

NDS LAB - Networking and Distributed Systems

http://www.dicgim.unipa.it/networks/

A Symbolic Distributed Event Detection Scheme for
Wireless Sensor Networks.

S. Gaglio, G. Lo Re, G. Martorella, D. Peri

In Proceedings of the International Conference on Emerging
Technologies and Factory Automation (ETFA'16)

Article

Accepted version

DRAFT

A Symbolic Distributed Event Detection Scheme
for Wireless Sensor Networks

Salvatore Gaglio⇤†, Giuseppe Lo Re⇤, Gloria Martorella⇤ and Daniele Peri⇤
⇤DICGIM - Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy

{salvatore.gaglio, giuseppe.lore, gloria.martorella, daniele.peri}@unipa.it
†ICAR-CNR, Viale delle Scienze, Ed. 11, 90128 Palermo, Italy

Abstract—Due to the possibility of extensive and pervasive

deployment of many tiny sensor devices in the area of interest,

Wireless Sensor Networks (WSNs) result particularly suitable to

detect significant events and to react accordingly in industrial

and home scenarios. In this context, fuzzy inference systems for

event detection in WSNs have proved to be accurate enough

in treating imprecise sensory readings to decrease the number

of false alarms. Besides reacting to event occurrences, the

whole network may infer more information to enrich the event

semantics resulting from reasoning processes carried out on the

individual nodes. Contextual knowledge, including spatial and

temporal relationships, as well as neighborhood confidence levels,

can be used to improve the detection accuracy, but requires to

extend the number of variables involved in the reasoning process.

In this paper, we propose a distributed scheme for event detec-

tion in WSNs that combines fuzzy reasoning and executable code

exchange to infer contextual information. The proposed scheme

lets resource constrained interconnected devices perform on-

board reasoning on numerical and symbolic data, and exchange

additional symbolic knowledge –in the form of data, rules and

executable code– to enrich the event semantics.

In the presented case study the nodes can determine the

number of neighbor nodes, their spatial proximity to the position

where an event occurred, or classify themselves into clusters

according to their final decisions. Differently from mainstream

approaches, node cooperation is carried out through an effective

and inexpensive executable code exchange approach.

I. INTRODUCTION

Event detection is of paramount importance in Wireless
Sensor Network (WSN) applications ranging from structural
health monitoring [1], [2] and fault detection in industrial
scenarios [3] to environmental disaster detection [4], [5]. A
simple event detector system can be realized with a very sim-
ple scheme that sees nodes report data once sensory readings
exceed a fixed threshold. Although it takes just little effort, this
approach is fairly inaccurate due to sensory reading fluctua-
tions and imprecisions. In more demanding applications, accu-
rate event detectors running on WSNs are required to embed
advanced skills that goes beyond mere thresholding, such as
symbolic reasoning and prediction. Moreover, even resource-
constrained sensor nodes, if endowed with such abilities, may
become an enabling technology for the Internet of Things
(IoT) [6]. In order to overcome the inaccuracy of crisp logic,
machine learning techniques have been proposed that perform
event detection on-board individual nodes [7], [8]. However, to
exploit the inner nature of a network, distributed approaches

for event detection in WSNs have been also proposed that
include collaboration and data exchange into the decision pro-
cess, adopting, for instance, machine learning techniques [9]
and distributed fuzzy inference systems [10]. However, many
effective machine learning algorithms require considerable
amount of resources and also need prior acquisition of mas-
sive training data for the classifier initialization [11]. Fuzzy
inference systems, instead, can be implemented on nodes with
limited resource consumption through a natural description
of the domain of interest but without requiring any prior
observations. Furthermore, they have proved to achieve good
results in event detection once the local decision undertaken by
a given node depends both on local observations and on fuzzy
linguistic labels provided by the neighborhood [12]. Context
information can be included to enrich the event semantics
at the price of an increase of memory footprint due to the
rule base extension, thus processing methods to reduce the
complexity of fuzzy rule sets are highly required [13].

In this paper we present a distributed scheme for event de-
tection running on our software platform for WSN nodes [14]
based on an extension of a distributed fuzzy inference sys-
tem [12]. The proposed scheme lets resource constrained
interconnected devices perform on-board reasoning on nu-
merical and symbolic data, and exchange additional symbolic
knowledge –in the form of data, rules and executable code– to
enrich the event semantics. For instance, the nodes detecting an
event may start exchanging symbolic code to infer contextual
information in order to build a shared representation of their
spatial proximity to the place the event occurred. Nodes may
also infer their spatial distribution on the basis of the similarity
of their own sensed data to readings of their neighbors. Finally,
nodes may exploit the distributed processing approach to build
a representation about how events evolve in space and time.

The rest of the paper is organized as follows: Section II
introduces a brief overview about the key features of our target
hardware and software platform, while Section III discusses
the proposed scheme for event detection in WSNs and provides
implementation details. Finally, Section IV concludes the
paper.

II. A DISTRIBUTED SYMBOLIC PROCESSING
ENVIRONMENT

In order to provide WSNs with distributed computing and
dynamic reprogramming many efforts have been put into978-1-5090-1314-2/16/$31.00 © 2016 IEEE

DRAFTFig. 1: Layered overview of our word-based operating environment

implementing application specific virtual machines (ASVM),
which provides an interpreter on top of an available general
purpose operating system. In the proposed approach, instead,
a software platform integrates a stack based interactive inter-
preter and compiler implementing the Forth methodology at
its lowest level [15].

In our programming environment, coding consists in imple-
menting symbols, the so-called words. Abstract and expressive
applications are then implemented as sequences of high-level
words.

We have so far developed a set of words to provide support
for typical WSAN functionalities [15], as well as for hardware
and networking abstractions. A layered overview of our word-
based operating environment is shown in Figure 1. Proceeding
from the bottom upwards, words are more abstract and hard-
ware independent than those belonging to lower levels.

However, such a word set is extensible as user-defined
symbols can be added easily due to the presence of the low-
level compiler. Interactions among already deployed nodes
is based on the transmission of symbolic executable code
implementing the distributed symbolic applications. Commu-
nication is implemented at level 2 of the ISO-OSI model. A
node executes the words tell: and :tell to create and
send messages compliant to the 802.15.4-2003 standard. The
executable code to be remotely sent is enclosed among these
two words as such: tell: <code> :tell, or [tell:]
<code> [:tell] when the construct is inside a word
definition. The message payload is the sequence of words that
are to be interpreted by the remote destination node.

To incorporate reasoning abilities on-board, e.g. for event
detection purposes, the topmost layer consists in the sym-
bolic abstraction to implement fuzzy inference on individual
nodes [16].

As an example, provided that all the nodes are equally
equipped with temperature and smoke sensors, Listing 1
shows the sequence of words that can be used to define
fuzzy variables and membership functions for a very common
WSN event detection application, i.e. indoor distributed fire
detection, as in [12].

Listing 1: Sequence of words to define input fuzzy variables and membership
functions for indoor distributed fire detection

1 -50 100 fvar temp

2 -50 -50 0 50 member temp.low

3 -50 0 50 100 member temp.high

4
5 -50 100 fvar smoke

6 -50 -50 0 50 member smoke.low

7 -50 0 50 100 member smoke.high

8
9 -20 20 fvar dtemp

10 -20 -20 -10 10 dtemp.low

11 -20 -10 10 20 dtemp.high

12
13 -20 20 fvar dsmoke

14 -20 -20 -10 10 dsmoke.low

15 -20 -10 10 20 dsmoke.high

16
17 -50 100 fvar temp-neighbor

18 -50 -50 0 50 member temp-neighbor.low

19 -50 0 50 100 member temp-neighbor.

high

20
21 -50 100 fvar smoke-neighbor

22 -50 -50 0 50 member smoke-neighbor.

low

23 -50 0 50 100 member smoke-neighbor.

high

The word fvar defines a new fuzzy variable according to
the syntax:

<min val> <max val> fvar <name>

where min val and max val compose the domain of the crisp
input variable. Similarly, the creation of a new membership
function requires the execution of the word member. The
word is preceeded by four control points that determine its
shape.

III. CASE STUDY: A SYMBOLIC DISTRIBUTED SCHEME
FOR EVENT DETECTION

Event detection systems are often designed to support other
tasks or for running concurrently with other applications.
Therefore a proper tradeoff between lightweight deployments
and complexity is desirable.

In this regard, to enrich event descriptions with additional
information, which can be intended for the event detection
application but also for other purposes, it is often required
to increase the number of variables involved in the fuzzy
inference process.

Obviously, this could lead to significant memory consump-
tion. Therefore, the inferential process either undertaken by
the nodes using a restricted set of rules, or it takes place on a
more powerful node, e.g. a gateway, which has no constraints
in terms of memory and computational resources.

To enrich the event semantics with context information, the
scheme we propose exploits the communication among nodes
and especially the distributed computing paradigm through
the exchange of executable code, instead. Existing event
detection schemes confine node interactions to include the

DRAFT

neighborhood opinion in the decision making process, which
is performed locally. The basis of the proposed distributed
scheme is to exploit communication to make the nodes infer
further knowledge and reach a shared representation about the
target event in a distributed manner. The proposed scheme
consists of two phases. In the first phase, named the decisional
stage, the node assesses the event occurrence on the base of
the sensed physical quantities and the network opinion, and
possibly reports the event to the networked actuator or to a
gateway.

Let us suppose that the node identified by ID 1 is executing
the decisional stage, as shown in Figure 2. To this end, it
fuzzifies its temperature and smoke readings and broadcasts
the code to start a timer with random timeout on remote
neighbor nodes along with the word to be executed on re-
mote timer expiration. Then, it waits for neighbor opinions
until a predefined amount of time has elapsed. Once the
random timer on receiver nodes expires, neighbors execute the
word opinion-reply, which makes them reply with the
symbolic code to let the sender increment the number of nodes
and a partial counter, fcount, by the truth value associated
to each memebership function. Finally, once the maximum
amount of time needed to collect neighbor opinions elapses,
the node executes the word decision whose definition is
provided in Listing 2. As a node executes this word, it stops
the timer associated to nodes reply and assesses the opinion
received by neighbors. This implies to compute the cardinality
of each fuzzy set and to apply the fuzzy most operator [12].
Then rules are executed and finally, defuzzification is per-
formed by the word conclude, which is applied to the fuzzy
output variable fire.

Listing 2: Code for the decisional stage, which is executed by each node after
having collected all neighbor opinions

1 : decision

2 waiting timer stop

3 opinions assess rules

4 fire conclude ;

Actually, this is a pseudo-distributed process in the sense
that each node is influenced by the neighbor opinions but there
is no actual distributed processing. The context inference stage
complements the previous phase and allows for the extraction
of further context knowledge about the event. Such a phase
is triggered by specific nodes, e.g. nodes placed strategically,
detecting an event as a result of the decisional stage.

As shown in Figure 3, the initiator node broadcasts the
executable code consisting in a simple if-then rule that is
interpreted by all receivers in its radio range. Nodes that have
not detected the event discard the message, while the others
execute the if part of the rule. The initiator sends the raw
measured values along with the code to store these values in a
neighboring table. In addition, the initiator activates a random
timer on remote nodes to start the distributed computing
scheme. When this timer expires, the receiver nodes in turn
broadcast their data along with the code for storing them in

Fig. 2: Decisional stage. The topmost figure shows the code to start collecting
neighbor opinions, while the figure on the bottom shows the code sent by
remote nodes.

Fig. 3: Context inference stage. Each node, in turn, sends the code to store the
neighbor and its sensed value in the neighbor table. For the sake of simplicity,
the process is shown for nodes 1 and 2.

the table. A table entry stores the address and the data received
from each neighbor.

At the end of this process, when all nodes have transmitted
once, they hold additional shared information concerning
the number of nodes that lay in the same area –i.e. nodes
belonging to the same cluster determined on the basis of the
output decision.

This knowledge can be used for a variety of purposes that
depend both on the type of the event that the network must
recognize and on the context information to be inferred to
augment the event description.

For instance, in the case of fire detection, the nodes may sort
the table with decreasing values of temperature. This allows
to extract context information such as the node distribution as

DRAFT

well as the relative position of the neighbors from the fire, and
consequently infer also their own.

Other context information that could be useful when an
event occurs is the spatial proximity between nodes. To this
purpose, each node sorts the table according to the similarity
degree of the sensory readings received by neighbors to its
own, thus building and holding its own representation of the
current spatial distribution of all the nodes. This mechanism
is suitable for diagnostic inference. In fact, if a node reports
that the event occurred but its readings are very different from
those of the neighbors, then it could infer that its decision is
wrong or that its own sensors are defective.

In the proposed method, the degree of confidence of the
neighbors can be also determined to make the decisional stage
dynamic by modifying the weight associated to each neighbor
opinion.

At the beginning, the opinion of the neighbors are equally
weighted. However, at the end of the context inference stage, a
node may assign a higher confidence level to those neighbors
that are in proximity or to those with a high degree of
similarity in the transmitted readings. The initiator node may
then sends to all nodes the code to execute depending on the
information to be extracted.

Our approach makes event detection applications devel-
opable on real devices through an environment running di-
rectly on the target hardware without cross-compilation, and
reflashing phases. Furthermore, distributed computation is
inexpensive due to the fact that executable code exchange
consists in a low level implementation.

The fuzzy inference implementation requires only 6 bytes
of RAM and 863 bytes of Flash memory and consists of
31 words. Finally, the word set implementing the distributed
scheme for the inclusion of context inference abilities consists
of 17 words and occupies less than 300 bytes of RAM and
less than 800 bytes of Flash.

IV. CONCLUSIONS

In this paper we presented an approach to implement
distributed schemes for event detection on WSNs.

While existing schemes for distributed event detection par-
tially exploit interactions among nodes, as context information
requires to extend the fuzzy rule set, we showed how it is pos-
sible to infer shared context information, without providing it
in advance, by exploiting the exchange of symbolic executable
code.

The proposed scheme runs on our software platform for
WSNs –currently targeting IRIS motes– that has been designed
to support distributed symbolic computation on resource-
constrained devices.

Further work will extend the experimental evaluation and
will incorporate prediction functionalities in order to reduce
network traffic.

REFERENCES

[1] X. Liu, J. Cao, S. Tang, and P. Guo, “Fault Tolerant Complex Event
Detection in WSNs: A Case Study in Structural Health Monitoring,”

IEEE Transactions on Mobile Computing, vol. 14, no. 12, pp. 2502–
2515, Dec 2015.

[2] S. K. Ghosh, M. Suman, R. Datta, and P. K. Biswas, “Power Efficient
Event Detection Scheme in Wireless Sensor Networks for Railway
Bridge Health Monitoring System,” in 2014 IEEE International Confer-
ence on Advanced Networks and Telecommuncations Systems (ANTS),
Dec 2014, pp. 1–6.

[3] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov 2014.

[4] Y. Singh, S. Saha, U. Chugh, and C. Gupta, “Distributed Event Detection
in Wireless Sensor Networks for Forest Fires,” in Computer Modelling
and Simulation (UKSim), 2013 UKSim 15th International Conference
on, April 2013, pp. 634–639.

[5] M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, and P. J. M.
Havinga, “Distributed Event Detection in Wireless Sensor Networks
for Disaster Management,” in Intelligent Networking and Collaborative
Systems (INCOS), 2010 2nd International Conference on, Nov 2010, pp.
507–512.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
things (iot): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1645 – 1660,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X13000241

[7] M. A. Alsheikh, S. Lin, D. Niyato, and H. P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applications,”
IEEE Communications Surveys Tutorials, vol. 16, no. 4, pp. 1996–2018,
Fourthquarter 2014.

[8] N. J. Patel and R. H. Jhaveri, “Detecting packet dropping nodes using
machine learning techniques in mobile ad-hoc network: A survey,” in
Signal Processing And Communication Engineering Systems (SPACES),
2015 International Conference on, Jan 2015, pp. 468–472.

[9] S. Rashid, U. Akram, S. Qaisar, S. A. Khan, and E. Felemban, “Wireless
sensor network for distributed event detection based on machine learn-
ing,” in Internet of Things (iThings), 2014 IEEE International Confer-
ence on, and Green Computing and Communications (GreenCom), IEEE
and Cyber, Physical and Social Computing(CPSCom), IEEE, Sept 2014,
pp. 540–545.

[10] S. M. Dima, C. Panagiotou, D. Tsitsipis, C. Antonopoulos, J. Gialelis,
and S. Koubias, “Performance evaluation of a {WSN} system for
distributed event detection using fuzzy logic,” Ad Hoc Networks, vol. 23,
pp. 87 – 108, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1570870514001218

[11] G. Wittenburg, N. Dziengel, S. Adler, Z. Kasmi, M. Ziegert, and
J. Schiller, “Cooperative event detection in wireless sensor networks,”
IEEE Communications Magazine, vol. 50, no. 12, pp. 124–131, Decem-
ber 2012.

[12] M. Marin-Perianu and P. Havinga, Ubiquitous Computing Systems: 4th
International Symposium, UCS 2007, Tokyo, Japan, November 25-28,
2007. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, ch. D-FLER – A Distributed Fuzzy Logic Engine for Rule-
Based Wireless Sensor Networks, pp. 86–101. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-76772-5 7

[13] K. Kapitanova, S. H. Son, and K.-D. Kang, “Using fuzzy logic for
robust event detection in wireless sensor networks,” Ad Hoc Networks,
vol. 10, no. 4, pp. 709 – 722, 2012, advances in Ad Hoc Networks
(II). [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1570870511001326

[14] S. Gaglio, G. L. Re, G. Martorella, and D. Peri, “A Lightweight
Middleware Platform for Distributed Computing on Wireless Sensor
Networks,” Procedia Computer Science, vol. 32, no. 0, pp. 908 – 913,
2014, the 5th International Conference on Ambient Systems, Networks
and Technologies (ANT-2014), the 4th International Conference on
Sustainable Energy Information Technology (SEIT-2014).

[15] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “A Fast and Interactive
Approach to Application Development on Wireless Sensor and Actuator
Networks,” in Emerging Technology and Factory Automation (ETFA),
2014 IEEE, Sept 2014, pp. 1–8.

[16] S. Gaglio, G. L. Re, G. Martorella, and D. Peri, “High-level Program-
ming and Symbolic Reasoning on IoT Resource Constrained Devices,”
EAI Endorsed Transactions on Cognitive Communications, vol. 15,
no. 2, 5 2015.

