

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

A Framework for Parallel Assessment of Reputation
Management Systems

V. Agate, A. De Paola, S. Gaglio, G. Lo Re, M. Morana

In Proceedings of the 17th International Conference on Computer
Systems and Technologies

Article

Accepted version

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

A Framework for Parallel Assessment of

Reputation Management Systems

Vincenzo Agate, Alessandra De Paola, Salvatore Gaglio, Giuseppe Lo Re, Marco Morana

Abstract: Several distributed applications running over the Internet use Reputation Management
Systems (RMSs) to guarantee reliable interactions among unknown agents. Because of the heterogeneity of
the existing RMSs, their assessment in terms of correctness and resistance to security attacks is not a trivial
task. This work addresses this issue by presenting a novel parallel simulator aimed to support researchers in
evaluating the performances of a RMS since the design phase. Preliminary results obtained by simulating
two different attacks confirm the suitability of the proposed framework to evaluate different RMSs.

Keywords: Parallel Simulation, Distributed Reputation Management, Multi-threaded Applications.

INTRODUCTION
In many distributed systems, the request for resources and services passes through

unknown agents with unpredictable behaviours. This may lead malicious or selfish agents
to cause a detriment of the performance of the whole system. One of the most effective
way of addressing this issue is to rely on Reputation Management Systems to encourage
agents to act honestly and cooperatively. In particular, in a fully distributed environment
that lacks of a single centralized authority capable of coordinating all the interactions
among agents, each member of the community may contribute in estimating the reputation
of the agents so as to reward well-behaved ones.

The state-of-the-art models for reputation management show relevant differences
due to the heterogeneity of the considered application scenarios, such as peer-to-peer
applications for file sharing [16], e-Commerce frameworks [7] and service-oriented
architectures [15][5]. Due to such diversity, there is the lack of a general tool to perform
large-scale simulations for easily assessing new approaches with respect to their
correctness and resistance to security attacks [19]. Then, the choice most frequently made
by the researchers for evaluating RMSs is to design ad-hoc simulators. However, even if
ad-hoc simulators allow to overcome the lack of real-world dataset, they are not suitable to
compare different approaches. Some testbeds have been proposed in literature, but none
of them allow to reach the goals stated above.

This work1 presents a novel parallel simulator, preliminarily described in [1], aimed to
support researchers in evaluating the performances of a general RMS. The system is
organized in two logic layers that allow for separating the high-level representation, i.e. the
reputation network, from the distributed processes that actually implement the behaviour of
the agents involved in the simulation.

The remainder of the paper is organized as follows: first, related work is reported.
Then, the RMS used for testing the performance of the simulator is described. The third
and fourth sections provide a detailed description of the framework, and present a set of
experiment aimed to verify its correctness in simulating two different attacks.

1 Work partially supported by the Italian Ministry of Education, University and Research on the
“StartUP” call funding the “BIGGER DATA” project PAC02L1 0086 CUP: B78F13000700008.

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

RELATED WORK
Several reputation management models for distributed systems have been proposed

in the literature. The authors of [19] analysed the main components of trust systems in the
context of Multi-Agent Systems (MASs), identifying a trust evaluation phase, which
assesses the reliability of the agents involved in the interactions, and a trust-aware
decision making phase that uses reputation values to select the agents to interact with.

RMSs for distributed systems, where a central authority is missing, belong to the
second class, according to which each agent relies on a distributed protocol to obtain
opinions from other agents, and merges them with its past experience in order to obtain
the reputation of a given agent. In such a distributed scenario, security is a critical issue,
since RMSs are susceptible to different type of attacks, as described in [11]. It is possible
to identify five classes of attacks: self-promoting, slandering, orchestrated, whitewashing,
and denial of service. In self-promoting attacks, malicious agents exploit system
vulnerabilities in order to increment their own reputation, whilst in slandering their goal is to
decrease the reputation of some “victim” agents. Both attacks may be performed
according to an orchestrated plan that requires the coordination among several malicious
agents. Whitewashing attacks aim to “clean” the bad reputation of a malicious agent to
avoid the negative effects of the disincentive system. A denial-of-service attack aims to
block the functioning of the system, i.e., to hinder a reliable reputation evaluation.

In the present work we focus on whitewashing and slandering attacks. The most
common method adopted by malicious agents to perform a whitewashing attack is to
exploit system resources until their reputation value goes under an acceptable threshold.
Then, the agents leave the community and re-join it with a new identity associated with a
default reputation value. RMSs are more vulnerable to whitewashing attacks when new
agents have a default reputation value comparable to the long-term reputation of a honest
agent, or when negative feedbacks are more relevant than positive ones. Moreover, a
whitewashing attack can be reinforced by a combined self-promoting attack to extend its
effect. Slandering attacks aim to change the reputation of other agents by disseminating
false negative feedbacks in order to obtain some advantage. Single slanderers cause a
limited effect, whilst a coordinated group of malicious agents may seriously damage the
reputation of victim nodes. RMSs are more vulnerable to such attacks if gossiped opinions
are more relevant than direct interactions. Moreover, the lack of a feedback authentication
mechanism may intensify such vulnerability.

A popular simulation testbed in the field of multi-agent systems is ART (Agent
Reputation and trust), proposed in [8]. ART allows to apply several evaluation metrics, and
to define competitions in which different strategies can be combined and compared with
respect to the utility obtained by each agent at the end of the simulation. Such feature,
useful in MAS scenarios, is less relevant when the goal is to prove the capability of a RMS
to discourage malicious behaviours in distributed systems. TREET [13] allows to evaluate
RMSs in a marketplace scenario by measuring the resistance of the system with respect to
some attacks (e.g., Reputation Lag Attack, Proliferation attack and Value Imbalance).
TREET overcomes many limitations of ART, allowing agents to dynamically join or leave a
simulation, even if the pattern of such events cannot be determined by experiments.

The authors of [1] propose a generic testbed for evaluating RMSs by modelling them
as a sequence of transformations of a graph that represents transactions and trust among
agents. Even if this testbed allows to evaluate security resistance to slandering and self-
promotion attacks, it does not simulate agent interactions that are crucial to perform large-
scale simulations where agents may modify their behaviour.

REPUTATION MANAGEMENT SYSTEM
The main purpose of a RMS is to detect and discourage antisocial behaviours that

negatively affect the whole community. The role of a RMS is crucial in totally distributed

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

Fig. 1: A distributed RMS. Each agent privately performs local trust evaluation and information fusion

algorithms; gossip protocol and incentive mechanism rule the interactions with other agents.

scenarios, where a centralized entity capable of coordinating the interactions among
agents is missing. In order to design a generic framework, we identified the components
common to many of the RMSs for distributed environments proposed in the literature (Fig.
1): (i) a local trust evaluation mechanism, used for assessing the behaviour of the agents
involved in direct interactions, (ii) a gossip protocol, which propagates the local trust to
other agents of the network, (iii) an information fusion mechanism, to merge information
gathered through the gossip protocol with the local trust, and obtain the reputation values,
and (iv) a disincentive mechanism which exploits reputation values in order to discourage
antisocial behaviours. In this work we consider as case study to prove the effectiveness of
our framework in the evaluation of RMSs’ security resistance, a RMS that includes all
these components and is inspired by [12] and [6].

The local trust evaluation mechanism is a variation of EigenTrust [12], one of the
most known RMSs for P2P networks. Each agent i stores the number of satisfactory,
sat(i,j), and unsatisfactory, unsat(i,j), transactions occurred with other agents j in the
network. The local trust sij is defined as the difference between such values, i.e., sij =
sat(i,j)−unsat(i,j). In order to support the later information fusion phase, it is required to
normalize such local trust values. We propose a variation of the normalization technique
used in EigenTrust, characterized by some drawbacks highlighted by the same authors.
Thus, our normalized local trust is obtained by scaling sij with respect to its maximum
observed value and by cutting off negative values, as follows:

!!" =
!"# !!" , 0
!"#! !!"

(1)

The gossip protocol, performed at each time step, states that each agent sends its
reputation values to all its neighbours. At the end of this phase, each agent knows the
opinion of all its one-hop neighbours about the reputation of its two-hop neighbourhood.

Reputation information gathered so far is then merged during the information fusion
phase, inspired by [6]. Here each agent merges only information coming from reliable
agents, i.e., those whose reputation is beyond a given threshold τ. Merged information is
weighted with the reputation of the “gossiper” agents, and the resulting reputation value rij
is a linear combination of this weighted mean and the local trust:

!!" ! = 1− ! ∗ !!" ! + ! ∗ !!" ! − 1 ∗ !!" ! − 1!∈!
!!" ! − 1!∈!

(2)

where β is a coefficient in [0,1] and K is the set of reliable agents:

! = ! ∶ !!!" ! − 1 ≥ ! . (3)

local trust evaluation information fusion gossip protocol incentive mechanism

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

Fig. 2: Creation of a node as seen at the reputation and simulation layer. The agents (green) are modelled

by active processess (light red) managed by a controller (dark red). Inactive processes are depicted as white
circles.

The adoption of a weighted sum between the local trust value and the average values
reported by other agents is a common solution in the literature [17][18].

In order to evaluate the effect of the RMS on agent behaviours, we adopt a
disincentive mechanism that allows an agent to obtain resources with a probability
proportional to its reputation, as described in [5]. Such solution is one of the most popular
approaches to implement the disincentive system [19].

PARALLEL SIMULATOR DESIGN
The simulation framework we propose here is organized in two different logic layers

(Fig. 2) so as to separate low-level functionalities from the routines that drive the user in the
simulation tasks, similarly to a previous work where we addressed the design of a
simulator for Wireless Sensor Networks in a distributed scenario [14].

The topmost is the reputation layer, made of nodes connected to each other
according to a specific network topology. At this level of abstraction, the reputation network
is shown as totally distributed, non-centralized, and a set of high-level configuration utilities
are offered to the user.
At the simulation layer, each agent is mapped to a different process. Here, a leading
process called controller is responsible for creating new processes and change the
behaviour of those that already exist. To be more specific, when the simulator is launched,
a set of inactive processes is created (Fig. 2-a). Then, as new nodes are added to the
network, inactive processes are awoken by the controller to become active (Fig. 2-b), and
connected to the other processes involved in the simulation (Fig. 2-c). The role of the
controller can be further explained by considering a whitewashing attack scenario, where a
node A (at the reputation layer) with a low reputation value wants to duplicate itself to keep
exploiting the system resources. In such a situation, the corresponding active process PA
sends a duplication request to the controller PC. Then, PC awakes and initializes one of
the inactive processes with the characteristics, i.e. adjacency list and behaviour, of PA.

The simulation framework offers a number of routines that allow users to define the
RMS to be evaluated. In particular, researchers can define the local trust evaluation
technique, the gossip protocol, the information fusion algorithm, and the disincentive
mechanism that each agent can exhibit.
In order to define the local trust, the simulation framework provides the number of requests
that each agent has sent to other agents, together with the number of negative and
positive feedback obtained by them. These values are updated at each time step; thus, the
user can choose the most proper information granularity, e.g., all values obtained since the
beginning of the simulation or the average value computed in a sliding window.

new
node REPUTATION LAYER

SIMULATION LAYER

(a) (b) (c)

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

Fig. 3: Duplication of a node A. (a) The inactive process E is used by the controller to duplicate the process
A; then A' is linked to B and D. (b) Interactions and MPI calls needed to duplicate the process A.

The gossip protocol can be defined by means of a set of routines that allow for
obtaining information about the reputation network and for supporting communication
among agents. In particular, it is possible to get the list of the current neighbours, send
unicast messages to specific neighbours, and send broadcast messages to the whole
neighbourhood.

The simulator manages the synchronization steps required to guarantee that each
agent receives all messages sent by its neighbours, before performing the information
fusion phase. Obviously, it is possible to specify which piece of information has to be
communicated, e.g., the local trust or the global reputation, and how it can be merged in
the information fusion phase. The disincentive mechanism is based on the trust and
reputation values, and specifies the rules each agent must follow to reply to a resource
request.

Different attacks can be performed by defining the behaviour of the agents involved in
the simulation through a set of configuration files. Information to be specified includes the
number of nodes involved in simulation, the cooperativeness degree of each agent, and
the topology of the reputation network.

Furthermore, it is possible to specify the set of attacks to be simulated, by detailing,
for each one, the starting time step and the list of the nodes involved in it. For a slandering
attack, it is required to select a victim node V, and a set of M malicious nodes, adjacent to
V, programmed to share with their neighbours a fake reputation value of the node V.
In order to simulate a whitewashing attack, it is necessary to specify the set of selfish
nodes and the threshold on the obtained resources needed to trigger the duplication of a
false identity. We also suggest to include neutral node in every type of simulation in order
to track the simulation results, e.g., the reputation values of the victim.

From a logical point of view, each process can run on a distinct remote host, thus we
adopted the Message Passing Interface (MPI) to enable communication among different
distributed processes. MPI provides a protocol for parallel message-passing in distributed
scenarios where processes exchange data through cooperative operations. The
synchronization is managed by means of blocking and non-blocking, point-to-point or
collective, communication primitives that guarantee safe access to shared data.

Some of the MPI primitives used by the simulator are shown in Fig. 3, where the
framework simulates a whitewashing attack by duplicating a node A with a low-reputation
value. All processes use the thread-safe MPI_Iprobe() routine to manage incoming
messages. Messages are sent and received by means of the non-blocking functions
MPI_Isend() and MPI_Irecv() respectively, whilst MPI_Barrier() is used to synchronize all
processes within the MPI communicator.

Check for
available
processes

MPI_Isend

send a
connection
reques

MPI_Isend

duplication
request

MPI_Isend

ACTIVE CONTROLLER INACTIVE ACTIVE ACTIVE
MPI_Iprobe

new state

send ack

MPI_Isend

��

��

��

��

��

��
��

��

’

(a) (b)

MPI_Barrier()

A C E A’ B

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

Fig. 4: (a) The network topology used for simulating the slandering and whitewashing attacks to the RMS. (b) A branch

of the network showing the connections between normal (white), malicious (black) and victim (grey) nodes.

EXPERIMENTAL EVALUATION
The aim of the tests we performed is to evaluate the capability of the framework to

simulate common attacks to a RMS. In particular, we present the assessment of the
simulation framework addressing a scenario where slandering and whitewashing attacks
are launched against the RMS described in Section 3.

At the end of the simulation, the framework returns the reputation value and the
percentage of obtained resources for all agents involved in the simulation, for each time
step. The comparison of the estimated reputation value for a given agent with its
cooperativeness degree, set through a simulation parameter, allows to evaluate the
average accuracy rate of a RMS, which is one of the most adopted metrics by works
presented in the literature [19], together with the average utility that can be directly
computed from the percentage of obtained resources. As compared to aggregated,
average, results, the detailed trends of reputation and obtained resources over time allow
to perform deeper and more various analyses of behaviour of the observed RMS.

The network topology adopted for evaluating the effect of a slandering attack is
shown in Fig. 4-a, whilst Fig. 4-b shows the connections between normal (white) and
malicious (black) nodes adjacent to a victim (grey) node. During the whole simulation the
victim agent E acts honestly, but its reputation is negatively affected by false information
disseminated by malicious agents D, G, and B in the reputation gossip phase. Such effect
can be observed by focusing on the top-left part of Fig. 5, which shows the reputation of E
as seen by the agent A, that receives information about E from its neighbours D, H, F, B
(see Fig. 4-b).
The consequences of the attack are not instantaneous due both to the positive effect of
direct interactions, and to the past history. In order to compare the vulnerability of different
RMSs to slandering attacks, it is possible to analyse the time necessary to waste the
reputation of a honest agent and the required percentage of malicious gossipers. The
bottom-left part of Fig. 5 shows that the percentage of resources obtained by the victim
agent decreases proportionally to its reputation.

The same analysis can be conducted by considering a whitewashing attack where a
malicious agent D acts selfishly with respect to the whole community, by responding only
to 10% of the received requests. The top-right part of Fig. 5 shows that the reputation of D,
as seen by its honest neighbour A, decreases over time. When the reputation value goes
under a fixed threshold, i.e., after 80 time steps, the malicious agent D duplicates itself by
creating a new identity with a default reputation value. The bottom-right part of Fig. 5 shows
the percentage of resources obtained by D using both its identities. In order to compare
two RMSs with respect to their resistance to a whitewashing attack, we suggest to
compare the whole amount of resources obtained by malicious agents by considering all
their false identities.

C

B

D

A

G

F

E

H

 C B

 G F

 H E

 D A

(a) (b)

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

Fig. 5: Reputation values (top) and corresponding percentage of resources (bottom) obtained by a victim

agent during a slandering attack (left) and by a malicious agent during a whitewashing attack (right).

CONCLUSIONS AND FUTURE WORK
In this work we presented a simulation framework aimed to support researchers in

evaluating the performances of a Reputation Management System since the design
phase. Such a tool is based on a two-layer architecture that separates reputation
management techniques from the software routines that actually drive the simulation. Each
agent of the reputation layer is mapped to a process running at the simulation layer, where
MPI interfaces are used to enable communication among different distributed processes.

The framework allows the user to specify the topology of the simulation network and
all the parameters which define the behaviour of the simulated agents. The simulator has
been tested by conducting an experimental campaign aimed to verify its correctness in
simulating two different attacks against a RMS, namely slandering and whitewashing
attacks.

The results we obtained demonstrate the suitability of the proposed framework for
providing detailed information required to conduct deep analyses about the performance of
the considered RMS.

As future work we want to provide an improved graphical interface allowing users to
easily change the simulation parameters, and to personalize the framework by defining
custom agent behaviours. Moreover, we are considering the adoption of the simulation
framework to mimic the interactions within large-scale social networks, e.g., Twitter [10],
[9] and to model the user’s behaviour [3], [4].

REFERENCES
[1] V. Agate, A. De Paola, G. Lo Re, M. Morana. A Simulation Framework for Evaluating

Distributed Reputation Management Systems. In: Proc of the 13th Int. Conf. on
Distributed Computing and Artificial Intelligence. pp 247-254 (2016)

[2] Chandrasekaran, P., Esfandiari, B.: Toward a testbed for evaluating computational
trust models: experiments and analysis. Journal of Trust Management 2(1), 1–27
(2015)

[3] P. Cottone, S. Gaglio, G. Lo Re, M. Ortolani. A Machine Learning Approach for User
Localization Exploiting Connectivity Data. In Journal of Engineering Applications of
Artificial Intelligence (Elsevier)

[4] P. Cottone, S. Gaglio, G. Lo Re, M. Ortolani. User Activity Recognition for Energy
Saving in Smart Homes. In Proc. of the 3rd Int. Conf. on Sustainable Internet and ICT
for Sustainability, 2013, pp. 1-9

[5] Crapanzano, C., Milazzo, F., De Paola, A., Lo Re, G.: Reputation management for
distributed service-oriented architectures. In: Proc. of the 4th IEEE Int. Conf. on Self-
Adaptive and Self-Organizing Systems Workshop. pp. 160–165. IEEE (2010)

0 50 100 150 200 250 300 350 400 450 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
R

ep
ut

at
io

n
va

lu
e

0 50 100 150 200 250 300 350 400 450 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
ep

ut
at

io
n

va
lu

e

0 50 100 150 200 250 300 350 400 450 5000

20

40

60

80

100

time step

O
bt

ai
ne

d
re

so
ur

ce
s

(%
)

0 50 100 150 200 250 300 350 400 450 5000

20

40

60

80

100

time step

O
bt

ai
ne

d
re

so
ur

ce
s

(%
)

Int. Conf. on Computer Systems and Technologies - CompSysTech’16

[6] De Paola, A., Tamburo, A.: Reputation Management in Distributed Systems. In: Proc
of the 3rd Int. Symposium on Communications, Control and Signal Processing
(ISCCSP). pp. 666–670 (2008)

[7] Fouliras, P.: A novel reputation-based model for e-commerce. Operational research
13(1), 113–138 (2013)

[8] Fullam, K.K., Klos, T.B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Barber, K.S.,
Rosenschein, J.S., Vercouter, L., Voss, M.: A specification of the agent reputation and
trust (ART) testbed: experimentation and competition for trust in agent societies. In:
Proc. of the 4th Int. joint Conf. on Autonomous agents and multiagent systems. pp.
512–518. ACM (2005)

[9] Gaglio, S., Lo Re, G., Morana, M.: Real-time detection of Twitter social events from
the user’s perspective. In: Communications (ICC), 2015 IEEE Int. Conf. on. pp. 1207–
1212 (2015)

[10] Gaglio, S., Lo Re, G., Morana, M.: A framework for real-time Twitter data analysis.
Computer Communications 73, Part B, 236 – 242 (2016)

[11] Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defence techniques for
reputation systems. ACM Computing Surveys (CSUR) 42(1), 1 (2009)

[12] Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for
reputation management in p2p networks. In: Proc. of the 12th Int. Conf. on World Wide
Web. pp. 640–651. ACM (2003)

[13] Kerr, R., Cohen, R.: Smart cheaters do prosper: defeating trust and reputation
systems. In: Proc. of The 8th Int. Conf. on Autonomous Agents and Multiagent
Systems-Volume 2. pp. 993–1000. (2009)

[14] Lalomia, A., Lo Re, G., Ortolani, M.: A hybrid framework for soft real-time WSN
simulation. In: Distributed Simulation and Real Time Applications, 2009. DS-RT ’09.
13th IEEE/ACM Int. Symposium on. pp. 201–207 (2009)

[15] Lee, J., Zhang, J., Huang, Z., Lin, K.J.: Context-based reputation management for
service composition and reconfiguration. In: Proc. of the 2012 IEEE 14th Int. Conf. on
Commerce and Enterprise Computing (CEC). pp. 57– 61 (2012)

[16] Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing P2P reputation systems.
Computer Networks 50(4), 472–484 (2006)

[17] Weng, J., Shen, Z., Miao, C., Goh, A., Leung, C.: Credibility: How agents can handle
unfair third-party testimonies in computational trust models. IEEE Trans- actions on
Knowledge and Data Engineering 22(9), 1286–1298 (2010)

[18] Yu, H., Liu, S., Kot, A., Miao, C., Leung, C.: Dynamic witness selection for trust-
worthy distributed cooperative sensing in cognitive radio networks. In: Proc. of the
2011 IEEE 13th Int. Conf. on Communication Technology (ICCT). pp. 1–6 (2011)

[19] Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.R.: A survey of multi-agent trust
management systems. Access, IEEE 1, 35–50 (2013)

ABOUT THE AUTHORS

Vincenzo Agate, vincenzo.agate@unipa.it, University of Palermo, Italy
Assist. Prof. Alessandra De Paola, alessandra.depaola@unipa.it, University of Palermo,
Italy
Full Prof., Salvatore Gaglio, salvatore.gaglio@unipa.it, University of Palermo, Italy
Assoc. Prof. Giuseppe Lo Re, giuseppe.lore@unipa.it, University of Palermo, Italy
Assist. Prof. Marco Morana, marco.morana@unipa.it, University of Palermo, Italy

