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An Adaptive Bayesian System for Context-Aware
Data Fusion in Smart Environments

Alessandra De Paola, Pierluca Ferraro, Salvatore Gaglio, Giuseppe Lo Re
and Sajal K. Das

Abstract—The adoption of multi-sensor data fusion techniques is essential to effectively merge and analyze heterogeneous data
collected by multiple sensors, pervasively deployed in a smart environment. Existing literature leverages contextual information in the
fusion process, to increase the accuracy of inference and hence decision making in a dynamically changing environment. In this paper,
we propose a context-aware, self-optimizing, adaptive system for sensor data fusion, based on a three-tier architecture.
Heterogeneous data collected by sensors at the lowest tier are combined by a dynamic Bayesian network at the intermediate tier,
which also integrates contextual information to refine the inference process. At the highest tier, a self-optimization process dynamically
reconfigures the sensory infrastructure, by sampling a subset of sensors in order to minimize energy consumption and maximize
inference accuracy. A Bayesian approach allows to deal with the imprecision of sensory measurements, due to environmental noise
and possible hardware malfunctions. The effectiveness of our approach is demonstrated with the application scenario of the user
activity recognition in an Ambient Intelligence system managing a smart home environment. Experimental results show that the
proposed solution outperforms static approaches for context-aware multi-sensor fusion, achieving substantial energy savings whilst
maintaining a high degree of inference accuracy.

Index Terms—I.2.6 Learning, J.9.f Wireless sensor networks
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1 INTRODUCTION

SMART environments and intelligent systems designed
for real-world applications are often based on the

sensing-reasoning-acting paradigm [1]; generally, they exploit
a sensory infrastructure to collect measurements, which is
then used to obtain a high-level description of the state of
the environment, and of the current context, reason about
it, and select actions to be performed in order to achieve
the desired system goals. In many cases the sensory infras-
tructure consists of a multitude of heterogeneous pervasive
devices, which may produce a non-negligible uncertainty
such as noisy data and measurements that impact the in-
ference accuracy and energy consumption, and sensors on
mobile devices, which are often energy hungry [2]. In such
scenarios it is convenient to adopt a multi-sensor data fusion
method, capable of dealing with such complex situations.

One of the most effective approaches for this purpose is
the adoption of Bayesian belief networks [3], which exploit
the statistical correlation between sensory measurements
and the peculiarities of the surrounding world; they allow
to deal with the heterogeneity of information sources and
with the uncertainty in sensory data and developed models.

However, when performing data fusion, it might not
always be efficient to sample all available sensors. On the
contrary, if the sensory infrastructure is composed of devices
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with limited energy resources, it may be useful to activate
only a subset of sensors, in order to increase the lifetime of
the whole network. This is the case of smart environments
whose pervasive sensory infrastructure includes wireless
sensor networks (WSNs) [4]. WSNs are composed of de-
vices, namely sensor nodes, characterized by programma-
bility, wireless communications capability, and limited com-
putational and energy resources, such that it is essential to
extend the network lifetime by putting inactive nodes in
stand-by state as long as possible. If the system exploits
also sensors on mobile devices, their activation may cause a
great energy consumption, thus it is convenient using them
as data sources only when it is necessary. However, since
different contexts may require different sensory capabilities,
it is not desirable to determine a priori the subset of sensors
to use. In a real-world scenario, the context conditions may
change over time, implying the need for a system capable of
dynamically selecting the subset of sensory devices.

1.1 Our Contributions
This work proposes an adaptive system performing multi-
sensor data fusion based on a three-tier architecture, which
allows the system to perform reasoning at different abstrac-
tion levels. Heterogeneous sensors at the lowest tier gather
raw data about the environment. A dynamic Bayesian net-
work at the intermediate tier performs the multi-sensor
fusion and infers the context information necessary for the
comprehension of the environment, such as the activities
performed by the users in a smart environment. At the
highest tier, a self-optimization subsystem reconfigures the
sensory infrastructure, by selecting the subset of sensors to
be used, in order to optimize its own performance. Such self-
optimization process is performed through dynamic rules,

DRAFT



2

so that the system is able to change its own goals in response
to the context changes.

In order to validate the effectiveness of our approach,
we considered the application scenario of an Ambient Intel-
ligence (AmI) [1] system managing a smart home. AmI is an
artificial intelligence application paradigm that focuses on
the well-being of people and the satisfaction of their needs,
through a pervasive infrastructure of sensors and actuators
that surround users with a minimal degree of intrusiveness.

The above scenario is particularly appropriate for our
evaluation, since frequent user interactions make the con-
text highly dynamic. Furthermore, considering that sensory
devices are usually only partially related to the observed
phenomena, non-negligible noises are typically introduced.
They may be caused by several different reasons [5], such
as poor sensor quality, lack of sensor calibration, hardware
failures, noise from external sources, and imprecision in
computing derived values from measurements.

The capability of programming offered by the sensory
devices also enables the management system to actually
change the state of the sensory infrastructure. In such a
scenario, our goal is to optimize the trade-off between
the inference accuracy and energy consumption of sensory
devices. The activities performed by users constitute the
features to infer. Generally, activity recognition represents
one of the key functionalities of an AmI system, since it
enables an effective responsiveness toward the user needs.

Experimental study confirmed the capability of our ap-
proach to self-configure the sensory infrastructure by ob-
taining an optimal trade-off between the above two conflict-
ing goals, thus achieving performances better than other
possible static solutions. Our approach allows to go one
step further toward real autonomous systems, capable of
controlling the environment surrounding the users. The
main novelty is its adaptiveness to dynamic environments
and the capability of extending the lifetime of the sensory
infrastructure as the context changes, thus reducing human
interventions. Moreover, our solution has the capability of
self-detecting those critical conditions in which a recon-
figuration is needed in order to maintain a good quality
inference.

1.2 Outline

The remainder of this paper is organized as follows. Sec-
tion 2 briefly discusses the related work on multi-sensor
data fusion and context-aware systems. Section 3 outlines
the proposed architectural framework and provides a high
level description of its modules. Section 4 describes the
module that performs context-aware data fusion through
a dynamic Bayesian network. Section 5 highlights the dy-
namic reconfiguration capabilities, explaining the behavior
of the self-optimization modules. Section 6 presents the case
study used to demonstrate the effectiveness of our approach
with the help of activity recognition in an AmI scenario.
Section 7 describes the experimental setting and the metrics
used to evaluate the performance of the proposed approach,
and analyzes our experimental results. Finally, Section 8
draws our conclusions with directions for future work.

2 RELATED WORK

Multi-sensor data fusion techniques are widely used to meld
data acquired by sensors deployed in the environment, in
order to drive the process of knowledge abstraction from
raw data and generating high-level concepts. Although
plenty of research work has been done on data fusion, many
challenging problems still remain unsolved, especially those
inherent to the fusion of multi-source information, such
as scalability, data inaccuracy and heterogeneity, outliers,
or conflicting information. Further problems arise from
the modeling of dynamic phenomena varying over time,
or when addressing privacy and security concerns. For a
comprehensive survey on the state of the art of multi-sensor
data fusion solutions, please refer to [6].

Existing literature addresses the problem of data imper-
fection by proposing different approaches, based on various
theoretical foundations. Probabilistic techniques [3], such as
Naive Bayes classifiers, Hidden Markov Models, and Condi-
tional Random Fields (CRFs), representing data uncertainty
by using probability distributions, have been described
in [7], which analyzes and compares the performance of
these approaches in a smart home scenario. Alternative
approaches deal with other aspects of data inaccuracy, such
as vagueness, for example those based on the fuzzy set
theory [8]. The authors in [9] proposed a general-purpose
fuzzy logic architecture that combines multi-sensor data for
automatic object recognition, control of system resources,
and automated situation assessment. In [10], a multi-sensor
image fusion for surveillance systems is proposed, which
exploits fuzzy logic in order to enhance the fused image.

The problem of detecting sensory measurements that
mismatch with the expected pattern of observed data has
been thoroughly studied in the literature [11], with the aim
of eliminating outliers from the fusion process. An adaptive,
distributed Bayesian approach for detecting outliers in data
collected by a wireless sensor network is proposed in [12] to
guarantee reliability and fault tolerance, as well as to reduce
energy consumption for unnecessary transmissions.

Heterogeneity of information sources is another signifi-
cant challenge for data fusion systems. The raw data to ana-
lyze might be generated by a large number of heterogeneous
sensors and extensive research effort has been devoted to
coherently and accurately combine the resulting data [13],
[14]. In recent years, a lot of attention has been paid to
include context information in the data fusion process in
order to reduce ambiguities and errors [15]. HiCon [16]
is a hierarchical context aggregation framework that deals
with a broad spectrum of contexts, from personal (e.g.,
the activities of individuals) to city-wide (e.g., locations of
groups of people and vehicles) and world-wide (e.g., global
weather and financial data). The authors in [17] defined a
formal model capable of representing context and situations
of interest, and developed a technique that exploits multi-
attribute utility theory for fusing the modeled information
and thereby attain situation awareness. An extensive frame-
work to mediate ambiguous contexts in pervasive environ-
ments is presented in [18], [19].

When dealing with phenomena that evolve over time,
adaptiveness is a fundamental feature. In such cases, where
the external environment may constantly change, the system
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needs to dynamically adapt to the situation, and mod-
ify its behavior accordingly. Dynamic Bayesian networks
(DBNs) [20], in addition to current sensory readings, con-
sider the past belief of the system, thus capturing the
dynamicity of the phenomena under observation. Several
works adopt DBNs to perform adaptive data fusion for
different applications, such as target tracking and identifi-
cation [21], user presence detection [22], [23], user activity
recognition [24], [25], and healthcare [26]. Other works in-
tegrate machine-learning algorithms in the data fusion pro-
cess, to develop adaptive systems. Interesting examples of
this trend are reported in [27], which exploits reinforcement
learning, and in [28], which proposes kernel-based learning
methods to improve the effectiveness of data fusion.

In the field of pervasive systems, and particularly in Am-
bient Intelligence, the adoption of an adaptive information
fusion scheme, capable of exploiting context information, is
fundamental to develop a truly smart environment [29] that
is able to dynamically adapt to the external events. Con-
text information, such as time, location, and user presence
or activity, allows for refining the inference process, thus
significantly improving the accuracy of reasoning [30]. The
authors in [19] propose a resource-optimized framework for
sensor networks based on DBNs and information-theoretic
reasoning to minimize ambiguity in the context estimation
process and context quality determination.

When the pervasive sensory infrastructure is enriched
with mobile devices, as proposed in [31], the set of sensors
capable of perceiving context information becomes larger.
Nevertheless, those sensors are often energy hungry, thus
many solutions in literature focus on the reduction of
their consumption. In [32] a static scheme of exclusion of
most costly sensors is proposed. SeeMon [33] is an energy-
efficient context monitoring framework for mobile devices,
which adopts event-based monitoring policies to save en-
ergy by reducing unnecessary wireless communications.
ACE (Acquisitional Context Engine) [34] is a middleware
for context-aware applications that dynamically learns as-
sociative rules among context attributes, so as to infer the
value of expensive attributes by sensing cheaper ones. On a
similar note, CARLOG [35] adopts a rule-based approach
to minimize bandwidth usage, energy and latency, and
supports multiple concurrent queries of context attributes,
further minimizing bandwith usage.

The authors in [2] propose a solution that reduces energy
consumption by selecting the set of sensors that achieves
the minimum value of accuracy of estimation. The authors
of [31] suggest instead to reduce the sensors sampling rate
and propose a data fusion approach capable of dealing with
such inhomogeneity of data sources.

Given the above considerations on the state of the
art literature, this paper proposes a context-aware self-
optimizing system for multi-sensor data fusion in pervasive
computing scenarios, such as smart living environments.
Differently from other previous works, our system focuses
on dynamic management of sensors, and finding the best
trade-off between inference accuracy and energy consump-
tion of sensory devices. Furthermore, we exploit contextual
information in a novel way, both to increase the accuracy of
reasoning and to improve the adaptiveness of the system,
thereby reducing the energy consumption.

Feature	  Extrac+on

Global
Op+miza+on

Data	  Fusion

Sensor	  Control

Context
Informa+on

S1 S2 Sn...

E1 E2 En...

Alarm	  Thresholds

Alarm	  Type

Constrained
Op+miza+on

Self-Optimization Tier

Data Fusion Tier

Sensory Tier

Fig. 1: Block Diagram of the three-tier architecture.

3 THE THREE-TIER ARCHITECTURE

We envision a three-tier architecture allowing the intelligent
system to infer concepts related to the external world, from
which events are observed by means of sensors. Further-
more, our architecture proposes a self-diagnostic compo-
nent, in order to enable the system to reason about its own
behavior and performance.

One of the main features of our approach is its capability
of dealing with the inherent inaccuracy of sensors. Prob-
abilistic techniques, such as dynamic Bayesian networks,
enable the fusion of information coming from multiple
sensors by explicitly modeling the noise and uncertainty
of data so as to improve confidence and reliability of the
reasoning process [6].

Another relevant feature of our system is the capability
of adaptively selecting the best subset of sensors to be
used in the data fusion process. Such selection is performed
to activate only the sensors that are strictly necessary on
the basis of the current needs of the system, rather than
exploiting all the available data sources.

This approach meets several possible requirements of
intelligent pervasive systems. It decreases the computational
burden of the information fusion process, and consequently
the system response time [21]. Moreover, it reduces the en-
ergy consumption of the sensory infrastructure; this aspect
plays a relevant role in pervasive systems, such as Ambient
Intelligence, considered here as a case study.

Although our approach minimizes the number of sen-
sors used during the inference process, we require a high de-
gree of accuracy. For this purpose, the system is designed to
autonomously modify the state of the sensory infrastructure
by switching sensors to a low-power mode which disables
data gathering and transmission functionalities in order to
minimize their energy consumption, whenever this does not
compromise the inference accuracy.

The proposed architecture depicted in Fig. 1 consists of
three different tiers characterized by increasing abstraction
levels. The lowest tier (sensory) is in charge of the observa-
tion of external phenomena occurring in the environment
(world) through the pervasive sensory infrastructure that
manages only raw data. The intermediate tier (data fusion)
copes with the uncertainty of gathered data and tries to
infer the external world conditions, which contribute to
define the current context, by performing a multi-sensor
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data fusion with the integration of further available context
information. Finally, the highest tier (self-optimization) aims
at finding an acceptable trade-off between costs (e.g., energy
consumption) and system performance (e.g., accuracy of
reasoning). Fig. 1 illustrates the main modules within each
tier of the proposed architecture. The sensory and data fu-
sion tiers present a simple structure exploiting respectively
the following two functionalities:

• Sensor Control: collects raw data coming from the
sensors, sends them to the Data Fusion module and
modifies the state of sensory devices, by activating or
deactivating them according to the policy indicated
by the modules of the self-optimization tier;

• Data Fusion: exploits the available context informa-
tion, performs probabilistic inference on the raw
data coming from sensors, and combines them into
describing the world through higher-level concepts.

The self-optimization tier exhibits the highest complex-
ity, since it considers the state of the system and the current
context conditions, and selects the actions to be performed
in order to optimize the system behavior. The main func-
tionalities of this tier are performed by the following three
modules:

• Feature Extraction: selects the relevant context in-
formation about the external world and the inter-
nal state of the system in order to perform self-
optimization. Such features are inferred both from
the outcome of the Data Fusion module, and from
the meta-analysis of the system internal behavior.
The set of features is specific and depends on the
particular application scenario. For this reason, in
order to adapt our system to a specific scenario, it
is necessary to identify the meaningful information
needed for dynamically reconfiguring the sensory
infrastructure.

• Global Optimization: exploits context information, in
the form of features selected by the Feature Extraction
modules, to dynamically modify the cost and un-
certainty thresholds triggering the self-configuration
performed by the Constrained Optimization module.

• Constrained Optimization: this module is activated by
a set of alarms triggered by the Global Optimization
module, when cost and uncertainty of the informa-
tion fusion process exceed their respective thresh-
olds. The cost and uncertainty quantities are two of
the features selected by the Feature Extraction module
for the specific scenario considered here.

A more accurate description of the role played by the
most relevant modules is given in the following sections.

4 MULTI-SENSOR DATA FUSION

As the basis of the Data Fusion module we envisioned a dy-
namic Bayesian network (DBN), a special case of Bayesian
networks, which is capable of capturing the dynamicity
of the phenomena under observation, taking into account
the past states in addition to the current observations.
Differently from the most commonly used approaches for
data fusion, which adopt Kalman filters [36] and hidden

C1
t−1 C2

t−1 · · · Ck
t−1 C1

t C2
t · · · Ck

t

· · · Xt−1 Xt · · ·

E1
t−1 E2

t−1 · · · Ent−1 E1
t E2

t · · · Ent

Fig. 2: The dynamic Bayesian network (DBN) used for
performing the context-aware data fusion.

Markov models (HMMs) [37], we adopt the more general
approach of the DBNs, in order to represent the influence
of context variables on the state of the environment without
any restrictions on the conditional probability distributions.
DBNs allow us to model the time as slices representing
the state of the world at a given instant, in addition to
evidences representing the observable manifestation of the
hidden world state. Since DBNs represent a good trade-off
between expressiveness and tractability [20], they provide a
useful tool for performing data fusion.

Fig. 2 sketches the DBN designed for our Data Fusion
module. Its main goal is to infer the state of the world, in
the form of a given feature of interest, which is represented
by the hidden variable Xt. The belief update is performed
on the basis of a set of sensory readings and a set of context
information. Here Et = (E1

t , . . . , E
n
t ) is the set of sensory

readings gathered by those sensors that are active in the time
slice t, according to the policy of the Constrained Optimization
module.

The set of context information, i.e., Ct = (C1
t , . . . , C

k
t ),

heavily depends on the application scenario; however, it is
crucial to limit the number of context variables in order to
control the size of the conditional probability tables (CPTs)
and, consequently, the number of parameters to be learnt in
the training phase.

The characterization of the DBN requires the defini-
tion of the sensor model and the state transition model. The
probability distribution P (Et|Xt) represents how sensory
readings are affected by the current state of the system,
and is named as the sensor model. The state transition model,
i.e., P (Xt|Xt−1,Ct), expresses the probability that the state
variable takes a certain value, given its previous value and
the current context.

Since our DBN is a first-order Markov model, we can
define the belief about a specific system state in the time
slice t, i.e., xt, as:

Bel(xt) = P (xt|E1:t,C1:t). (1)

By following a procedure analogous to that adopted by
authors of [38] for deriving the equation of Bayes filters, we
obtain a practical formulation of our belief. In particular, by
applying the Bayes rule, it is possible to express Eq. (1) as
follows:
Bel(xt) = P (xt|E1:t,C1:t) = P (xt|E1:t−1,Et,C1:t) =

= η · P (Et|xt,E1:t−1,C1:t) · P (xt|E1:t−1,C1:t),
(2)

where η is a normalizing constant. By using the Markov
assumption, by considering that the sensor nodes in Et do
not depend on the context variables in Ct, given the state
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variable Xt, and by assuming that sensor measurements are
mutually conditionally independent, given the value of the
parent node Xt, the following holds:

P (Et|xt,E1:t−1,C1:t) = P (Et|xt,C1:t) = P (Et|xt) =

=
∏
eit

P (eit|xt),

(3)
where eit is the specific value of the sensory reading gathered
by the sensor i in the time slice t.

Moreover, the last term in Eq. (2) can be expressed as
follows:

P (xt|E1:t−1,C1:t) =
∑
xt−1

P (xt, xt−1|E1:t−1,C1:t) =

= α ·
∑
xt−1

P (xt|xt−1,E1:t−1,C1:t) · P (xt−1|E1:t−1,C1:t),

(4)
where α is another normalizing constant. Now, Ct can be
safely omitted from the last term, since Xt−1 does not
depend on the next context Ct if the next state Xt is not
considered. Thus, using the Markov assumption, Eq. (4) can
be expressed as:

P (xt|E1:t−1,C1:t) =

= α ·
∑
xt−1

P (xt|xt−1,Ct) · P (xt−1|E1:t−1,C1:t−1) =

= α ·
∑
xt−1

P (xt|xt−1,Ct) ·Bel(xt−1).

(5)
Finally, by substituting Eq. (3) and Eq. (5) into Eq. (2), the

belief can be defined with the following recursive formula:

Bel(xt) = η ·
∏
eit

P (eit|xt) ·
∑
xt−1

P (xt|xt−1,Ct) ·Bel(xt−1),

(6)
where α is integrated in the normalization constant η. Using
Eq. (6), the inference can be performed by storing only two
slices of the DBN, and thus the time and space required
for updating the network belief are independent of the se-
quence length. The computational complexity of calculating
Eq. (6) is O(n+m), where n is the number of sensor nodes
and m is the number of possible values of Xt. Thus, the
overall complexity of computing Bel(xt) for all values of
Xt is O(m2 +m · n).

Since we already know the structure of the slices of our
DBN, in the learning phase we have only to fill the CPTs.
The method used to learn the CPTs may vary depending
on the training set of historical data, Ξ, at our disposal. In
a fully labeled dataset, we have only to compute sample
statistics for each node. For example, let Pi denote the par-
ents of a node Vi. The sample statistic P (Vi = vi|Pi = pi)
is given by the number of samples in Ξ having Vi = vi
and Pi = pi divided by the number of samples having
Pi = pi. To learn the CPTs, we have to calculate these
sample statistics for all the nodes in the network. If we don’t
have a fully labeled dataset, i.e., the values of one or more
of the variables are missing for some of the training records,
different techniques can be used, such as the Expectation
Maximization (EM) algorithm or gradient ascent [3].

Example. We will now describe a running example illus-
trating how the DBN of the Data Fusion module operates.

TABLE 1: CPT for state transition: P (Xt|Xt−1,C
1
t ).

Xt

C1
t Xt−1 0 1

0 0 0.75 0.25
0 1 0.11 0.89
1 0 0.85 0.15
1 1 0.07 0.93
2 0 0.95 0.05
2 1 0.10 0.90

TABLE 2: CPTs for sensor models: P (E1
t |Xt), P (E2

t |Xt) and
P (E3

t |Xt) .

E1
t E2

t E3
t

0 1 2 0 1 0 1

Xt
0 0.50 0.20 0.30 0.87 0.13 0.68 0.32
1 0.15 0.05 0.80 0.36 0.64 0.10 0.90

We consider a network with a single state variable X, with
two possible different values, three evidence nodes E1, E2,
E3, taking 3, 2 and 2 values respectively, and a single
context node C1, taking three possible values; the network
is defined through the CPTs reported in Tables 1 and 2.

Let P (X0) = 〈0.85, 0.15〉 represent the probability dis-
tribution for the state variable at time t = 0, i.e., P (X0 =
0) = 0.85 and P (X0 = 1) = 0.15. If the sensory readings at
time t = 1 are [E1

1 , E
2
1 , E

3
1 ] = [1, 0, 1], and the value of the

context node C1
1 is 0, the corresponding belief for the state

variable can be computed according to Eq. (6):

Bel(X1 = 0) =

= η · (0.2 · 0.87 · 0.32) · (0.75 · 0.85 + 0.11 · 0.15) =

= η · 0.037,

Bel(X1 = 1) =

= η · (0.05 · 0.36 · 0.9) · (0.25 · 0.85 + 0.89 · 0.15) =

= η · 0.006,

where the normalization constant can be computed as
η = 1

0.037+0.006 = 23.256. Thus, the belief at time t = 1
is Bel(X1) = 〈0.867, 0.133〉. We now suppose that at time
t = 2 our sensors produce the readings: [E1

2 , E
2
2 , E

3
2 ] =

[2, 1, 0], and that the value of the context node C1
2 is 1.

Applying again Eq. (1), we obtainBel(X2) = 〈0.606, 0.394〉.
As mentioned, the context information greatly influence
inference results. Indeed, if the value of the context node C1

2

had been 0 at time t = 2, the corresponding belief would
have been Bel(X2) = 〈0.507, 0.493〉.

5 CONTEXT-AWARE SELF-OPTIMIZATION

The self-optimization modules aim to dynamically optimize
the state of the sensory infrastructure, in order to find the
best trade-off between performance and costs. To this end
they need to exploit the maximum of available information
on the external world and on the internal system conditions.
Useful information can be obtained by the analysis of the
behavior of the Data Fusion module, in addition to the other
information acquired from the external world.

The Feature Extraction module produces a feature vector
containing meta-information about the world state and the
system state, which, as a whole, defines the current context.
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Such information are then exploited by the Global Optimiza-
tion and Constrained Optimization modules to update the
alarm thresholds and reconfigure the sensory infrastructure
respectively, as will be described in the following.

5.1 Feature Extraction
The Feature Extraction module produces for each time slice t
a feature vector composed of the following elements:

FVt = [conft,WSB , TE , RUE, SC,SIE ], (7)

where conft is the configuration of the sensory infrastruc-
ture, WSB is the belief distribution about the world state as
inferred by the Data Fusion module, TE is the elapsed time
since the last estimated transition of the world state, RUE
is an estimation of the reasoning uncertainty, SC is the cost
associated to the active sensors, and SIE is an estimation of
the importance of each sensor for the inference.

The sensory configuration, which fully describes the
state of each sensor, is defined as a binary vector, conft =
[s1t , s

2
t , . . . , s

n
t ], where sit ∈ {0, 1}. Each element sit specifies

whether the corresponding sensor Ei is off or on, respec-
tively, in the time slice t.

The belief about the state of the world, WSB , is obtained
directly from the Data Fusion module at each time slice,
as calculated by Eq. (6). The Global Optimization module
exploits such information along with TE , the elapsed time
since the last transition of the world state as perceived by
the system. If we define the most probable world state as:

x∗t = arg max
xt

(
Bel(xt)

)
, (8)

the Feature Extraction module evaluates the number of time
slices elapsed since the last transition of the world state with
the following equation:

TE(t) =

{
TE(t− 1) + 1 if x∗t−1 = x∗t ,
0 otherwise.

(9)

The uncertainty and cost indices associated with a spe-
cific sensory configuration are used by the Global Optimiza-
tion module to decide whether to trigger an alarm, thus
requiring a reconfiguration of the sensory infrastructure.
To measure the uncertainty of the probabilistic reasoning
performed by the Data Fusion module, we propose to adopt
an index based on the definition of Shannon entropy [39]:

RUE
def
= −

∑
xt

Bel(xt) log2(Bel(xt)). (10)

Assuming that the cost of acquiring information from
node Ei in the time slice t is expressed by the function
fcost(E

i
t), the total cost associated to a specific sensory

configuration can be evaluated as:

SC
def
=

∑
Ei

t∈Et

fcost(E
i
t) · sit. (11)

The specific cost function closely depends on the application
scenarios; we defer the description of the one adopted for
our case study to Section 6.

Finally, in order to support the system to select the most
useful sensors to activate at any time slice, we adopted a
heuristic that estimates the importance of each sensor in the

current situation, based on the Kullback-Leibler (KL) diver-
gence [40], known as relative entropy or information gain.
The KL divergence of an approximate distribution G, with
regard to a true distribution F , measures the information
that is lost when G is used instead of F . It is defined as:

DKL(F‖G) =
∑
i

F (xt) log

(
F (xt)

G(xt)

)
. (12)

The information gain of an active sensory configura-
tion can be computed as the KL divergence of the predic-
tion P (Xt|E1:t−1,C1:t) with regard to the belief Bel(Xt).

However, if we consider a sensory infrastructure with n
sensors, in order to exactly determine the optimal sensory
configuration, the optimization modules should evaluate
the information gain for all the possible 2n sensor states,
with an effort that, as n grows, becomes quickly intractable.
For this reason, we define a heuristic which roughly approx-
imates the information gain of a given sensory configuration
with the simple sum of the information gains of each sensor.
The current information gain of a single active sensor can
be simply evaluated by comparing the belief obtained by
using its last reading with the belief obtained by ignoring
such evidence. We define the belief that would be obtained
by ignoring the evidence eit, for a specific state of the world,
as a function of the belief Bel(xt):

Beleit(xt) = β · Bel(xt)
P (eit|xt)

, (13)

where β is a normalizing factor. We can then compute the
information gain of a single active node Ei, in the time slice
t, as the KL divergence ofBeleit(Xt) with regard toBel(Xt),
as follows:

inf gain(Eit) = inf gain(Eit = eit) =

= DKL(Bel(Xt)‖Beleit(Xt)).
(14)

The evaluation of the information gain of an inactive sen-
sor shows a higher computational cost, since the absence of
a reading involves the computation of the belief change for
all the possible sensory readings. Namely, the information
gain of an inactive sensor should be calculated as follows:

inf gain(Eit) =
∑
eit

P (Eit = eit) · inf gain(Eit = eit). (15)

However, in order to reduce the computational cost,
in our heuristic we adopted a further simplification that
exhibits the advantage of considering not only the instan-
taneous information gain, but also the past history. Accord-
ingly, we do not exploit Eq. (15) to compute the information
gain of an inactive sensor; rather, at each time slice, we
evaluate the current information gain only of the active
sensors and update their sample mean and variance. In this
way, we can consider an estimate of the value of information
provided by the whole sensory configuration conft as,

SIE
def
= [inf gainavg(conft), inf gainvar(conft)], (16)

where

inf gainavg(conft)
def
=
∑
i

inf gainavg(E
i
t) · sit,

inf gainvar(conft)
def
=
∑
i

inf gainvar(E
i
t) · sit.

(17)
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Fig. 3: The functions used in the Global Optimization module.

Since the KL divergence does not satisfy the triangle
inequality, our approach constitutes only a heuristic, al-
though it performs well in practice, as will be shown in
the experimental section. Moreover, storing the sampling
mean and variance of the information gain for n sensors
is much more efficient than exploring all the 2n sensory
configurations and all possible readings of inactive sensors.

The computational complexity of calculating the feature
vector FVt is dominated by the evaluation of Eq. (17). The
information gain of a single sensor node can be derived in
O(m), wherem is the number of possible values ofXt. Their
mean and variance can be updated online in O(1), thus,
the overall complexity of the operations performed by the
Feature Extraction module with n sensors is O(m · n).

5.2 Global Optimization
The goal of the Global Optimization is to dynamically drive
the behavior of the self-configuring component, according to
the context changes. Static criteria regarding reconfiguration
frequency or global objectives of the system are inappropri-
ate for dynamic scenarios.

The Global Optimization module dynamically modifies
the alarm thresholds, concerning inference uncertainty and
cost, used for triggering and constraining the reconfigura-
tion performed by the Constrained Optimization module, as
depicted in Fig. 1. The basic idea is that, in order to obtain a
significant energy saving, it is appropriate to reduce the set
of active sensors when it is expected a reduced variability in
context conditions, i.e., no change in the state of the world
is expected, even if such an action may involve a reduction
in the inference accuracy. On the other hand, whenever
significant context variability is expected, a better policy
could be to increase the sensory activity of the system. To
this end, the Global Optimization module uses the estimated
temporal lengths of world states, as learned during the
training phase by the Data Fusion module, the inferred belief
about the current state of the world, and the time elapsed
since the last state transition observed by the system.

For instance, if the system identifies a state condition
with a high probability to persist for a long time, it might
switch off most of the sensors without a relevant accuracy
reduction. Conversely, if the system estimates a sudden
transition for current state, it should activate all the sensors
necessary to achieve the desired accuracy, even at the cost
of higher energy consumption.

To this end, the Global Optimization module tries to
predict if the state of the world will change in the next

time slice, by estimating the probability of a state condition
transition with the following soft-threshold function:

changePt(fchange) = 1− 1

1 + eλfchange(t)−ν
, (18)

where
fchange(t) =

elapsedT imet
expectedDuration(Xt)

, (19)

and λ and ν are parameters of the soft-threshold function.
This implies the probability of transition of a state condition
increases as fchange(t) value grows, as shown in Fig. 3a. The
function expectedDuration(Xt) in Eq. (19) is computed as
the expected value of the current state duration, as follows:

expectedDuration(Xt) =
∑
i

wit · avgDuration(xi),

wit = Bel(xit),

(20)

where avgDuration(xi) represents the estimation of the
temporal length of a specific state of the world xi, as learned
during the training phase by the Data Fusion module, and
each weight wit is the belief of a specific state in the time
slice t, such that

∑
i w

i
t = 1.

The transition probability of the state condition com-
puted by the Global Optimization module is used to dynami-
cally modify the cost and uncertainty thresholds, which can
vary between minimum and maximum values set by the
system administrator. Whenever the uncertainty and cost of
the inference performed by the Data Fusion module exceed
these thresholds, an alarm is triggered and consequently the
Constrained Optimization module performs the reconfigura-
tion of the sensory infrastructure. The thresholds for cost
and uncertainty, i.e., θcostt and θunct , are modified according
to the following equations:

θcostt = mincost+

+ (maxcost −mincost) · changePt(fchange),
θunct = minunc+

+ (maxunc −minunc)(1− changePt(fchange)).
(21)

As shown in Fig. 3b, when changePt(fchange) is close to
0, the system enters a power-saving mode, thereby reducing
the cost threshold and raising the uncertainty threshold.
Conversely, when changePt(fchange) is close to 1, the sys-
tem gives priority to the accuracy of the inference, raising
the cost threshold and reducing the uncertainty threshold.

At each time slice, the Global Optimization module up-
dates the thresholds and compares them with the cost
and uncertainty computed by the Feature Extraction mod-
ule, checking whether any alarm is triggered. If both the
thresholds are exceeded, priority is given to the reduction
of uncertainty, since the main goal of the system is to infer
the state of the world in a precise and reliable way.

The computational complexity of the Global Optimization
module is dominated by Eq. (20), which can be computed in
O(m), where m is the number of possible values of Xt.

The Global Optimization module is implemented as an
Influence Diagram [3], a generalization of a Bayesian net-
work, capable of supporting probabilistic decision-making.
Such Influence Diagram is shown in Fig. 4. It merges two
types of information: (i) information describing the state
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Fig. 4: The Global Optimization module Influence Diagram.

of the world, captured by the Data Fusion module, and
(ii) meta-information about the behavior of the Data Fusion
module, extracted by the Feature Extraction module. All such
information represents the context from the point of view of
the Global Optimization module.

The Alarm node and the Reconfigure decision node repre-
sent binary variables that indicate, respectively, whether an
alarm is triggered and whether the system should dynami-
cally modify the state of its sensors.

The conditional probability distributions of the
State transition node and of the thresholds nodes are based
on Eq. (18) and Eq. (21), respectively. Finally, the utility
function of the Influence Diagram is computed as the XNOR
(exclusive NOR) of the Alarm variable and the Reconfigure
decision variable, in order to trigger a reconfiguration when
an alarm condition holds.

5.3 Constrained Optimization

In order to achieve the best possible trade-off between
cost and reasoning accuracy, the Constrained Optimization
module leverages the dynamic thresholds set by the Global
Optimization module to dynamically modify the state of the
sensory infrastructure. For instance, it can reduce the energy
consumption of the sensory infrastructure at the cost of a
sacrifice in accuracy, by switching redundant devices to the
low-power mode, thus suspending their data gathering and
transmission functionalities, as explained in Section 3.

To manage the above conflicting goals, we adopt a multi-
objective trade-off analysis based on a Pareto-dominance
criterion [23], [41], since the traditional approach of using
multi-attribute utility theory [17], capable of maximizing a
single expected utility that summarizes all the considered at-
tributes, has several drawbacks. Namely, it is often difficult
to formulate an utility function which correctly models the
optimization problem. Moreover, such an approach would
require a precise assessment of the relative relevance of the
goals to achieve.

In order to guarantee a steady adaptation of the sensory
infrastructure, and to limit the computational complexity of
the optimization, we allow only atomic reconfigurations, i.e.,
actions that modify the state of single sensors. Thus, in a
system with n sensors, the Constrained Optimization module
chooses among n possible sensory configurations when an
alarm is raised. If neither of the thresholds is exceeded by

Change configuration

· · ·s1 status t

s1 status t−1

sn status t

sn status t−1

· · ·s1 cost s1 inf. gain sn cost sn inf. gain

conf. cost conf. inf. gain

Multi-objective
utility

Fig. 5: The Constrained Optimization module multi-objective
influence diagram.

the system, no reconfiguration will be performed. The cost
and information gain of each achievable configuration can
be derived in constant time. Thus, the overall complexity of
computing these quantities for all n achievable configura-
tions is O(n).

The Constrained Optimization module categorizes the sen-
sory configurations achievable in the time slice t as two
disjoint classes: dominated configurations and non-dominated
configurations. A sensory configuration conf∗t is non-
dominated, or Pareto-optimal, if no other solution has better
values for all the objectives considered, so that the following
holds ∀i ∈ {1, . . . , n}:

cost(conf∗t ) ≤ cost(conf it )
or

inf gainavg(conf
∗
t ) ≥ inf gainavg(conf

i
t ).

(22)

In order to determine the action that achieves the best
trade-off between costs and performance, the Constrained
Optimization module considers only the set of non-dominated
configurations, also known as Pareto front. The selected
sensory configuration depends on the alarm raised by the
Global Optimization module, as follows:

• if only the cost threshold was exceeded, the
sensory configuration minimizing the expected
cost(conft+1) is selected among the non-dominated
solutions;

• otherwise, if only the uncertainty threshold or both
thresholds were reached, the sensory configuration
maximizing the expected inf gain(conft+1) is se-
lected among the non-dominated solutions.

The Pareto front can be derived in O(n2) time, and the
final selection of the configuration to choose requires O(n)
time, which yields a total complexity of O(n2). The opera-
tions performed by the Constrained Optimization module are
implemented as a multi-objective influence diagram [42].
This approach extends the traditional influence diagrams,
which only allow a single utility node or a single combined
utility node that is sum or product of other utility func-
tions [43]. To overcome this limitation, a new kind of utility
node was defined in [42] as a vector of objectives, together
with an algorithm for the solution of such multi-objective
influence diagrams.
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We propose the influence diagram shown in Fig. 5,
where the Change configuration decision node indicates the
single sensor whose state must be changed, depending on
its previous state. Finally, the best sensory configuration
is chosen among the optimal front, as explained above,
and a control message is sent to the appropriate sensor,
thus triggering the dynamic reconfiguration of the sensory
infrastructure.

6 CASE STUDY: ACTIVITY RECOGNITION IN AMI
SCENARIO

In order to prove the effectiveness of our approach, we
chose an Ambient Intelligence (AmI) environment as an
application scenario. In particular, we simulated the imple-
mentation of our solution in a smart home system enriched
with a pervasive sensory infrastructure based on WSNs and
sensors on mobile devices. Such scenario is suitable for
the experimental evaluation for several reasons: first of all,
AmI contexts are characterized by a high dynamism, due to
their continuous and unpredictable interaction with users.
Second, the use of WSNs and sensors on mobile devices
as sensory infrastructure poses severe constraints on de-
vice energy consumption, justifying the necessity of finding
the best trade-off between inference accuracy and energy
consumption of sensory devices. Finally, since observed
data are not collected by specialized sensors, but rather by
sensors whose readings are only partially correlated with
the environmental features of interest [23], it is necessary to
perform a multi-sensor data fusion.

Our system is designed for inferring any hidden charac-
teristic of the observed world. In the case study proposed
here, we chose to consider the activities performed by the
user as context features to be inferred, since such infor-
mation allows AmI systems to be fully responsive to user
needs. Moreover, recognizing user activities such as eating,
cooking, sleeping, or working [7], [44], is one of the major
challenges of AmI systems.

The approaches to address this challenge vary greatly
depending on the kind of activities to classify, the data
fusion method adopted, and the sensors used. For example,
inertial sensors such as accelerometers and gyroscopes, also
installed on mobile devices, are commonly used to recognize
activities that involve physical movements, e.g., walking,
running, sitting down and standing up [45], [46]. The au-
thors of [45] compared the advantages and disadvantages
of single-sensor and multi-sensor wearable systems, and
proposed an approach based on a decision tree classifier
to find a trade-off between recognition accuracy and com-
putational and communication complexity. In recent years,
several works, such as [46], have considered the possibility
of exploiting the increasing pervasiveness of smartphones to
recognize user activities, by merging the raw data coming
from the sensors embedded in these devices. The data col-
lected by wireless sensors which are pervasively deployed
in the environment are often used to recognize a wider
range of Activities of Daily Living (ADLs), such as eating,
cooking, sleeping, or working [7], [44].

The implementation of our system in a specific appli-
cation scenario implies the characterization of (i) the com-
ponents of the feature vector which are related to the state

of the world, (ii) the context information acquired directly
from the external world, and (iii) the cost function adopted
by the self-configuration modules.

In the scenario considered here, i.e., user activity recog-
nition in a smart home, the feature vector contains the belief
about the activity currently performed by the user and the
time elapsed since the last activity transition, in addition to
features which do not depend on the application scenario.

The context factors we chose to refine the inference
performed by the Data Fusion module are the period of
day, i.e., morning, afternoon, evening or night, the month,
and the day of the week. These proved to be the best
available context information in our experimental setting for
improving the accuracy of the system.

We defined the cost function with the goal of enforcing
an energy saving policy that aims to extend the devices’ life-
time; thus, we propose a cost function whose value increases
when the residual battery charge of the corresponding sen-
sor decreases, according to the following equation:

fcost(E
i
t) = baseCost(Eit) ·

(
1 + γ

(
1− charge(Eit)

))
,

(23)
where 0 ≤ charge(Eit) ≤ 1 is the remaining charge of sensor
Ei in the time slice t, and γ is a parameter that controls
the relative importance of the charge level. When the value
of γ increases, the system is more inclined to use all the
sensors in a uniform manner, instead of preferring only the
best ones, and this greatly extends the sensory infrastructure
lifetime with little impact on accuracy, as will be shown in
the next section.

7 EXPERIMENTAL EVALUATION

7.1 Simulation Setting

In order to evaluate the performance of our system, we
simulated its behavior in a smart home where several pro-
grammable wireless sensor nodes were deployed and where
the interaction of the user’s mobile device with the home
Wi-Fi network reveals the presence of the user at home. The
traces collected by a set of real sensors have been exploited
in order to simulate the interaction of sensory devices with
the environment, according to principles defined in [47].
For the sake of simplicity, we simulated the energy con-
sumption of sensory devices by assuming a constant energy
cost for each data transmission. The ground truth about
user activities and the corresponding sensory traces were
obtained from the Aruba dataset of the CASAS Smart Home
Project [7] developed at Washington State University. The
Aruba dataset contains annotated data collected in a smart
apartment with a single resident, over a period of seven
months. In such dataset, events are generated by motion
sensors, door sensors, and temperature sensors.

A preprocessing of the original data was required to test
our system. In particular, we partitioned the sequence of
sensor events into regular time slices, counting how many
times each sensor was activated during each slice. It is
therefore important to carefully select an appropriate length
for time slices; otherwise, many slices will not contain any
sensor event; we selected a time slice length of 30 seconds.

Moreover, a heuristic was developed to label each inter-
val with the predominant activity performed by the user
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during that time slice. The Aruba dataset annotated eleven
activities of daily living (ADLs), namely Bed to Toilet, Eat-
ing, Enter Home, Housekeeping, Leave Home, Meal Preparation,
Relax, Resperate, Sleeping, Wash Dishes, and Work. We added
a new activity, named Outside, that takes into consideration
the periods of time when the user is not inside the smart
home, i.e., the intervals between the Leave Home and the
Enter Home activities. This information can be used by the
system to further optimize the energy consumption of the
sensory infrastructure, since all the sensors installed in the
smart home can be deactivated when no one is present,
with the exception of the door sensors, thus minimizing
energy consumption without sacrificing inference accuracy.
In a real scenario, it is very difficult, if not impossible, to
predict all the activities that will be performed by users
and, furthermore, a fixed list of activity classes cannot
take into consideration the unavoidable transitions between
activities. To address both of these problems, we added
a further activity class to the ones annotated within the
original dataset, named Other, as suggested in [44]. This
special class groups all the sensor events that do not match
any of the known activity classes. Nearly 20% of the sensor
events in our dataset belong to the Other class, and therefore
we believe it is essential to detect it correctly in a real world
system. However, considering the heterogeneity of the activ-
ities grouped by this class, it is very challenging to recognize
it with good accuracy, and many approaches in the literature
simply ignore it, relying solely on a list of predetermined
activities, as noted in [44]. In the following, the experimental
results obtained by our system are presented by considering
the Other class as well as ignoring it.

7.2 Performance Metrics

The experimental results compare the performance of three
different systems. The first one, called All-On, does not ex-
ploit the optimization modules to adaptively self-configure
its behavior at runtime, and uses all the available sen-
sors in each time slice, thus minimizing the uncertainty of
reasoning regardless of energy consumption. The second
one, called Subset-On, gives priority to energy savings,
leveraging only a small subset of sensors, i.e., 10 of the
39 available sensors, and does not exploit the optimization
modules to improve its performance. The last system, fi-
nally, is the context-aware self-optimizing system proposed
in this work, and it fully exploits the Global Optimization and
Constrained Optimization modules described in the previous
sections. The first two systems are considered as baseline for
comparison with the proposed one.

The most common metric to evaluate activity recognition
systems is the average accuracy, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (24)

where TP, TN, FP, and FN are, respectively, the true pos-
itives, true negatives, false positives and false negatives.
However, accuracy alone is not sufficient to evaluate dif-
ferent approaches, since data are skewed towards the most
probable activities. For this reason, we adopted additional
metrics to provide more detailed analyses of the perfor-
mance of the systems. In particular, we determined the

precision (positive predictive value), as fidelity measure, and
the recall (sensitivity), for measuring completeness, which
are defined as follows:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

(25)

Precision and recall, in turn, are used to calculate the F-
score, which is a very important metric to evaluate activity
recognition systems, as stated in [44]. F-score is defined as
the harmonic mean of precision and recall, as follows:

F-score = 2 · precision · recall
precision+ recall

. (26)

In order to evaluate the different approaches, we used
the cross validation method, dividing the dataset into ten
parts. For each test, nine parts are used for learning system
parameters and the tenth is used for the test. This process is
repeated changing the test set. We compared the uncertainty,
cost, and accuracy of each system, as well as precision, re-
call, and F-score of each activity, as detailed in the following.

7.3 Experimental Results
The first experiment presented in this section is the com-
parison of uncertainty, cost, and accuracy trends of the
three systems during a given week, when also the Other
activity class is considered. In this first test, we discarded
the temperature readings, since we noticed a low correlation
between such data and the activities performed by the user.
Fig. 6 shows the simple moving averages (SMAs), i.e., the
unweighted mean of the values collected in the previous
hour. As expected, the All-On system exhibits the lowest un-
certainty and the highest energy cost. Conversely, the Subset-
On system presents the highest uncertainty and a lower
power consumption than the All-On system. The Adaptive
system shows an uncertainty close to that of the All-On
system, with a lower power consumption. It is worth notic-
ing that the average cost of the Adaptive system increases
very slowly over time, since the optimization modules are
smart enough to exploit sensors in a uniform manner, so
as to maximize the life span of the WSN and minimize
power consumption. With regards to the accuracy, the All-
On and Adaptive systems perform similarly, and occasionally
the Adaptive system overcomes the All-On. The Subset-On
system, on the other hand, behaves poorly, and its accuracy
is behind those of the other two systems.

Table 3 reports the average accuracy of the two baseline
systems compared with the proposed Adaptive system, in
each test of the cross-validation experiment. Table 4 summa-
rizes the results of the cross-validation tests, reporting the
average accuracy (both considering and excluding the Other
activity class), uncertainty, power consumption, number of
active sensors, and F-score of the three systems in all tests. It
can be observed that the proposed Adaptive system achieves
an accuracy slightly higher than that of the All-On system.
This may seem a bit unexpected, but it can be explained
by considering the particularity of the dataset used, which
mainly contains motion sensors. In such a scenario, using
an optimal subset of sensors can lead to higher accuracy
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Fig. 6: Uncertainty, cost, and accuracy trends of the three systems considered during a given week.

TABLE 3: Average accuracy of the two baseline systems
compared with the proposed Adaptive system, in each test
of the cross-validation experiment based on the CASAS
dataset [7].

All-On Subset-On Adaptive

0.760 0.659 0.755
0.802 0.704 0.818
0.788 0.670 0.796
0.792 0.677 0.803
0.810 0.672 0.815
0.803 0.657 0.811
0.790 0.539 0.777
0.782 0.652 0.788
0.811 0.687 0.817
0.769 0.644 0.773

than keeping all sensors on, since it allows the system to
exclude some false positive readings. For instance, when the
user is sleeping, the Adaptive system exploits only sensors
near the bedroom, while the All-On system will leave all
the sensors on, possibly incurring in a greater number of
false positive readings coming from sensors in other rooms,
which may have a non-negligible noise level. The Subset-
On system shows a lower accuracy, i.e., almost 14% less
than the Adaptive system. The average costs of the two
approaches, on the other hand, are very similar, with only
a 1% difference. The average cost of the All-On system is
more than three times that of the proposed Adaptive system.

Table 4 confirms that the uncertainty of the Adaptive
system is comparable to that of the All-On system, whilst
the Subset-On system performs worse than the other two,
with an average uncertainty that is 64% higher compared to
that of the proposed system. Similar considerations apply to
the F-score of the three systems, which is similar for the All-
On and Adaptive system, and more than 30% lower on the
Subset-On system. To evaluate the optimization overhead,
Table 4 also reports the average execution time, normalized
by the same factor, so as to have 1 computation unit in the
case of the All-On system. We notice that the Adaptive system
gets a 19% speed-up with regard to the All-On system. Thus,

TABLE 4: Cross-validation results reporting the average
accuracy, uncertainty, power consumption, number of active
sensors, and F-score of the two baseline systems compared
to the proposed Adaptive system.

All-On Subset-On Adaptive

Accuracy 0.791 0.656 0.795
Accuracy without Other 0.882 0.705 0.878
Accuracy with temperature 0.749 0.534 0.786
Uncertainty 0.251 0.573 0.349
Power Consumption 44.771 13.168 13.494
Active Sensors 34.000 10.000 12.124
F-score 0.421 0.271 0.408
Execution Time 1.00x 0.76x 0.81x

the speed-up due to the fact of using fewer sensors in the
data fusion process overweights the optimization overhead.
Considering that the Adaptive and Subset-On systems use
a similar number of sensors, on the average (12 and 10,
respectively), the small difference in execution time of the
two systems (0.81x and 0.76x, respectively) gives an idea of
the optimization overhead.

These results indicate the advantage of using the Adap-
tive approach, since it performs better than the baseline sys-
tems, finding an optimal trade-off between performance and
consumption. As expected, the accuracy of all systems im-
proves significantly if the Other activity class is ignored, in-
creasing by almost 10% in the All-On and Adaptive systems,
and by about 5% in the Subset-On system. Table 4 also shows
the accuracy of the systems when using temperature data.
In the case of the Subset-On system, the five temperature
sensors were added on top of the fixed 10 normally used. We
can notice that the accuracy of all systems decreases when
using temperature data, since there is a low correlation
between this information and the activities performed by
the user. However, the accuracy of the Adaptive system
decreases by less than 1%, whilst the other two systems
show a more noticeable reduction, since the Adaptive system
detects the low importance of the temperature sensors, and
often turns them off.
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Fig. 7: True positives, precision and F-score of each activity.

We also compared the true positives rate, precision,
and F-score of each activity in the three considered sys-
tems, without considering temperature sensors, as shown
in Fig. 7. The performance of the All-On and Adaptive
systems regarding many activities is largely comparable,
and the Adaptive approach actually obtains better results
than the All-One system in some of them. However, there
are a few activities that are better recognized by the All-On
system, due to a very low average duration that does not
allow the Global Optimization module to correctly estimate
the probability of an activity transition. As expected, the
performance of the Subset-On system is visibly worse than
the other two approaches. Nevertheless, it can be observed
that some activities are easily recognized by all the systems,
i.e., Sleeping, Outside and Meal Preparation, while other ac-
tivities are difficult to handle, regardless of the approach
considered, i.e., Housekeeping and Wash Dishes. This can be
explained by considering that some activities are performed
in well-defined locations and times during the day, and
therefore are better recognized using only motion sensors,
while other activities are less structured, and some hetero-
geneous sensors should be installed in order to recognize
them in a satisfying manner.

The experimental evaluation includes also a deep anal-
ysis of the effect of the Global Optimization module on the
behavior of the Adaptive system. Fig. 8 shows the uncertainty
and the cost trends of the Adaptive system, with the related
alarm thresholds, during a given day. The uncertainty and
cost alarms triggered by the system in the same day are
also highlighted. As explained in Section 5.2, when the
Global Optimization module expects a reduced variability
in context conditions, it changes the alarm thresholds in
order to switch off most of the sensors without a relevant
reduction of accuracy, switching them on when it believes
that the current activity will change in a short time, so as
to ensure adequate accuracy, even at the expense of higher
energy consumption. Sleeping is the most regular activity
in our dataset, and it is also the one with the longest
average duration. This regularity makes the Sleeping activity
ideal to analyze the way in which the system dynamically
changes the alarm thresholds. The cost threshold is low at
the beginning of the night, when the user goes to sleep,
whilst the uncertainty threshold is high. This means that
the system believes as unlikely a context transition in a

0.0
0.2
0.4
0.6
0.8
1.0
1.2

U
n
ce

rt
a
in

ty

Uncertainty

Uncertainty Threshold

10
15
20
25
30
35

C
o
st

Cost

Cost Threshold

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

Accuracy

Fig. 8: Uncertainty, cost, and accuracy trends of the Adaptive
system in a single day, showing the adaptive thresholds.

short time, and thus enters a power-saving mode, reducing
the cost threshold and raising the uncertainty threshold.
During the night, the probability of an activity transition,
as defined in Eq. (18), increases, and therefore the system
gradually reduces the uncertainty threshold and increases
the cost threshold. In the morning, when the probability
of an activity transition is close to 1, the system gives
priority to the accuracy of the inference, thereby increasing
the cost threshold to its maximum value, and reducing the
uncertainty threshold to its minimum.

Finally, we compare the effectiveness of using the vari-
able cost function, defined in Eq. (23), against an approach
that leverages a fixed cost function, that does not increase
when the residual battery of the corresponding sensor de-
creases. The goal of choosing a variable cost function is to
enforce an energy saving policy that extends the sensory in-
frastructure lifetime by using sensors in a uniform manner.
Fig. 9 compares the two approaches, showing the number
of time slices in which each sensor has been powered on
during the simulations, and the remaining energy charge
at the end of the simulations. In this experiment, we also
included the temperature sensors, so as to show that the
system correctly avoid sensors with a very low information
gain, which are not deemed useful. It is evident that with
a variable cost function the system uses sensors more uni-
formly than the fixed cost approach, greatly extending the
sensory infrastructure lifetime. However, it is worth noticing
that, despite the energy policy, sensors which show a very
low information gain, such as the temperature sensors (i.e.,
the last five sensors in Fig. 9), are seldom used by the
system. Finally, comparing the accuracy of the variable cost
approach against that of the fixed cost approach, we observe
a decrease of less than 1%.

8 CONCLUSIONS

In this paper, we proposed and evaluated a context-aware
self-optimizing adaptive system for sensory data fusion. The
system is based on a three-tier architecture. At the lowest
tier, the inference subsystem leverages dynamic Bayesian
networks for inferring the state of the world, exploiting
contextual information to increase reasoning accuracy. At
the same time, two self-optimization modules are respon-
sible for determining the subset of sensors to use at each
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Fig. 9: Sensor statistics usage with a fixed and variable cost function. The x axis enumerates all the available sensors: door
sensors (Dxxx), motion sensors (Mxxx) and temperature sensors (Txxx).

time slice, finding an optimal trade-off to minimize energy
consumption and maximize sensing accuracy.

As case study for evaluating the proposed system we
chose the activity recognition problem in an Ambient Intelli-
gence scenario. The experimental evaluation confirmed that
using all the available sensors is not a good strategy, both
in terms of energy efficiency and computational burden. In
a real world scenario, context evolves constantly, and the
system has to dynamically adapt to the current situation,
by reconfiguring its own sensory infrastructure. The results
of our experiments support these statements, showing that
the proposed adaptive system performs better than static
systems, achieving substantial energy savings compared to
a system that statically uses all the available sensors, with
only a small increase in inference uncertainty.

In the current study, both training and test data are
collected from the same environment. As part of future
development, we are interested in evaluating the general-
ization potential of the proposed approach by considering
training and test data coming from different smart homes
or offices. Furthermore, we plan to test the system in a real
scenario with heterogeneous sensors, including data coming
from wearable devices such as smart watches.
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