather information about the environment and the users,
and to act on the environment itself in order to satisfy users’
needs. Sensory data is stored in the intermediate level and
analyzed by some intelligent modules which are responsible
for modelling the underlying environments and providing
timely reactions if unexpected events occur. The intelligent
core of the systems resides at the upmost level, where the
actions needed to improve the energy efficiency of the whole
building are defined.

The remainder of the paper is organized as follows: relevant
work from literature is reported in Section II. The Smart-
Buildings architecture is presented in Section III. Section IV
describes the system deployment in two different application
scenarios. Conclusions are discussed in Section V.

II. RELATED WORK

The challenge of providing intelligent solutions for the
energy efficiency of buildings can be met in different ways.
One of the simplest solution is probably to just stimulate
the user awareness about energy consumption. The system
presented in [2] achieves this objective by means of web-
enabled power outlets which measure the energy consumption
of the corresponding appliances, and make acquired data
available through the Web.

This goal was also carried out by Smart Meter Texas
(SMT), a website that allows customers with smart meters
to track and review their electricity use. The system in [3]
uses SMT data and users’ locations, tracked by means of
an Android app, to inform users if high power consumption
occurred when they were not at home.

In [4] a centralized power management system for in-
telligent buildings, namely iPower, is presented. The iPower
system uses WSNs to monitor environmental conditions and
energy consumptions, whilst the control of the appliances is
performed by means of X10-based devices. A multi-layer
architecture is adopted to manage separately the end user
interfaces (user layer), the rule-based reasoning engine (ser-
vice layer), the profiles needed to manage both the users and
the devices (profile layer), the sensors (sensor layer) and the
actuators (actuator layer).

A home energy management system (HEMS) is presented
in [5]. HEMS aims to monitor and control a set of networked
devices, i.e., home appliances and personal computers, that
use the Universal Plug-and-Play (UPnP) protocol. A mobile
iOS-based application was also developed to enable users to
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remotely access the services provided by the platform. A three-
levels (physical, service, application) OSGi-based architecture
for controlling home appliances is also proposed in [6].

The GreenBuilding system [7] consists of two main com-
ponents. The former is the monitoring subsystem, that is
responsible for measuring the energy consumptions of the
appliances and the environmental conditions in which they are
running. The latter is the control subsystem, which aims to
control the behavior of each appliance by meeting the energy
consumption constraints defined by the user.

A low cost multilayered architecture for wireless com-
munication in smart cities is presented in [8]. In particular,
the authors addressed the issue of reducing the cost and the
complexity needed for the integration of different devices.
The first of the four levels they designed, namely the sensing
layer, consists of heterogeneous sensor nodes to collect en-
vironmental data; the communication between different types
of nodes and technologies is supported by the access network
layer, whilst the Internet/Cloud layer makes data available to
the users and to the services of the upmost layer, i.e., the
application layer.

A three-tier architecture similar to the one we adopted is
presented in [9]. The intermediate level consists of different
building blocks to implement a number of services, whilst the
lowest and the highest layers are responsible for capturing
and analyzing data respectively. This system also provides
an abstraction mechanism to manage heterogenous sensory
devices in a common way.

A method for managing the energy consumption of house-
hold appliances was proposed by the AIM consortium [10].
Such system is based on a two-level architecture, where a
gateway coordinate a set of Energy Management Devices
(EMDs) which are responsible for managing different appli-
ances. Each EMD provide both the power monitoring and
power control functionalities, whilst the energy management
task (e.g., appliances control and user profiling) are demanded
to the gateway. This solution allows for extensive scalability
and can be considered close to the ideal reference Building
Management System.

A comprehensive survey of intelligent management sys-
tems for energy efficiency in buildings is proposed in [11], also
including the Reference Building Management Architecture on
which SmartBuildings is based.

III. SMARTBUILDINGS ARCHITECTURE

SmartBuildings is based on a multilayered software archi-
tecture [12], as shown in Fig. 1.

The lowest level, the physical layer, consists of actuator
devices and cheap sensor nodes capable of measuring different
data by means of specific expansion modules (e.g., barome-
ters, thermometers, hygrometers, accelerometers, instruments
to measure noise and light levels, RFId readers). Sensor and
actuator networks (SANs), typically using different protocols,
are managed by several connection units, called Collectors,
which implement a two-way communication between the
nodes and the AmI components. In particular, each Collector
interacts both with the upper levels, making captured data
available to AmI algorithms, and with the SAN, by translating

and delivering to the nodes the commands coming from the
intelligent modules.

The middleware layer provides a standard interface be-
tween physical sensors and AmI algorithms. The core of
this intermediate layer is the BuildingAgent, which contains
both the modules responsible for modeling the environments
of a single building, and the controllers needed to make
prompt decisions to unexpected situations (e.g., network faults,
malfunctioning actuators, conflicting decisions).

A further level, called application layer, is needed to man-
age the underlying entities. This level includes the AmIBox,
which represents the intelligent core of the system and allows
to perform the monitoring and controlling tasks with respect
of the overall energy consumption constraints.

In the remainder of this section, we provide a more detailed
description of the three physical units which implement the
functionalities discussed so far.

A. Collector

AmI systems usually collect information from different
sources, so it is necessary to interface these systems with dif-
ferent types of networks, each with its own characteristics. The
Collector addresses this task by means of a novel, flexible and
scalable architecture adaptable to different types of networks.
Scalability is guaranteed by using a hierarchical network model
where different Collectors are responsible for managing one
or more subnets. The number of collectors is limited only by
the higher levels’ capacity to manage these devices, whilst the
number of subnets managed by a Collector depends on the
processing capacity of the Collector itself.

From a logical point of view, the Collector includes a
Management and Coordination Module which translates the
commands received from the AmI components, and manages
the various networks connected to the Collector. Moreover, this
module implements the centralized functionalities of the Net-
work Management System (NMS) for each subnet, i.e., sensor
registration, command dispatch, event/fault management and
data delivery.

A SAN interface was designed to connect the Collector
with different SANs by means of an abstraction mecha-
nism that allows to separate physical networks from higher
level components. In particular, a data centric communication
paradigm was used to isolate the application layer from issues
related to the network management, whilst a unique commu-
nication interface to higher levels was defined in order to
make them independent from the peculiarities of each network.
Thus, the SAN interface allows to translate requests from the
management module to the SAN, and to forward information
received from the sensor networks to the management and
coordination module. Three different data delivery modes are
provided: continuous, in which information is transmitted at
regular time intervals; event-triggered, with information being
transmitted only when a particular event occurrs; and query-
triggered, in which information is transmitted on request.

Finally, the description of the networks is based on Sen-
sorML (OpenGIS Sensor Model Language Encoding Standard)
which provides a standard model and an XML encoding of the
measurement process.
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Fig. 1: System architecture. SmartBuildings is organized into three logical layers and consists of three main physical units: the
AmIBox, the BuildingAgent and the Collector. A typical deployment consists of a single AmIBox, to manage multiple buildings,
and several Collectors per building managed by different BuildingAgents.

B. BuildingAgent

Moving from the physical to the middleware layer, data
gathered by several Collectors is analyzed in order to build
the models of the monitored environments. This task is ac-
complished by one or more BuildingAgents depending on the
dimensions and the structure of the buildings.

BuildingAgents functionalities are provided by different
modules (see Fig. 1).

The Activity Recognizer is responsible for analyzing het-
erogenous sensor data in order to detect and recognize the
activities performed by the users. In our architecture, the
sensing layer is implemented through both wired and wireless
sensor nodes that are able to monitor quantities as temperature,
humidity, ambient light exposure and noise level. However,
in order to achieve challenging goals such as effectively
understanding what the user is doing at a given time, more
complex sensors capable of capturing the interactions between
the user and the environment are required.

More specifically, software sensors have been installed in
users’ workstations to measure the idle time, whilst scheduled
events are stored on a free time-management web application,
i.e., Google Calendar.

Real-time activity recognition is demanded to a probabilis-
tic framework [13], [14] which analyzes 3D data captured by
Microsoft Kinect devices placed in the users’ office rooms.
Firstly, the human body is modeled as a set of joints; then, three
different machine learning techniques are combined to detect
the most significative postures involved while performing an
activity (K-means), classify them (Support Vector Machines),
and model each activity as a spatio-temporal evolution of
known postures (Hidden Markov Models).

The output of the Kinect-based framework and information
provided by software sensors represent the input of a more
general activity recognition module [15], [16] which uses a
probabilistic approach to infer what activity the user is per-
forming, e.g., working on computer, talking on phone, having
a meeting. Such information is also used by the Profiler to
find the correspondences between activities and environmental
conditions preferred by the user; that is to associate an activity
(e.g, reading) with the context in which it is performed (e.g.,
table lamp on).

The Kinect is also used as a controller for the actuators
[17]. To this end, a fuzzy classifier was trained for analyz-
ing Kinect data and recognizing some simple gestures (i.e.,
open/closed hands) in order to produce a set of commands,
(e.g., turn on/off the light, turn on/off HVAC).

The Environmental Modeller and Predictor is mainly re-
sponsible of creating the mathematical models which describe
how the observed physical quantities (i.e., temperature, humid-
ity) change over time.

Being all these measures somehow related to their histori-
cal trend, a reliable representation of the environment should
be built on the basis of a certain number of past observations.

The algorithm we developed is based on the approach
described in [18], where a predictive controller is trained using
both past and forecast information from an external weather
forecast service. In particular, a rough 24-hour prediction of the
external temperature is generated according to data captured
in the past 24 hours; then, as new data is available (every
20 minutes), the prediction is updated by making a linear
correction over the next 6 hours. Experimental results showed
that the standard deviation from the correct temperature values
is about 2.5 degrees for one to three-day predictions.
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The same approach is used to predict the indoor temper-
ature and humidity. The first depends on indoor and external
temperature captured in the past 24 hours, whilst the latter is
dependent both on the humidity values measured in the past 24
hours and on the predicted indoor temperature. The recurrence
relations for external temperature Te, internal temperature Ti
and humidity Hi are shown in (1), (2) and (3) respectively.

Te(t) = αtTe(t− 1) + βt (1)

Ti(t) = αtTi(t− 1) + βtTi(t− 2)

+ γtTe(t− 1) + ϕtTe(t− 2) + µt (2)

Hi(t) = αtHi(t− 1) + βtTi(t) + µt (3)

The parameters (α, β, γ, ϕ) are used to weight the
importance of the factors involved in each prediction. They
are initialized so as to minimize the error between actual and
predicted values for the past 24 hours; then, for each new
measurement taken at time t, the whole set of parameters is
updated to minimize the overall prediction error.

The Reactive Intelligence module provides some function-
alities for the management of unexpected events. In particular,
it is responsible for maintaining the observed physical quanti-
ties (e.g., temperature) within the range of admissible values
chosen by the user. If the safety thresholds are exceeded, the
reactive intelligence module decides the actions to perform
(e.g., the commands to send to the actuators) in order to bring
the system back to a safe state.

When choosing among a set of possible actions, the Actu-
ator Modeller is queried to select the best solution according
to the specific energy consumptions of the actuators (e.g., in
a dark environment to open the curtains is usually preferable
to turn on the light).

C. AmIBox

The main task performed by the AmIBox is to make plans
to meet the overall energy requirements and users’ preferences.

The Planner is the core of the AmI system and is responsi-
ble for finding a set of actions which, once executed, allows the
system to achieve a specific objective. Such an objective, e.g.,
reducing the energy consumption for heating, can be defined
either by the user or, as intermediate goal, by the AmI system
itself.

The planning is performed according to data which de-
pend on a specific building and its environment, namely the
predictions made by the environmental modeler, the output
of the activity recognition module and the users’ preferences.
From a logical point of view, the Planner includes two distinct
components. The former, the deliberative one, is located within
the AmIBox and uses a Tabu Search approach to find an
optimal set of fuzzy rules that corresponds to the best actions
to perform for meeting both the users’ preferences and the
objective function. The second component, called Controller,
resides within the BuildingAgent and translates the fuzzy rules
selected by the planner into commands to the actuators.

Action Actuator Network

Air Conditioning Setting IguanaWorks IR Transceiver Wired

Curtain Up/Down Curtain Motor Wired

Rolling shutter Up/Down Rolling Shutter Motor Wired

Light On/Off Relay Wired

Door Open Electric lock Wired

TABLE I: List of the actuators used in the deployed case study.

IV. CASE STUDY

SmartBuildings is a prototypal system designed by the
NDS (Networking and Distributed Systems) Lab of the Uni-
versity of Palermo and some industrial partners.

In this section we provide a detailed description of the
system deployment in two different application scenarios: first
is the management of some offices in a Campus, where the
main challenge regards dealing with many users with different
needs; the second is the monitoring of a Manufacturing Facility
while focusing both on the safety of the staff and the energy
efficiency of the work environments.

In the Campus scenario we considered private offices and
communal areas (e.g., meeting or lecture rooms, hallways,
laboratories). The sensor and actuator network is composed
of two parts. The wireless one is responsible for monitoring
certain important environmental parameters, including tem-
perature, humidity, lighting conditions, CO2, noise level and
HVAC settings. The devices we used are the Crossbow IRIS
sensor nodes equipped both with commercial (MTS300 and
MTS400) and ad-hoc sensor boards, i.e., one to monitor the
level of CO2 and one to intercept the commands sent to the
HVAC.

The wired network is responsible for monitoring the energy
consumption and the status of given ad-hoc actuators. In the
scenario under consideration, we focused on the monitoring
of the energy consumption of both the office as a whole
and of certain devices such as lights, HVAC and electrical
sockets. The measurements are performed by means of RS-
485 digital transducers managed by a master node equipped
with a programmed micro-controller. The master node also
handles the motion and reads the state of the rolling shutters
and the office curtains. Moreover, it controls the relay switch
for lighting management and door opening.

In order to simplify network management, sets of nodes are
organized into groups so that a message can be sent directly to
a group. Such organization makes it possible to optimize the
number of messages forwarded to the network and improve
the energy efficiency of the nodes. The network functionalities
include setting the data rate for each physical quantity to
be acquired, the group membership of a node, the rate for
transferring network configuration data, querying the nodes to
capture individual physical quantities or to check their status,
setting the data collection mode (on event or periodic) and
activating/deactivating a single node or a group.

Most sensors deployed in the Campus are also suitable for
monitoring industrial environments. However, in this scenario
the same amount of care must be devoted to the users as to the
machinery.For this reason, the sensor infrastructure has been
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Fig. 2: Deployment of different types of sensors and actuators in the two scenarios we addressed. The top row shows the floor
plan of three environments within the Campus (i.e., a laboratory, a private office and a room shared by four people), the bottom
row shows the devices deployed in the Manufacturing Facility scenario.

extended to include specific devices such as optical smoke and
flame detectors, CO gas sensors, passive infrared (PIR) sensors
for motion detection on complex environments, current sensors
for monitoring power usage and a weather station for real-time
meteorological observations.

The main characteristics of the actuators and sensors de-
ployed in the case study are summarized in Table I and Table
II respectively. The floor plans of four environments managed
by SmartBuildings are shown in Fig. 2.

Three different hardware solutions were selected to host
the components described in Section III. The most appropriate
hardware platform for the Collector was chosen by achieving a
trade-off between energy consumption and processing capacity.
To be specific, we opted for a miniature fanless PC based on
an Intel Atom processor that guarantees a power consumption
of only 8 Watts.

The BuildingAgent is based on a 2.20GHz Intel Xeon
E5 processor which allows to achieve timely analysis of
relevant data (e.g., those processed by the reactive intelligence
module) and good performance in producing the models of the
monitored environments.

The AmIBox requires a greater computational speed to sup-
port the continuous planning activity over the entire building.
For this reason a multi-core server equipped with 4 Intel Xeon
at 2.00 GHz processors was chosen.

The use of energy-consuming servers to provide AmI
services for energy efficiency may seem quite contradictory.

predicted internal 

temperature 
predicted external 

temperature 

internal 

temperature 

external 

temperature 

show 

Environmental Modeller 

 

Actuator Modeller 

 

Profiler 

 

Reactive Intelligence 

 

Activity Recognizer 

 

Planner 

 

Change password 

 

Logout 

Environmental Modeller 

Fig. 3: A screenshot of the Presentation Layer showing the
predicted values of internal/external temperature compared to
the actual values measured in the past 24 hours.

However, smaller-scale systems are not suitable to perform
real-time analysis of huge amount of data. Moreover, focusing
on the management of a medium-size building, the energy
consumption of the AmI units are negligible since a typical
deployment consists of a single AmIBox and several Collectors
managed by a single, or just a few, BuildingAgents.
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Sensor Type Model Network Main Characteristics

Temperature and Relative Humidity Sensirion SHT11 WSN Temperature range: -40 ąC to +123.8 ąC
Temp. accuracy: +/- 0.5 ąC @ 25 ąC
Humidity range: 0 to 100% RH
Absolute RH accuracy: +/- 3.0% RH
Low power consumption

Temperature and Pressure Intersema MS5534AM WSN Temperature range: -10 ąC to +60 ąC
Temp. accuracy: +/- 0.8 ąC @ 25 ąC
Pres. range: 400 to 1100 mBar
Pres. Accuracy: +/- 1,5% at 25ąC
Low power consumption

Temperature Panasonic ERT-J1VR103J WSN Range: -40ąC to +125ąC
Accuracy: +/- 2%

Light TAOS TSL2550D WSN Range: 0 to 1847 lux
Spectral responsivity: 400-1000 nm

Air Conditioning sniffer IR receiver based on chip
IR38DM

WSN Developed ad hoc

CO2 SenseAir K33LP WSN CO2 range: 0 to 5000 ppm
CO2 accuracy: +/- 30 ppm
Low power consumption

Voltage, current, power factor, active
power, reactive power, active energy,
reactive energy

CE-AJ12-34BS3-1.0 Wired Accuracy: 0.5%

Curtain sensor
Rolling shutter sensor
Light On/Off

Developed ad hoc Wired -

RFID Reader LabID KITNLO Wired Supported Protocols: ISO 15693, ISO
14443 A, ISO 14443 B - ST SRI family

Proximity reader ISO LabID RFID
Reader RWBLUE

Wired Supported Protocols: ISO 15693, ISO
14443 A, ISO 14443 B - ST SRI family

TABLE II: List of the sensors used in the deployed case study.

The software architecture of SmartBuildings is based on
REST (REpresentational State Transfer) in order to optimize
data exchange between software components (services) which
reside in different layers of the system. In particular, informa-
tion need to be transmitted across all the levels of the system,
from the sensory nodes to the AmIBox or vice versa, and
then accessed by the user through the presentation layer (see
Fig. 1), which provides all the graphical interfaces needed to
manage the AmI system. By means of this layer, the user (e.g.,
the facility manager) can access both realtime and historical
data, define the energy saving policies, supervise the behavior
of the modeling and prediction modules and, more generally,
be aware of the effectiveness of the system.

A screenshot of the presentation layer showing some results
of the Environmental Modeller is shown in Fig. 3.

V. CONCLUSION

In this work we addressed the issue of improving the
energy efficiency of pre-existing buildings by means of an
intelligent system, i.e., SmartBuildings, designed to monitor
different environments and make decisions according to some
overall energy saving strategies.

Compared with well-established building automation solu-
tions, the key idea of SmartBuildings is to exploit the avail-
ability of pervasive monitoring devices in order to make the
environment responsive to the users’ preferences and respectful
of the energy saving requirements.

The sensory part of the system is based on a heterogeneous
sensor and actuator network managed by coordination units,

called Collectors, which include the interfaces needed to
implement a two-way communication between the sensors and
the high-level components. Collectors are usually responsible
for small areas of the buildings, whilst the management of
the whole building is demanded to the BuildingAgents. Here
resides some intelligent modules responsible for modelling the
environments monitored by the system, profiling the users and
recognizing the activities they perform, and provide timely
reactions (i.e., commands to the actuators) if unexpected events
occur. At the upmost level of the architecture we presented, the
AmIBox supervise the underlying components by planning the
actions which ensure to meet the energy saving requirements
defined by the user.

The deployment of a real prototype which addresses two
different scenarios, i.e., a Campus and a Manufacturing Facil-
ity, allowed for exhaustive testing of the proposed AmI systems
in accordance with the practical needs of the occupants the
monitored environments.

Even though all the parts of SmartBuildings have been
individually tested, an overall evaluation of the AmI system
is still missing due both to the complexity of the system itself,
and the number of the users involved in the experiments. A
comprehensive assessment of the system is still in progress
and results will be presented in future work.
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