

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

A Simulation Framework for Evaluating Distributed
Reputation Management Systems

V. Agate, A. De Paola, G. Lo Re, M. Morana

In Proceedings of the 13th International Conference on Distributed
Computing and Artificial Intelligence

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: Springer International Publishing

http://link.springer.com/chapter/10.1007/978-3-319-
40162-1_27

A Simulation Framework for Evaluating

Distributed Reputation Management Systems

Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco Morana

Università degli Studi di Palermo, 90128 Palermo, Italy,
{alessandra.depaola, giuseppe.lore, marco.morana}@unipa.it,

home page: http://www.dicgim.unipa.it/networks/ndslab/

Abstract. In distributed environments, where interactions involve un-
known entities, intelligent techniques for estimating agents’ reputation
are required. Reputation Management Systems (RMSs) aim to detect
malicious behaviors that may a↵ect the integrity of the virtual commu-
nity. However, these systems are highly dependent of the application
domain they address; hence the evaluation of di↵erent RMSs in terms of
correctness and resistance to security attacks is frequently a tricky task.
In this work we present a simulation framework to support researchers in
the assessment of a RMS. The simulator is organized in two logic layers
where network nodes are mapped to system processes that implement
the interactions between the agents. Message Passing Interface (MPI) is
used to enable communication among di↵erent distributed processes and
provide the synchronization within the framework. A case study address-
ing the simulation of two di↵erent attacks to a RMS is also presented.

Keywords: simulation framework, distributed reputation management,
multiagent system

1 Introduction

Nowadays many distributed applications are based on unknown agents that in-
teract to each other in a cooperative way. However, malicious or selfish agents
may act in a unpredictable way leading to a detriment of the performance of
the distributed system. Reputation Management Systems (RMSs) are designed
to detect and discourage antisocial behaviors that negatively a↵ect the whole
community. The role of a RMS is crucial in totally distributed systems, where a
centralized entity capable of coordinating the interactions among agents is miss-
ing. In such a scenario, distributed RMSs allow each member of the community
to contribute in estimating the reputation of the agents so as to reward those
that act honestly and cooperatively.

Since reputation management systems are frequently designed to fit a specific
application scenario, researchers are used to design ad-hoc simulators to evaluate
the performances of a single RMS. In this work we move a step forward by
presenting a novel simulation framework that aims to support researchers in the
evaluation of the e↵ectiveness and resistance to security attacks of a generic

2

Table 1: Comparison between simulation frameworks.
Proposed

Approach

ART TREET [1]

Independence from application scenario X X
Simulation of security attacks X X X
Specification of event pattern X
Simulation of agent interactions X X X

RMS. The simulator we propose here is independent of a specific application
scenario, so it can be adopted in heterogenous contexts ranging from peer-to-
peer applications for file sharing [16], e-Commerce frameworks [4] to service
oriented architectures [14, 2].

In order to separate the high-level representation of the network from the
underlying management of the simulation, the framework is organized in two
logic layers, i.e., the reputation layer and the simulation layer. The overall RMS
is modeled as a synchronous distributed algorithm, according to the principles
described in [15]. Such assumption does not a↵ect generality and correctness in
the evaluation process and allows to straightforwardly verify the RMS’s ability
to correctly evaluate agents reputation and its resistance to security attacks.

The remainder of the paper is organized as follows: related work is reported
in Section 2. The architecture of the simulation framework is described in Section
3, whilst Section 4 presents a case study on the use of the simulator to model
the behavior of a RMS and two attacks to its security. Conclusions are discussed
in Section 5.

2 Related Work

In distributed systems, where a central authority is missing, and the agents
cooperatively estimate the reputation of the other members of the community,
RMSs are susceptible to di↵erent type of security attacks [10]. Malicious agents
may aim at di↵erent goals: self-promoting, to exploit system vulnerabilities in
order to increment their own reputation; slandering, to decrease the reputation
of a “victim”; whitewashing, to “clean” a bad reputation avoiding the negative
e↵ects of the disincentive system; and denial of service, to block the functioning
of the system. To be more e↵ective, attacks may follow an orchestrated plan that
requires several malicious agents to work together.

Some testbeds and simulators have been proposed for assessing the perfor-
mances of a RMS, but none of them allows for large-scale simulations of the
behavior of a RMS under security attacks. ART (Agent Reputation and Trust)
[5] is a popular simulation testbed in the field of multi-agent systems and allows
to apply several evaluation metrics, and to define competitions in which di↵erent
strategies can be combined and compared. TREET [12] allows to measure the
resistance of a RMSs to some attacks (e.g., reputation lag, proliferation, and
value imbalance), but does not consider common attacks to distributed systems,

3

obtained resources

reputation gossip

resource requests C
om

m
un

ic
at

io
n Local Trust

Information
Fusion

Incentive
Mechanism

Reputation
Storage

communication
protocol

C
om

m
un

ic
at

io
n

Node Node

Fig. 1: The components of a distributed RMS. Each node privately performs
local trust evaluation and information fusion algorithms; gossip protocol and
incentive mechanism determine the interactions with other agents.

such as whitewashing and self-promoting. TREET overcomes many limitations
of ART, allowing agents to randomly join or leave a running simulation. The
testbed presented in [1] models existing RMSs as a set of transformations on a
graph that represents transactions and trust among agents. Even if this system
allows to evaluate security resistance to slandering and self-promotion attacks,
it does not simulate agent interactions that are crucial to perform large-scale
simulations where agents may modify their behavior. The main di↵erences be-
tween the simulation framework proposed here and the discussed approaches are
outlined in Table 1.

3 Simulation Framework Architecture

In order to design a generic framework, we identified the main components that
are common to most of the distributed RMSs proposed in the literature (Fig.
1): (i) a local trust evaluation mechanism, used for assessing the behavior of the
nodes involved in direct interactions, (ii) a gossip protocol, which propagates the
local trust to other nodes of the network, (iii) an information fusion mecha-
nism to merge information gathered through the gossip protocol with the local
trust, and obtain the reputation values, and (iv) a disincentive mechanism which
exploits reputation values in order to discourage antisocial behaviors.

In our framework we adopt a synchronous model to represent a RMS, which
implies that the nodes of the reputation network act simultaneously. Such sim-
plification allows to disregard many details (e.g., unpredictable communication
delay or unfair work overload) that, although irrelevant to the assessment of
the RMS, may a↵ect the simulation. The simulation proceeds in rounds, each
consisting of seven steps: (1) generate resource requests according to the cur-
rent state, i.e. current view of other nodes reputation, (2) send resource request
messages to the destination nodes, (3) elaborate incoming requests and deter-
mine whether provide a positive resource response according to the incentive
mechanism and the current state, (4) send resource response messages to the
destination neighbors, (5) update the current state according to the local trust

4

(a) (b)

REPUTATION
LAYER

SIMULATION
LAYER

REPUTATION
LAYER

SIMULATION
LAYER

creation of
a new node

Fig. 2: Creation of a new node as seen at the reputation and simulation layer.
(a) The agents (circles) are modeled by active processes (squares) managed by
a controller (striped square). (b) When a new node (green circle) is connected
to the network, one of the inactive processes (white squares) is woken up and
communicates with other active processes.

evaluation, (6) send updated reputation values to the neighbors according to the
gossip protocol, and (7) update the information fusion mechanism.

From a logical point of view, the simulation framework is organized in two
di↵erent layers so as to to separate low-level functionalities, necessary for driving
the simulation, from high-level routines, concerned with the tasks of the RMS.
A similar architecture was adopted in a previous work where we addressed the
design of a simulator for Wireless Sensor Networks in a distributed scenario [13].

The topmost layer, namely the reputation layer, is made of nodes connected
to each other according to a specific network topology. At this level of abstrac-
tion, the reputation network is shown as totally distributed, non-centralized, and
a set of high-level configuration utilities are o↵ered to the user. At the simula-

tion layer, each agent is mapped to a di↵erent process. When the simulator is
started, a set of inactive processes (see Fig. 2-a) is created. Then, if a new node
is added to the network, one of the inactive processes is awoken by the simula-
tion manager, i.e. a process called controller, and linked to the other processes
involved in the simulation (Fig. 2-b).

Since each process can run on a distinct remote host, we chose to adopt
the Message Passing Interface (MPI) to enable communication among di↵erent
distributed processes. MPI provides a protocol for parallel message-passing in
distributed scenarios where processes exchange data through cooperative opera-
tions. The synchronization is managed by means of blocking and non-blocking,
point-to-point or collective, communication primitives that guarantee safe ac-
cess to shared data. All processes use the thread-safe MPI Iprobe() routine
to manage incoming messages. Messages are sent and received by means of
the nonblocking functions MPI Isend() and MPI Irecv() respectively, whilst
MPI Barrier() is used to synchronize all processes within the coordinator.

5

4 Case Study

In order to prove the e↵ectiveness of our framework in evaluating a general rep-
utation management system, we considered as case study a simple RMS inspired
by [11] and [3].

The local trust component we adopted is a based on that used in EigenTrust
[11], one of the best known RMSs for P2P networks. Each agent i stores the
number of satisfactory, sat(i, j), and unsatisfactory, unsat(i, j), transactions be-
tween agents i and j. Then, the local trust sij is defined as the di↵erence between
such values, i.e., sij = sat(i, j)�unsat(i, j). The simulation framework supports
the user by providing the number of requests sent by each agent, together with
the number of negative and positive feedback obtained by other agents. These
values are updated at each time step; thus, the researchers can choose how much
information they want to use, e.g., all values obtained since the beginning of the
simulation or the average value computed in a sliding window.

The gossip protocol can be defined by means of a set of routines that al-
low for obtaining information about the reputation network and for supporting
communication among agents. In particular, it is possible to get the list of the
current neighbors, send unicast messages to specific neighbors, and send broad-
cast messages to the whole neighborhood. The gossip protocol deployed in the
case study assumes that agents send their reputation values to all their neighbors.
At the end of this phase, each agent knows the opinion of all its one-hop neigh-
bors about the reputation of its two-hop neighborhood. Reputation information
gathered so fare is then merged during the information fusion phase, inspired
by the work proposed in [3]. Here each agent merges only information coming
from reliable agents, i.e., those whose reputation is beyond a given threshold ⌧ .
Merged information is weighted with the reputation of the “gossiper” agents,
and the resulting reputation value rij is a linear combination of this weighted
mean and the normalized local trust cij , as specified by the following equation:

rij(t) = (1� �) ⇤ cij(t) + � ⇤

P
k2K

rik(t� 1) ⇤ rkj(t� 1)

P
k2K

rik(t� 1)
, (1)

where � is a coe�cient in [0, 1] and K is the set of reliable agents:

K = {k : rik(t� 1) � ⌧}. (2)

Di↵erent attacks can be performed by defining the behavior of the agents
through a set of configuration files, and by specifying the number of nodes, the
cooperativeness degree of each agent, and the topology of the reputation network.
It is important to guarantee that the network is not partitioned in islands, and
that each node has an adequate number of neighbors. The current version of the
simulator supports two of the most relevant attacks to distributed RMSs, i.e.,
slandering and whitewashing attacks.

Slandering attacks aim to change the reputation of other agents by dissem-
inating false negative feedbacks in order to obtain some advantage. The simu-
lation framework can be used to assess slandering attack by selecting a victim

6

N4 N1
M2 V

 M1

 N2

 N3

 M3

Fig. 3: The network topology used for simulating a slandering attack performed
by the malicious nodes Mi against the victim node V .

node V, and a set of M malicious nodes, adjacent to V. These nodes are pro-
grammed to share with their neighbors a fake reputation value of the node V,
as shown in Fig. 3.

During a whitewashing attack, a malicious node exploits system resources
until its reputation goes under an acceptable threshold; then, it leaves and re-
joins the community with a new identity associated with a default reputation
value. The scenario considered for evaluating whitewashing attacks is shown in
Fig. 4. Here, we suppose that a node A, with a low reputation value, wants to
duplicate itself to keep exploiting the system resources. In such a situation, the
corresponding active process PA sends a duplication request to the controller

PC . Then, PC awakes one of the inactive processes PE and change its state cre-
ating the process PA0 . This cloned process is initialized with the same adjacency
list and behavior of PA, e.g., if the node A was connected to B, then the process
PA0 will be connected to the process PB .

At the end of a simulation, the framework provide the detailed trends of rep-
utation and obtained resources over time for all agents. The comparison of the
estimated reputation for a given agent with its cooperativeness degree allows to
evaluate the average accuracy rate of a RMS, while the average utility provides
information about the quality of service experienced by the end user. The slan-
dering attack may be assessed by analyzing the reputation of the victim agent
as observed from the point of view of a neutral agent. If the RMS is vulnerable
to such class of attacks, the reputation of the victim node should decrease over
time, in spite of its honest behavior, because of the e↵ect of the false bad opin-
ions gossiped by malicious agents. The whitewashing attack may be assessed by
comparing the aggregate resources obtained through all the false identities of
the malicious agent, with respect to those obtained only by its original identity;
such value should present an oscillatory trend over time, due to the connection
of new identities.

7

check for available
processes
MPI_Isend

connection request
MPI_Isend

duplication request
MPI_Isend

ACTIVE CONTROLLER INACTIVE ACTIVE ACTIVE

MPI_Iprobe

new state

ack

MPI_Isend

MPI_Barrier

PA PC PE PA’ PB

Fig. 4: High-layer interactions and MPI calls used to duplicate a node A, associ-
ated with a process PA.

5 Conclusions and Future Work

In this work we presented a two-layer simulation framework that can be used by
researchers for an early evaluation of the performances of a Reputation Manage-
ment System. The two logic layers allow to separates the reputation management
techniques from the software routines that actually drive the simulation. Each
agent of the reputation layer is mapped to a process running at the simulation

layer, where MPI interfaces are used to enable communication among di↵er-
ent distributed processes. The simulator o↵ers several utilities that can be used
to define both the topology of the simulation network, and all the parameters
needed to implement the behavior of the simulated agents.

We presented a case study where an ad-hoc RMS was modeled and tested
against two di↵erent attacks. The results we obtained demonstrate the suitability
of the proposed framework for providing detailed information required to perform
deep analyses on the performance of the considered RMS.

Future experiments will be performed in order to provide an in-depth evalua-
tion of the framework scalability for large-scale simulations, in terms of memory
occupancy, computational and communication complexity, also exploiting ad-
vanced techniques for an e�cient allocation of processes [8, 9]. Moreover, we
are considering the adoption of the simulator to model the interactions within
large-scale social networks, e.g., Twitter [7, 6].

Acknowledgement

Work partially supported by the Italian Ministry of Education, University and
Research on the “StartUP” call funding the “BIGGER DATA” project, ref.
PAC02L1 0086 CUP: B78F13000700008.

8

References

1. Chandrasekaran, P., Esfandiari, B.: Toward a testbed for evaluating computational
trust models: experiments and analysis. Journal of Trust Management 2(1), 1–27
(2015)

2. Crapanzano, C., Milazzo, F., De Paola, A., Lo Re, G.: Reputation management
for distributed service-oriented architectures. In: Proc. of the 2010 Fourth IEEE
Int. Conf. on Self-Adaptive and Self-Organizing Systems Workshop (SASOW). pp.
160–165 (2010)

3. De Paola, A., Tamburo, A.: Reputation Management in Distributed Systems. In:
Proc. of the 3rd Int. Symp. on Communications, Control and Signal Processing
(ISCCSP). pp. 666–670 (2008)

4. Fouliras, P.: A novel reputation-based model for e-commerce. Operational research
13(1), 113–138 (2013)

5. Fullam, K.K., Klos, T.B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Bar-
ber, K.S., Rosenschein, J.S., Vercouter, L., Voss, M.: A specification of the agent
reputation and trust (ART) testbed: experimentation and competition for trust in
agent societies. In: Proc. of the fourth int. joint conf. on Autonomous agents and
multiagent systems. pp. 512–518 (2005)

6. Gaglio, S., Lo Re, G., Morana, M.: Real-time detection of Twitter social events from
the user’s perspective. In: Proc. of the 2015 IEEE Int. Conf. on Communications
(ICC). pp. 1207–1212 (2015)

7. Gaglio, S., Lo Re, G., Morana, M.: A framework for real-time Twitter data analysis.
Computer Communications 73, Part B, 236 – 242 (2016)

8. Genco, A., Lo Re, G.: A recognize-and-accuse policy to speed up distributed pro-
cesses. In: Proceedings of the thirteenth annual ACM symp. on Principles of dis-
tributed computing. p. 386. ACM (1994)

9. Genco, A., Lo Re, G.: The egoistic approach to parallel process migration into
heterogeneous workstation network. Journal of Systems Architecture 42(4), 267–
278 (1996)

10. Ho↵man, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Computing Surveys (CSUR) 42(1), 1 (2009)

11. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for
reputation management in P2P networks. In: Proc. of the 12th Int. Conf. on World
Wide Web. pp. 640–651 (2003)

12. Kerr, R., Cohen, R.: Smart cheaters do prosper: defeating trust and reputation
systems. In: Proc. of The 8th Int. Conf. on Autonomous Agents and Multiagent
Systems-Volume 2. pp. 993–1000 (2009)

13. Lalomia, A., Lo Re, G., Ortolani, M.: A hybrid framework for soft real-time wsn
simulation. In: Proc. of the 13th IEEE/ACM Int. Symp. on Distributed Simulation
and Real Time Applications, 2009 (DS-RT ’09). pp. 201–207 (2009)

14. Lee, J., Zhang, J., Huang, Z., Lin, K.J.: Context-based reputation management
for service composition and reconfiguration. In: Proc. of the 2012 IEEE 14th Int.
Conf. on Commerce and Enterprise Computing (CEC). pp. 57–61 (2012)

15. Lynch, N.A.: Distributed algorithms. Morgan Kaufmann (1996)
16. Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing P2P reputation

systems. Computer Networks 50(4), 472–484 (2006)

