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Abstract. The wide spread of low-cost personal devices equipped with GPS sen-
sors has paved the way towards the creation of customized services based on user
mobility habits and able to track and assist users in everyday activities, according
to their current location.

In this paper we propose a new approach to extraction and comparison of mobil-
ity models, by means of the structure inferred from positioning data. More specifi-
cally, we suggest to use concepts and methods borrowed from Algorithmic Learn-
ing Theory (ALT) and we formulate mobility models extraction in term of Gram-
matical Inference (GI), an inductive process able to select the best grammar con-
sistent with the samples and to provide multi-scale generative models. Moreover,
we propose a similarity measure by adapting a state-of-the-art metric originally
conceived for automata.

A thorough experimental assessment was conducted on the publicly available
dataset provided by the Geolife project. Results show how a structural model and
similarity metric can provide a better insight on data despite its complexity.

Keywords. structural knowledge, mobility models, grammatical inference

1. Introduction

During the past years, automated systems for the acquisition and processing of users’
movements in everyday life has attracted growing attention, also thanks to the wide dif-
fusion of cheap and commonly available devices (e.g. smartphones or GPS loggers) that
can readily provide the location of their owners.

Human movements can be considered as schemata naturally induced, and heavily
influenced by everyday routine [1]; indeed, the majority of location data regard the most
frequent paths, such as those involving routes from home to work, or to recreational
places; moreover, people are creatures of habit, who are prone to repeat often the same
course of actions, hence the same itineraries. It is thus possible to reason in terms of
social patterns, i.e. sequences that characterize human behaviors, as the main goal of
mobility data analysis.

Identifying such patterns may however prove quite challenging, as it is hard to find
meaningful features for a valid metric to evaluate and compare paths and mobility mod-
els. The massive collections of data nowadays readily available for machine processing

1Corresponding Author: Pietro Cottone, DICGIM – University of Palermo, Italy; E-mail:
pietro.cottone@unipa.it
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have further complicated the nature of the problem, and researchers are more and more
aware that “measuring” does not seamlessly translate into “understanding”. In the field
of mobility and location data analysis, these considerations have appeared in full clarity
due to the particular nature of the phenomenon: user movements are bound to adhere
to schemas naturally induced from their daily routine, but it is not easy to make sense
of data by letting models naturally emerge from the collected samples, as opposed to
deducing them from pre-set assumptions.

Although the intrinsically structural nature of movements is intuitively evident, and
may be empirically pointed out [2], current state-of-the-art systems focus only on the
statistical analysis of path features, or on the description of their shapes by means of
geometric tools [3]. A more promising approach would be instead to mine the structural

information embedded into mobility data, which has only marginally be investigated in
a few works in literature [4,5] that relied on formal languages and automata as their ref-
erence framework. As will be described in the following sections, our system explicitly
uses symbolic encoding for user movements, subsequently processing them through a
grammar inference algorithm that extracts the most relevant paths, and code them as a
set of finite automa. The obtained model may thus be regarded as a representation of the
language of paths for a user. Finally, we propose a new similarity metric for mobility
models, not relying on any a-priori assumption or knowledge, but only on the features
of the extracted model. The main contributions of this paper is fourfold and consists of
(i) an effective strategy to encode real spatial data as strings of a formal language; (ii) a
multi-scale, syntactic, mobility model; (iii) the customization of the inference process,
through the adoption of an algorithm able to deal with noise and statistical relevance of
paths; (iv) finally, a similarity metric exploiting properties of automata, explicitly aimed
at detecting shared regularities in user habits.

The remainder of the paper is organized as follows. Section 2 summarizes the state-
of-the-art systems for mobility models, while Sections 3 and 4 present our approach
based on Grammatical Inference (GI). The description of a case-study application to
mobility data follows in Section 4. Results of our experimental assessment will be shown
in Section 5, and, finally, we will present our conclusions in Section 6.

2. Related work

A mobility model is a concise representation of user movements, synthesizing already
observed paths in order to predict the future ones. The presence of regularities has moti-
vated researchers to dive into the design of systems able to predict mobility behaviours,
as demonstrated by the extensive literature produced in this research field [1,6]. The ob-
tained results have shown that mobility models can be profitably applied to a wide range
of scenarios, including user activity recognition, route prediction, extraction of Points of

Interest, and location recommendation, anomaly detection or simulators [5]. Location-

Based Services (LBSs), in particular, aim at exploiting information about location in
order to deliver customized service to users, supporting them in carrying out everyday
activities, or improving their travel experience [7]. Clearly, LBSs are heavily based on
recommender systems, that need to effectively compare several users, pointing out their
similarities and highlighting emergent behaviours, in order to predict relevant events or
phenomena [8]. In this setting, the main problem is represented by the identification of a
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successful metric to classify and compare users, according to the information embedded
into raw data [9]. More recently, LBSs have appeared, and represent one of the most
promising application scenario for mobility data. For example, in [10], authors show how
mobility data is correlated with social networks; they propose a mobility model based on
a combination of periodic and short-range movements, inferred by positioning data, and
long-distance movements, based on social data analysis.

In all cases, a crucial aspect is represented by mobility model comparison, and the
definition of a reliable similarity measure is one of the most important open issue in mo-
bility data analysis. A framework to model user location history and mine similarities
among different users is proposed in [11]. It is based on the analysis of the sequence of
user movements, the popularity of each region visited and a hierarchical partitioning of
the geographic area. The similarity measure is based on the longest common sequences
between paths of two users, combined with the popularity of the region they are made
of. An improvement of the previous work is proposed in [12], by the introduction of
the semantic location history, that translate positioning data into semantic locations, i.e.
shopping malls, cinema, restaurants, etc. This information is used to match paths of dif-
ferent users, in order to find a better correspondence with respect to their habits. The idea
of using semantic information to empower similarity measure is proposed also in [13];
next location of a user path is predicted considering both the geographic and semantic
features of other users trajectories. The main contribution of this work is a clustering
strategy to measure similarity among users, based on the Maximal Semantic Trajectory

Pattern Similarity, that compute the similarity between two trajectories counting their
common parts, exploiting their longest common sequences. In [14], authors proposes a
new approach in order to extract mobility models and measure similarity between users.
In particular, they describe paths as temporal-annotated sequences of relevant locations,
extending the idea proposed in [15]. Moreover, they improve the similarity measure pro-
posed in [13], introducing a likelihood among the semantic for locations and taking into
account temporal annotations to describe paths through T-patterns. In [16], similarity
metric is based on routine activities, i.e. repeating activities at certain locations with reg-
ular time intervals. In a a first step, routines are extracted from daily trajectories by a
clustering method; then, user similarities is calculated as weighted mean between their
routine activities. The main limitation of the majority of the proposed solutions is that
they do not take advantage of the natural recursive structure of paths, and rather opt to
represent them by relying only on statistical properties or geometric description [3], often
ending up in a overcomplicated and inflexible representation. They thus miss the fact that
human travelling behavior can be described in different ways at varying spatiotemporal
scales, as shown by [2].

On the other hand, some approaches have attempted to create structural models
through a syntactic approach and a symbolic encoding, using formal grammars to rep-
resent target models. In [17], Finite State Automata were used to model mobility behav-
iors. Authors propose two approaches: in the first, the alphabet is made up of the “status”
of the user and the states of the automaton are the locations (e.g., at home, at work); in
the second one, the role of locations and “status” are switched. Locations were inferred
through unsupervised learning algorithms, mining the most visited places; “status” cate-
gories are extrapolated from temporal sequences of movements. An approach based on
grammar induction to analyze spatial trajectories was investigated in [4]. A grammar
induction algorithm, called mSEQUITUR, was proposed; it is able to obtain a grammar
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rule set from a trajectory for motif generation. Moreover, the authors present the Tra-

jectory Analysis and VIsualization System (STAVIS), a trajectory analytical system that
derives trajectory signatures and allows to extract relevant information from them, using
a grammar inference algorithm. These approaches based on syntactic descriptions do not
link the recursive nature of path with the description of movements. In particular, their
representation are not able to deal with raw positioning data and require a very complex
preprocessing in order to turn locations into symbols.

In the following, we will show how formal languages can be used in order to create
multi-scale models, combining them with a recursive representation of coordinates.

3. Inference of User Mobility Patterns

Our approach aims at modelling user mobility habits from frequent paths expressed as
sequences of locations. In particular, we assume that user mobility models can be de-
scribed through formal languages; in other words, an unknown language describing mo-
bility data is supposed to exist; we aim at uncovering this hidden structure and we choose
to address this problem by GI. However, data collected in a real-life scenario is often in
a numerical form, embedded in a geometric space, whose dimensions are the features
selected by the designer [18]; thus it can not be promptly elaborated by GI algorithms,
for which data in symbolic form is required instead. Thus, a preprocessing step is needed
in order to perform symbolic encoding; as we will show in the next section, we rely on
geohash encoding to turn locations into symbols. Once this step is accomplished, model
extraction can be addressed as an instance of regular language inference.

Many algorithms have been proposed in literature, coping with learning from un-
bounded symbolic sequences remains an open challenge. In our formulation we will re-
fer to Algorithmic Learning Theory, and, more specifically, we will make use of formal
regular languages to represent user paths, and will focus on the recognizers of such lan-
guages, i.e. DFAs. The problem of model extraction thus corresponds to the inference of
the most general recognizer (the minimal Deterministic Finite Automaton (DFA)) consis-
tent with the given data, and can be addressed trough the process known as GI. Several
approaches have been proposed in literature, all of which are based on the concept of
identification in the limit initially formulated by Gold [19], who stated that the learning
algorithm should identify the correct hypothesis on every possible data sequence consis-
tent with the problem space.

The focus is on the way data is fed to the learning algorithm; for instance, the avail-
able data may consist of positive examples only, i.e. strings that are known to belong to
the target language; this is the typical case in a setting of text analysis where, by defini-
tion, the strings used for training belong to the language: it is the so-called presentation
from text. Such assumption is very stringent: as Gold proved, positive examples alone are
not sufficient to ensure identification in the limit for any language of practical interest.

The alternative approach is called presentation from informant, whenever we are
provided with negative examples too. Angluin proposed a theoretical framework known
as Active Learning [20], which assumes the presence of an oracle, i.e. a “black box”
knowing the entire target language and able to answer two kinds of queries, namely:
membership, or equivalence queries. In the first case, the oracle will tell whether a string
belongs to the language or not; on the other hand, an equivalence query is formulated
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Figure 1. An example of a merging operation (left), with a sketch of a search in the induced state space (right).

by providing the oracle with a hypothesis (e.g. a DFA) to which it responds either by
accepting it, thus indicating successful termination, or else by producing counterexam-
ples (strings which the current DFA fails to accept) that may be used to improve the hy-
pothesis. It may be proven that a complete presentation is sufficient to identify a regular
language in the limit, but it remains hard to build an oracle in most practical scenarios,
where the target language is not completely known in advance (otherwise, the model
would probably be already known), and rather the given data consists of just a subset of
positive and negative examples.

An alternative proposal was the formulation of the problem as a state space search.
Starting with an automaton representing the available examples, the aim is to have it
evolve toward a more general one, able to capture more strings of the unknown language.
In order to fulfill this goal, a simple consideration may be of help: any automaton ob-
tained by merging two states of a parent automaton accepts a language that is a superset
of the original one (see the leftmost part of Figure 1 for a clarifying example). This pro-
vides a simple way to move from the recognizer of a specific language to a more general
one, and is the basis for a class of inference methods known as state merging algorithms.
The issue now regards how to prevent the more general language from including invalid
strings; in other words, we need to limit overgeneralization, which would otherwise lead
us to eventually merge all states into a single one, thus producing the automaton accept-
ing all possible strings over the given alphabet. One possibility is to begin by building the
Prefix Tree Acceptor, which accepts all available positive examples, and to proceed by
producing all automata generated by merging all possible pairs of states, paying attention
to reject all those that would mistakenly accept negative examples. It may be shown that
all the automata that would become invalid as a consequence of further state merging are
part of a “frontier” in the search space; the goal is to identify the most general automaton
within those belonging to the frontier (see Figure 1, right)3.

It is immediate to recognize the possible combinatorial explosion to which such
inference algorithms are subject; moreover, since the search is limited only by negative
samples, it is essential that they are as representative as possible of the target language;
finally, the order in which they are presented to the inference algorithm is important.

One of the first documented algorithms in this context was Regular Positive and

Negative Inference (RPNI) [23], which essentially attempted exhaustive search of the
automata space toward the frontier, and was proven to be able to identify in the limit the
minimum consistent automaton provided that the learning sample is structurally com-

3A thorough analysis of merge operator can be found in [21,22].
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plete

4. The addition of a heuristic used to limit the search to the parts of the automata
space which arguably might contain the solution produced Evidence-Driven State Merg-

ing (EDSM) [24]. In a real application scenario, this approach suffers from some limita-
tions; first of all, nearly always the target automaton is not available so it is not possible
to check whether the learning sample does in fact contain a characteristic set; secondly,
if data is affected by noise, the final DFA may be significantly compromised, because of
the very nature of DFAs that do not allow to specify a degree of acceptance or rejection;
in such cases, the algorithm typically yields a larger and less accurate DFAs. Such con-
siderations strongly suggest the importance of trying to discard examples that might lead
to overfitting, as well as to exploit their distribution to detect which are the relevant ones.

3.1. Dealing with Imprecise or Incomplete Data

The attempt to improve EDSM gave rise to Blue* [25], which is based on a clever strat-
egy to deal with a high amount of data and whose key insight is a statistical distinction
between relevant and irrelevant information, which is treated as noise. Among the dif-
ferent types of noise that can be observed (e.g. noisy labels, incomplete data, fuzzy data,
etc.), the case of mislabeled data is addressed; in other words, the algorithm assumes that
some positive examples might be mistakenly regarded as negative, and vice versa.

Following the “features selection” terminology [26], at least two different ap-
proaches are possible: either irrelevant examples are removed before inference begins
(which is known as filter strategy), or noisy samples must be detected and processed
during the inference process (wrapper strategy). The first approach entails using an ef-
fective distance measure between samples, but this is difficult to determine, and usually
induces some bias within the produced set, which is why the wrapper strategy is adopted
in Blue*. Its authors initially created RPNI* [27], by modifying the merge operator so
as to make it statistically robust to misclassified examples, and later adapted the same
approach to EDSM, adding what they called “statistical promotion”. Their approach is
based on the comparison of misclassified sample proportions, and aims at verifying that
such proportions do not increase significantly after a state merging; the resulting reduc-
tion in the size of the produced DFA is accepted when the error does not exceed some
chosen threshold. Since the error variations might depend on the particular sampling of
target language, a simple comparison of misclassified proportion is not sufficient and a
statistical method is necessary to deal with error variability. The proposed rule considers
a merge as statistically acceptable “if and only if the proportion of misclassified exam-
ples in a DFA after a merging is not significantly higher then the proportion computed
before the merging” [25]. Many tests are available in the context of statistical inference
in order to assess two proportions; among them, hypothesis testing [28] appears a good
candidate for the problem discussed here.

3.2. A Metric accounting for Similarity in Structure and Language

The definition of a reliable similarity measure is one of the most important issues in mo-
bility data analysis, especially since a common area of application falls within the context
of recommender systems, where service customization is usually provided depending on

4A sample set is said to be structurally complete w.r.t. an automaton, if every transition of the automaton is
used by at least a string in the set, and every final state corresponds to at least one string in that set.
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the similarities among users. Most metrics documented in literature are heavily based
on statistical properties computed on a relevant set of features of the underlying models;
however, identifying such features, and devising an effective measure for describing their
dissimilarities may be tricky.

In our specific context, we are not merely interested in comparing the structures of
the obtained models, but also in capturing the language of the mobility paths, or, in other
words, in computing the similarity between mobility habits of users.

We chose to refer to the similarity measure described in [29], whose authors propose
to perform the comparison between two models by considering their behavioral aspects;
our choice was due to the fact that such measure appears well suited to provide a deep
comprehension of automata as language recognizers. Considering two automata, one of
them is designated as “target”, and the other as “subject”; the aim is to assess how similar
the former is to the latter. The main underlying idea is the identification of a significant
set of strings to be used as probes, in order to assess how both automata behave when
processing them; the similarity score will depend on how many strings are identically
classified by both the target and the subject.

The choice of the set of probes, however, is not trivial, because it should (1) encode
every reachable state, (2) trigger every transition and (3) preserve the correct arrangement
of states. The W-method [30] represents a possible solution; it is based on two sets: the
cover set, i.e. the set of strings guaranteeing that every state is reached at least once,
and the characterization set, that ensures that every possible sequence of symbols starts
from each state, and furthermore that every unique state from the reference automaton
is explored in the subject machine. The probe set is obtained as the cross product of the
cover set and characterization set.

However, merely computing a ratio of strings treated identically by both automata
would likely result into an unreliable similarity score, which might be biased due to a
significant asymmetry between the amount of accepted and rejected examples from the
probe set (a common situation in application scenarios for the W-method).

To address this issue, the generated sequences are fed to the DFAs, and the out-
come of their classifications are categorized in a confusion matrix, and the similarity
measure is computed by means of the F-measure [31], defined as F = 2 ⇤Precision ⇤
Recall/(Precision+Recall), which corresponds to computing the harmonic mean be-
tween two classic measures of statistical relevance, namely Precision and Recall. Sim-
ilarity computed in this way naturally emphasizes the importance of capturing the lan-
guage of the reference machine, rather than ensuring accuracy with respect to language
complements.

Finally, our similarity measure S was defined as: S(A,B) = (S
w

(A,B)+S

w

(B,A))/2,
where A,B are two automata and S

w

is the similarity calculated according to [29], whose
first argument is the target automaton and the second is the subject.

4. Representing Mobility Patterns through Regular Grammars

Following the discussion provided in the previous sections, the first step of our approach
consists in translating user paths into a symbolic representation; to this aim, we selected
an encoding system for geographical coordinates known as geohash, which assigns a
hash string to each (latitude, longitude) pair [32]. The encoding is based on a hierar-



DR
AF
T

Figure 2. An example of how the first two bits of a geohash string are generated.

chical spatial data structure that recursively subdivides the whole globe into “buckets”
according to a grid; unlike traditional coordinate systems, it does not actually represent a
point, but rather a bounding area to which the point is restricted. The space is partitioned
according to a 4⇥8 grid; each cell can be recursively divided into 32 smaller cells, and
so on, thus providing a hierarchical structure that resembles that of a recursive quadtree;
at each iteration, each cell is identified by an alphanumerical character from an alphabet
of 32 symbols. This process can be iterated until the desired spatial accuracy is obtained:
the longer the geohash string, the smaller the area; an example of encoding at the first 2
levels is reported in Figure 2.

The source data we will consider consists of movement tracks [33], i.e. temporally
ordered sequences of spatial-temporal position records captured by a device during the
whole lifespan of the user observation. Those have to be turned into trajectories [34]
in order to be able to filter out noise, and to estimate other movement features, such as
speed and direction. The true aim of the analysis may however be identified in the paths,
which are defined as the portion of a trajectory between two relevant points in time or
space. Paths reveal user behavior, and highlight relevant places where users spend most
of their time. Being aware of these places is crucial in many applications, and they are
fundamental in comparing habits of several users or in recognizing anomalies or changes
in their routines.

In our approach, trajectories are coded into symbolic sequences by turning each
pair of coordinates into the corresponding geohash string; through this encoding, they
can easily be analyzed at different spatial scale: once the required precision is set, it is
sufficient to truncate every geohash string of each trajectory at the corresponding length.
The user mobility model is finally decomposed by following the trajectories with respect
to every cell of geohash encoding: a regular language is thus learned for each cell of the
geographical area crossed by user movements, starting at the highest level of granularity,
as shown in Figure 3. At any level, a more complex and detailed automaton may be
obtained by substituting to each symbol the recognizer for the corresponding cell; this
is equivalent to concatenating a new symbol to the geohash string, and inspecting the
movements at a finer detail. The process stops at the cell granularity representing the
required accuracy.

At smaller scales, mini trajectories can be obtained for each cell by considering
all the contiguous subsequences of strings within each trajectory that share the prefix
corresponding to the cell. For each element of the subsequence, only the symbol of the
sub-cell is considered, thus the subsequence is turned into a string; after recovering all the
strings related to the cell, the needed information to infer a regular language is obtained.

As discussed earlier, a presentation from an informant is required to infer a regular
language; so, in order to obtain the mobility model for a user, a set of examples of his
paths is not enough. For our case study, we consider the symmetric difference between
the set of trajectories of other users and the trajectories of the current user as the negative
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Figure 3. Given the DFA for a larger cell (dashed-line box), a more detailed model can be built by inferring
the DFA for transition u (solid-line box).

Table 1. Similarity between original users and artificial one at three selected scales.

Prefix

User

3 4 17 30 62

wx 0.37 (0.008) 0.34 (0.001) 0.41 (0.007) 0.39 (0.160) 0.78 (0.001)

wx4 0.38 (0.001) 0.07 (0.002) 0.43 (0.036) 0.44 (0.034) 0.44 (0.034)

wx4g 0.44 (0.040) 0.48 (0.001) 0.52 (0.001) 0.40 (0.014) 0.37 (0.003)

sample set. This set represents viable routes chosen by other users, which have not been
traversed by the current user, and can arguably be considered as negative samples for
the language representing the mobility habits of the current user. We thus use the Blue*

algorithm to infer the corresponding regular language, given the mini-trajectory sets of
negative and positive route samples.

5. Experimental Assessment

In order to assess our approach, we examined data provided by the Geolife dataset [35],
which is a collection of time-stamped triples of the form (latititude, longitude, altitude),
representing the spatial behavior of 182 users monitored for 5 years, collected by Mi-
crosoft Research Asia. Most trajectories took place in China, near Beijing, but routes
crossing USA and Europe are also present. More than 17,000 trajectories are contained
into the dataset, for a total of approximately 50,000 hours of tracked movements. GPS
loggers and smartphones acted as acquisition devices, providing a high sampling rate
(1 ⇠ 5 seconds in time, and 5 ⇠ 10 meters in space) for more than 90% of the data.

A library, named GI-learning, was developed and published5 for the grammatical
inference task. It provides many state-of-the-art algorithms for grammatical inference
implemented in C++, and optimized to deal with large quantity of data.

We compare our approach to that proposed in [14], whose performance was tested
on the Geolife dataset, so it enables for a direct comparison between results achieved by
our system and theirs.

5
https://github.com/piecot/GI-learning
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Figure 4. Similarity matrix for a subset of Geolife users at three different scales.

In a first test, we evaluate the reliability of our similarity measure. However, assess-
ing the effectiveness of a similarity measure is not easy in the field of mobility data, due
to the lack of a proper ground truth. We chose to overcome this difficulty by following
the same strategy adopted in [14]. The basic idea is to compare the model of a user, with
the model of an artificially generated one, obtained by considering only a subset of the
original data. In our case, additional, artificial users were generated by randomly select-
ing half of the paths from five existing users. The similarity measures between an original
user and each of its artificially generated offspring were computed, in order to achieve a
non-biased estimate. Table 1 reports the mean and variance of the obtained accuracies.
Notably, our measure appears reasonable as it captures the similarity between any of the
original users and the respective offspring, if compared with those in [14], capturing the
same trends. Moreover, the results show that the computed similarity is coherent with
data at all the relevant scales.

A further set of experiments was carried out, and the similarity for every pair of
users, selected among the ones with the highest amount of paths within Geolife, was
computed and compared to the results presented in [14]. A partial report of the results
for the second test is shown in Figure 4, where the similarity for 10 users is depicted,
at three different scales, with geohash length encoding of 3, 4 and 5, respectively. The
results obtained are in accordance to the ones presented in [14] for users considered in
both works (namely, users 3, 4, 17, 30, 68, 153, 163), thus confirming that the reliability
of the proposed similarity is comparable to the state-of-the-art metrics in literature.

Finally, we would like to point out a peculiarity of our approach in that it allows to
represent similarity more expressively than just the figure of its measure. Figure 5, for
instance, shows the distribution of the similarity between two users (namely, users 17
and 153) in selected geohash cells. Both users moved within the Beijing area showing
an overall similarity of 0.33; thanks to the multi-scale nature of our models, and conse-
quently of our metric, we are able to easily show how the habits of those user compare
across different areas of the city. For instance, they appear to behave much more simi-
larly to each other in the upper right corner cell, while they show a much more different
behavior in the lower left corner.
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Figure 5. Similarity of two users in the different areas of the same geohash cell.

6. Conclusion

This paper described a structural approach to extract and compare mobility models from
huge datasets of positioning data. The main idea is that good quality models can be
obtained by coding structures inferred from the wealth of collected samples by a syntactic
approach, taking advantage of the natural recursive nature of human mobility habits.

Grammatical Inference is used in order to build models, able to to perform multi-
scale analysis and suitable to identify the most relevant relations at different granulari-
ties. Moreover, this representation enables a metric for comparing mobility habits that
is based on state-of-the-art similarity measure for regular languages. The presented re-
sults demonstrate that the proposed multi-scale models and metric perform well on a
large dataset of real data, showing promising outcomes and motivating future research.
Specifically, we plan to incorporate semantic information about locations to improve the
similarity measure and the obtained models.
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