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ABSTRACT
In distributed environments, Reputation Management Sys-
tems (RMSs) aim to estimate agents’ trustworthiness by ex-
ploiting different sources of information. The distributed
nature of these systems makes them vulnerable to several
types of security attacks, and the response provided by a
specific RMS depends on various factors, such as the al-
gorithms adopted for estimating the reputation values and
the communication protocols used to enable the cooperation
among agents. This work examines the most important se-
curity attacks against RMSs and proposes a set of metrics
for a quantitative evaluation of the RMS vulnerabilities. A
parallel simulation framework is used to automatically give
a vulnerability score to a RMS according to the computed
metrics. Experiments performed on a case-study RMS show
the effectiveness of the metrics we defined, and the con-
venience of using a simulation environment to support the
design of a secure RMS.

Keywords
Distributed Reputation Management; Security Attacks; Eval-
uation Metrics

1. INTRODUCTION
Several distributed services, such as peer-to-peer appli-

cations [19], Service Oriented Architectures [16, 5], and e-
Commerce frameworks [9], rely on Reputation Management
Systems (RMSs) in order to estimate the behavior of un-
known agents.

The role of RMSs is particularly relevant if the benefit
perceived by the agents that constitute the distributed sys-
tem depends on the cooperativeness of other agents, so that
a non-cooperative behavior may cause a detriment for the
whole community.

In a distributed RMS, a central authority is missing and
a common value of reputation is produced by all the agents
according to several sources of information, such as their
direct experience or information provided by other agents.
Such systems allow to avoid the presence of a single point
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of failure, that can represent also a performance bottleneck,
and provide a well scalable solution.

Nevertheless, the distributed nature of such systems makes
them vulnerable to several types of security attacks, per-
formed by isolated or colluding malicious agents that aim to
obtain an advantage over other agents, or to abuse system
resources. The response provided by a specific RMS to an
attack depends on various factors, such as the algorithms
adopted to estimate the reputation values and the commu-
nication protocols used to enable the cooperation among
agents.

In this work we propose a set of metrics for evaluating
the vulnerability of a RMS to different attacks, so as to un-
derstand the effect of different design choices on the RMS’s
performance. Moreover, a parallel simulation framework has
been designed to allow researchers to easily specify the be-
havior of their RMS, to simply test its responses in different
scenarios, and to obtain the corresponding vulnerability in-
dices.

The remainder of the paper is organized as follows: re-
lated work is reported in Section 2. The RMS features
and components influencing its response under attack are
presented in Section 3. Section 4 describes the four secu-
rity attacks considered here, whilst Section 5 illustrates the
proposed vulnerability metrics. The simulation framework
is presented in Section 6, and the experimental results are
shown and discusses in Section 7. Finally, conclusions follow
in Section 8.

2. RELATED WORK
Several reputation management models for distributed sys-

tems have been proposed in the literature. The authors of
[25] analyzed the main components of trust systems in the
context of multi-agent systems, identifying a trust evalua-
tion phase, which assesses the reliability of the agents in-
volved in the interactions, and a trust-aware decision mak-
ing phase that uses reputation values to select the agents to
interact with. Moreover, the authors classified trust evalua-
tion methods in four classes, depending on the fact that they
are based on: (i) past direct interactions, (ii) opinions and
testimonies from other agents, (iii) knowledge about social
relationships among agents, and (iv) certificates provided
by third-party authorities. RMSs for distributed systems,
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where a central authority is missing, belong to the second
class, according to which each agent relies on a distributed
protocol to obtain opinions from other agents, and merges
them with its past experience in order to compute the rep-
utation of a given agent.

In recent years, a great attention has been devoted to iden-
tify and analyze the security attacks against RMSs, which
exhibit many vulnerabilities due to their intrinsic distributed
nature. To the best of our knowledge, works addressing this
topic miss the definition of quantitative vulnerability metric
for RMSs, and a tangible experimental evaluation that can
drive researchers to select the best design approach accord-
ing to the desired behavior.

Authors of [13] describe five attacks against RMSs, par-
tially referenced in Section 4, and outline the defense tech-
niques adopted by some RMSs presented in literature. A
similar analysis, focusing only on feedback-based reputation
systems, is proposed in [21].

Some testbeds and simulators have been proposed for as-
sessing the performances of a RMS. ART (Agent Reputation
and trust) [10], a popular simulation testbed in the field of
multi-agent systems, allows to apply several evaluation met-
rics, and to define competitions in which different strategies
can be combined and compared with respect to the util-
ity obtained by each agent at the end of the simulation.
TREET [15] limits the evaluation of RMSs in a marketplace
scenario. This framework allows to measure the resistance
of the RMS to some attacks, but does not consider other
typical attacks, which are instead addressed in our work. In
[4] the RMSs are modeled as a sequence of transformations
on a graph that represents transactions and trust among
agents. Even thought this tool allows to evaluate the effects
of some relevant attacks, it does not simulate agent interac-
tions making not possible to perform large-scale simulations
in which agents may modify their behavior. The solutions
discussed so far do not allow for large-scale simulations of
the behavior of a RMS under security attacks.

In this work we extend the parallel simulation framework
described in [2] and [1], in order to support researchers to
evaluate the behavior of a RMS through large-scale simu-
lations of different security attacks, and to obtain the cor-
responding vulnerability indices. Our framework, presented
in Section 6, allows to specify the behavior of a RMS and to
neglect the low-level details necessary to run the simulation,
making it possible to focus only on the high-level response
of the RMS under attack.

3. RMS ARCHITECTURE
As highlighted in [13], RMSs have a common structure

and their differences depend on the algorithmic specifica-
tion of their constituting components. Two steps can be
identified: (i) a formulation and calculation phase during
which agents collect and manage information in order to
obtain a value for the adopted reputation metric, and (ii) a
dissemination phase, when agents cooperate to compute the
complete reputation values.

We move step forward by considering four main compo-
nents, as shown in Figure 1. Such higher level of detail
allows to deeply analyze how different attacks exploit sys-
tem vulnerabilities. The first component is the local trust
evaluation which uses information from past direct interac-
tions with other agents in order to provide an initial and
partial estimation of their reputations. By considering only

local trust evaluation                    

 

gossip protocol                    

information fusion                      

 

incentive mechanism 

Figure 1: The components of a distributed RMS.
Each agent privately performs the local trust eval-
uation and the information fusion algorithms; the
gossip protocol and the incentive mechanism regu-
late the interactions with other agents.

this component, each agent would have a very limited view
of other agents behavior, and would not be able to predict
the actions of unknown agents. For such reason, distributed
RMSs comprise other two components that allow agents to
cooperate obtaining a more precise estimation of the reputa-
tion of their neighbors, namely a gossip protocol which prop-
agates information among different agents, and an informa-
tion fusion mechanism which allows each agent to merge
the direct experience with information obtained through the
gossip protocol. RMSs which aim not only to detect antiso-
cial behaviors, but also to discourage them, comprise also an
incentive mechanism which uses reputation values to reward
honest agents and to limit malicious ones.

4. SECURITY ATTACKS ON RMSS
The distributed nature of RMSs makes them vulnerable

to several types of security attacks, as described in [13, 21].
We consider the worst case of attackers that are insiders,

i.e., authorized users of the system that can take part to
all phases of the reputation evaluation. Moreover, we as-
sume that an attacker can get multiple identities and that
it can also cooperate with other malicious agents. A classi-
fication of security attacks can be made on the basis of their
goals: self-promoting, slandering, whitewashing, and traitor
attacks. The classification presented in [13] includes also the
denial of service attack, that is not considered here since
it is more frequent in a centralized system, where malicious
agents may overwhelm the central server, thus hindering the
reputation evaluation tasks.

4.1 Self-promoting
In a self-promoting attack [17], a malicious agent aims

to increment its own reputation value, generally in order
to hide an antisocial behavior, or to achieve an unjustified
advantage over its competitors, e.g., in an e-commerce sce-
nario. This type of attack requires an orchestrated plan in-
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volving several malicious agents, since, generally, reputation
management systems do not allow an agent to disseminate
reputation information about himself. In order to analyze
the resistance of a RMS to a self-promoting attack, it is ir-
relevant whether it is conducted by distinct malicious agents
or by multiple identities of a single malicious agent.

The classical way to perform the self-promoting attack
is to introduce false positive information into the system
through the gossip protocol. The RMS component capable
of resisting to such attack is the information fusion mech-
anism, which determines the balance between gossiped in-
formation and direct experiences, and that can also assign
different weights to information obtained, e.g., on the basis
of the reputation of gossiper agents.

4.2 Slandering
The slandering attack [3] aims to decrease the reputation

of some “victim” agents. Such attack may be performed
by a single malicious agent, but in a large-scale system,
an isolated intervention would have a limited effect. For
this reason, slandering attacks are generally performed by a
group of colluding agents. Also in this case, it is not rele-
vant whether such malicious group is composed by distinct
agents or by duplicated identities. Such an attack is typical
of e-commerce systems, where the attacker aims to sabotage
a competitor in order to obtain an indirect economic profit.
The slandering attack is performed by introducing false neg-
ative information through the gossip protocol, and, similarly
as the self-promoting attack, the information fusion mech-
anism is the main component that can let the system resist
through an opportune balancing of gossiped information.

4.3 Whitewashing
The whitewashing attack [8] is performed by a malicious

agent that wants to avoid the consequences of its bad past
behavior. The malicious agent leaves the system and re-
joins it with a new identity obtaining the default reputation
value assigned to new users. The main vulnerability ex-
ploited by this type of attack is that a new agent receives
a default reputation value comparable with the long-term
reputation of a honest agent. RMSs that adopt such initial
value have an optimistic approach and rely on negative feed-
backs in order to discover a malicious behavior. A greater
resistance is expected by RMSs that impose a low initial
reputation value and use positive feedbacks to rise the rep-
utation value. Moreover, a whitewashing attack can be re-
inforced by a combined self-promoting attack to extend its
effect.

4.4 Traitor
In such type of attack, a traitor agent [19], with a bad rep-

utation, acts honestly for a limited portion of time in order
to increase its reputation. Once such goal is achieved, the
traitor begins to abuse system resources again, and main-
tains an antisocial behavior until its reputation became too
low; from this point the loop repeats, by alternating good
and bad behaviors. A traitor attack is convenient in RMSs
where the default reputation value is low, and thus a white-
washing attack does not produce an immediate benefit for
the attacker, that has to behave honestly for a given time
period before being able to obtain system resources. RMSs
more vulnerable to such type of attack are those which
weight the past history more than the recent experience.

5. SECURITY METRICS
The evaluation of a RMS requires new metrics to be de-

fined while respecting some overall principles, partially in-
spired by the guidelines proposed in [20] and adopted in [22]
to define some security metrics for distributed systems:

P1. the metrics should be assigned by measuring specific,
unambiguous facts rather than abstract rules;

P2. the security of the RMS should be evaluated by con-
sidering all the observed vulnerabilities;

P3. the metrics should be intuitive;

P4. the metrics should be computed in an efficient way.

According to these principles, we propose to use a set
of intuitive metrics (P3) that allow to measure the effort
required to perform a specific attack (P1), and to evaluate
and how long an attacker is able to exploit system resources:

m1) Time-to-compromise: the time necessary to reach the
goal of an attack aimed to alter the reputation of some
agents, i.e., the number of time steps required for the
attack to succeed;

m2) Exploitation-time: the time a malicious agent is able
to exploit the system resources before its behavior is
detected;

m3) Collusion-complexity: the number of agents involved
in cooperative attacks.

Following P2, we adopted distinct metrics for each at-
tack so as to separately evaluate the robustness of RMSs
against different threats. Each of the selected metrics is then
mapped to a set of qualitative ratings that provide a textual
representation of the numeric scores S, where 0 ≤ S ≤ 10.
The qualitative severity rating scale we used is that defined
by the Common Vulnerability Scoring System (CVSS) [6],
a well-established standard for classifying the severity of se-
curity vulnerabilities. In particular, the simulation frame-
work rates the significance of each vulnerability as none (if
S < 0.1), low (0.1 ≤ S < 4.0), medium (4.0 ≤ S < 7.0), high
(7.0 ≤ S < 9.0), critical (9.0 ≤ S ≤ 10.0). At the end of
this analysis, the final user is notified of the vulnerabilities
marked as high or critical.

The last principle, P4, is satisfied by guaranteeing that
all the metrics are computed by the simulator quickly and
automatically.

In order to determine whether a specific attack has achieved
his goal, we also need to define the following success con-
ditions (defined for a RMS in which reputation values are
included in [0, 1]):

• Self-promoting (SP) is successfully completed if the
long-term reputation of the non-cooperative, malicious
agent, computed by one of its trustworthy neighbors,
is greater than 0.5.

• Slandering (S) is successfully completed if the long-
term reputation of the victim, computed by one of its
trustworthy neighbors, is lower than 0.5.

• Whitewashing (W) is achieved within a temporal
window T, if, in such window, the reputation of the
non-cooperative, malicious agent, computed by one of
its trustworthy neighbors, is greater than 0.5.
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• Traitor (T) is achieved if the reputation of the mali-
cious agent, computed by one of its trustworthy neigh-
bors, is always greater than 0.5.

The long-term reputation is the reputation value observed
after Tmax time steps, given that at each time step an in-
teraction between at least two agents occurs. The value of
Tmax has been set to 500 time steps by empirically analyz-
ing the point when many state-of-the-art RMSs converge
to a stable reputation values in a network composed by
100 agents and where each agent has 6 neighbors on av-
erage. The time Tmax is also used both to scale time-to-
compromise and exploitation-time, and to determine an in-
termediate threshold, Tth = Tmax/2, needed to compute the
collusion-complexity.

According to these definitions, being N the number of
simulation time steps required to complete an attack, the
time-to-compromise TTC is computed as:

TTC = N/Tmax, (1)

where TTC = 1 if the attack has failed.
When considering slandering or self-promoting attacks,

the time-to-compromise also depends on the percentage of
malicious agents that interact with the observer. For this
reason different TTC values are computed while varying this
percentage from 10-100 in 10% increments, and the average
TTC is actually considered.

The collusion-complexity, CC, is defined as the percentage
of corrupted agents needed for completing the attack within
a time Tth.

Thus, the vulnerabilities of a RMS to slandering and self-
promoting attacks can be expressed as:

VS = [1− TTC(slandering)]× [1− CC(slandering)].

VSP = [1− TTC(self -prom)]× [1− CC(self -prom)]. (2)

The temporal metric that allows to evaluate whitewashing
and traitor attacks is quite different from TTC.

In whitewashing attacks we can state that a malicious
agent is maintaining his fraudulent behavior as long as his
reputation is greater than a threshold Rth = 0.5. Thus,
assuming that N time steps are required for the reputation
to go under Rth, the exploitation-time, and consequently the
vulnerability index, can be defined as:

VW = ET (whitewashing) = N/Tmax, (3)

For traitor attacks, the exploitation-time is the time a
malicious agent can act in a non-cooperative way before its
reputation goes under a threshold Rth = 0.5 This condition
is usually reached by alternating right and bad behavior
for a certain number of time steps, Ngood and Nbad respec-
tively. Thus, the exploitation-time for traitor attacks, and
consequently the vulnerability index, can be defined as:

VT = ET (traitor) = Ngood/(Ngood +Nbad). (4)

In order to obtain vulnerability scores in [0, 10] while hav-
ing significant values in the whole range, a gamma correc-
tion, with γ = 0.5, and a scale factor K = 10, is applied:

V ∗ = K × V γ . (5)

According to the previous definitions, the overall vulnera-
bility of a RMS is given by a vector containing the list of the

detected vulnerabilities V ∗ and the number of those marked
as high or critical :

RMS vulnerability =

= {V ∗, num of V ∗high&critical} =

= {[V ∗SP , V ∗S , V ∗W , V ∗T ], num of V ∗high&critical}.

The extended simulation framework we describe in next
Section not only allows to analyze the effects of different
security attacks on the target RMS, but also makes a clear
assessment of the RMS robustness by providing the user
with an overall score computed on the basis of different vul-
nerability metrics.

6. PARALLEL SIMULATOR
To support the evaluation of the above described RMS,

we propose here an extension of the simulation framework
preliminarily described in [2] and [1], which aims to make
easier the assessment of new reputation management strate-
gies in different scenarios. The simulation is based on the
synchronous time-discrete model proposed in [18] to describe
synchronous distributed algorithms.

In order to separate low-level functionalities from the rou-
tines that describe the RMS’s behavior, the software archi-
tecture of the simulator consists of two different logic layers.

The reputation layer is made of nodes connected to each
other according to a customizable network topology pro-
vided by the user. This is the topmost layer, thus at this
level of abstraction all the interactions between the agents
occur in a totally distributed way, i.e., without the coordina-
tion of any central authority. The simulation environment is
totally customizable by means of a set of of high-level con-
figuration utilities that allow the user to specify the number
of agents involved in the simulation, set the behavior and
the cooperativeness degree of each agent, create ad-hoc net-
work topologies, and specify the parameters of the reputa-
tion management strategy.

The level below is named simulation layer. Here, each
agent is mapped to a distinct software process and the simu-
lation proceeds in rounds according to a synchronous model,
i.e., at each round all processes act simultaneously. At each
iteration a process performs the operations requested to the
corresponding agent: generate and send resource requests
to the neighbors, evaluate incoming requests, determine a
proper response, send resource responses, use local trust
evaluation to update the current view of the reputation net-
work, send updated reputation values by means of the gos-
sip protocol, and update the information fusion mechanism.
The set of processes running at the simulation layer also in-
cludes a leading process, that is responsible for coordinating
the simulation by creating new processes or changing the
behavior of those that already exist.

Since each process can run on a distinct remote host,
the framework utilizes the Message Passing Interface (MPI)
to enable communication among different distributed pro-
cesses.

In order to evaluate the TTC index for slandering and self-
promoting attacks, the framework performs different simu-
lations by varying the percentage of malicious agents that
interact with the neutral node, i.e., the observer, used for
measuring the reputation of the victim (for slandering) or
of the promoted agent (for self-promoting). For each run,
the framework stores the reputation trend of the involved
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agents, and the time step when the goal of the attack is
achieved. The final value of the TTC metric is obtained by
averaging all these time steps.

The evaluation of the CC index for slandering and self-
promoting attacks requires to identify the smallest percent-
age of colluding agents needed to reach the goal of the attack
goal within Tth time steps. For this purpose, it is possible to
exploit the same simulation runs performed to evaluate the
TTC index, so as to identify the percentage interval within
which the goal is achieved. A further run is performed by
selecting an intermediate percentage value inside such inter-
val, in order to obtain the CC index with a 5% granularity.

For the whitewashing attack, the ET is simply obtained
by analyzing the reputation trend of the malicious agent,
observed by a neutral node, and by identifying the time
step in which its reputation goes under the Rth value. This
value is the normalized with respect to Tmax.

In order to evaluate the ET metric for the traitor attack,
different simulations are performed while varying with step
of 5% the fraction of time during which the traitor acts non-
cooperatively. The ET index is the greatest fraction which
guarantees that the reputation of the attacker never goes
under the Rth during the whole simulation.

7. EXPERIMENTAL EVALUATION

7.1 Case Study: the RMS
In order to evaluate the effect of the security attacks on

RMSs designed according to different approaches, we adopted
as case-study a RMS that explicitly manages, through tun-
able parameters, the relationship between past and recent
experiences, and between direct experience and gossiped in-
formation.

This RMS includes the four components described in Sec-
tion 3 and is inspired by [14] and [7]. The local trust eval-
uation mechanism, as in [14], requires that each agent i
stores the number of satisfactory, sat(i, j), and unsatisfac-
tory, unsat(i, j), transactions occurred with other agents j
in the network, during the last time interval. The percentage
of satisfied requests in such time interval is considered the
local trust, ltij , which is defined according to the following
equation:

ltij =
sat(i, j)

sat(i, j) + unsat(i, j)
. (6)

The local trust value influences the reputation that i holds
about j, weighted by a factor α ∈ [0, 1]:

lrij(t) = α ∗ ltij + (1− α) ∗ rij(t− 1), (7)

where lrij indicates the local reputation, that is the past rep-
utation rij updated according to the last local experience.

The gossip protocol simply states that each agent sends
its reputation values, rij , to all its neighbors, thus, each
agent knows the opinion of all its one-hop neighbors about
the reputation of its two-hop neighborhood.

The information fusion phase is inspired to [7], where each
agent merges only information coming from reliable agents,
i.e., those whose reputation is beyond a given threshold τ .
Merged information is weighted with the reputation of the
gossiper agents, and the resulting reputation value rij is
obtained by linearly combining this weighted mean with the

local reputation:

rij(t) = (1−β)∗ lrij(t)+β∗

∑
k∈K

rik(t− 1) ∗ rkj(t− 1)∑
k∈K

rik(t− 1)
, (8)

where β is a coefficient in [0, 1] and K is the set of reliable
agents:

K = {k : rik(t− 1) ≥ τ}. (9)

The adoption of a weighted sum between the local reputa-
tion and the average values reported by other agents is a
common solution in the literature [23, 24].

Finally, our RMS implements a simple incentive mecha-
nism that allows an agent to obtain resources with a prob-
ability proportional to its reputation [5].

7.2 Experimental Results
In this section we provide a set of experiments aimed to

understand which factors mostly influence the performance
of a RMS under attack. Moreover, we show as such results
may be concisely represented through the proposed vulner-
ability metrics.

The RMS which represents the base line for our evalu-
ations, is characterized by the following parameters: the
α factor, which weights the local trust to produce the lo-
cal reputation, is α = 0.1; the β factor, which weights
the gossiped information to produce the final reputation,
is β = 0.1; the default reputation value assigned to new
users is repij(t0) = 0.9; the reputation threshold used to
select reliable gossiper agents during the information fusion
mechanism is τ = 0.4; finally, the time interval considered
for collecting data about the direct experience, needed to
evaluate the local trust, consists of 30 time steps.

Such baseline parameters have been selected so as to ob-
tain a RMS with a fair behavior and in which each attack
(i) can be performed successfully and (ii) can be detected
in a reasonable time. It is worth to specify that our goal is
not to propose a specific RMS, but rather to show the po-
tential of the proposed simulator for analyzing the security
response of any RMS, and providing a score which depends
on different vulnerability metrics.

The following experimental results have been obtained by
simulating a network composed of 100 nodes, where each
node has 6 neighbors on average, randomly selected ensuring
that the network is not partitioned in isolated clusters.

As described in Section 4, slandering attacks are per-
formed by a set of malicious agents that disseminate false
negative feedbacks about a victim. In order to understand
how the consequences of slandering attacks can be depen-
dent on the gossip protocol used to propagate the reputa-
tion values through the reputation network, different simu-
lations were run while varying the value of β (see equation
8) that weights direct and gossiped information. For ex-
ample, β = 0.2 means that during the information fusion
phase, the information from the gossiper agents is scaled by
a factor 0.2, whilst the local reputation is weighted with a
factor 0.8. Fig. 2 shows that the more is the importance of
the gossiped reputation, the more is the effectiveness of the
slandering attack.

Obviously, we expected that also the number of attacking
agents affects the reputation of the victim. Such hypothesis
was confirmed by a set of experiments performed while vary-
ing the percentage of malicious agents, from 0 to 100. Fig. 3
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Figure 2: Slandering attack: reputation values of
the victim agent as observed by neutral agents while
varying the weight β of direct and gossiped infor-
mation, when 50% of the agents interacting with the
neutral agents are malicious.
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Figure 3: Slandering attack: reputation values of
the victim agent as observed by neutral agents while
varying the percentage of attacking agents.

shows the reputation of the victim as observed by neutral
agents. As expected, the greater is the number of attack-
ing agents, the more effective is the attack. However, even
though the 65% of the agents in the network are malicious,
the reputation of the victim decrease of only 0.5. As more
agents are involved, the reputation of the victim continues
to lower, approaching zero when the 85% of the agents are
malicious.

Such a behavior is summarized by the slandering vulner-
ability index. As already said, the TTC(slandering) is the
average number of time steps required to put the reputa-
tion of the victim agent under Rth = 0.5, normalized with
respect to Tmax = 500, whilst CC(slandering) is the per-
centage of colluding agents needed to complete the attack
within Tth = 250 time steps.

Figure 3 shows that these conditions are satisfied when
at least the 65% of the agents interact with the neutral ob-
server. The resulting value for the slandering vulnerability
metrics are the following:

TTC(slandering) = 0.71

CC(slandering) = 0.65

V ∗S = 3.18

The self-promoting attack exploits the same vulnerabili-
ties exploited by the slandering attack, but with the goal
of increasing the reputation of a non-coperative agent by
means of false information provided by a set of colluding
agents. Some experiments were conducted to understand
how the reputation of this non-cooperative agent is per-
ceived by a trustworthy agent that interacts directly with
it. Fig. 4 shows that even though the behavior of the selfish
agent remains unchanged during the simulation, its repu-
tation increases the more malicious agent are involved in
the attack. It is worth noting that, since the direct expe-
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Figure 4: Self-promoting attack: reputation val-
ues of the selfish agent as observed by a trustwor-
thy agent while varying the percentage of malicious
agents supporting the attack.
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Figure 5: Self-promoting attack: reputation values
of the selfish agent as observed by a trustworthy
agent while varying the weight β of gossiped infor-
mation.

rience is negative, even if the malicious agents provide pos-
itive information, the low value of the local trust prevents
the reputation value from rising over 0.5. Obviously, if gos-
siped information weight more than direct experience, such
protection misses. Fig. 5 addresses this circumstance and
describes a set of experiments where a trustworthy observer
is surrounded only by dishonest agents which cooperate in
order to promote the reputation of a malicious agent.

The experimental results show that our baseline RMS has
a greater resistance to self-promoting attacks than to slan-
dering attacks. Such feature is concisely represented by the
self-promoting vulnerability metrics:

TTC(self − promoting) = 0.79

CC(self − promoting) = 0.85

V ∗SP = 1.78

The evaluation of the impact of the whitewashing attack,
in a system that does not pose restriction on the creation
of new accounts, corresponds to analyze how the reputation
of a new user varies according to its behavior. The benefit
of performing such attack depends on the default reputa-
tion value assigned to new users. Fig. 6 shows how the
reputation of a new non-cooperative, malicious, agent that
joins the network after 70 time steps varies according to the
default reputation value. With the baseline settings the dis-
honest behavior is always discovered, but varying the default
reputation value changes the time interval during which the
malicious agent is able to abuse the community resources.
For such reason, the main defense technique is to assign a
low reputation value to new agents that join the system; the
weakness of this solution is that a low initial reputation is
also assigned to new trustworthy agents, that, consequently,
experience a slow start phase, as shown by Fig. 7.

Moreover, a low default reputation value may be very dis-
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Figure 6: Whitewashing attack: reputation values of
a non-cooperative agent that joins the network after
70 time steps, while varying the initial reputation
value assigned by the RMS.
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Figure 7: Whitewashing attack: reputation values
of a trustworthy agent that joins the network after
70 time steps, while varying the initial reputation
value assigned by the RMS.

advantageous if an incentive mechanism is automatically ex-
ecuted in order to provide each agent with a percentage of
resources proportional to its reputation. Indeed, if a new
user is evaluated with a low reputation, the other agents
will give him few resources. As a consequence, its opinion
of other agents will decrease, and it will give them few re-
sources, thus confirming its bad reputation. In other words,
if the incentive mechanism is blindly performed, new hon-
est users are not able to improve their initial reputation,
as shown in Fig. 8. It is worth noting that during the ex-
periments described by Fig. 7, honest agents always satisfy
the received requests, i.e., they do not apply the incentive
mechanism.

With the baseline settings, which adopts 0.9 as initial rep-
utation value, the corresponding vulnerability metrics have
the following values:

ET (whitewashing) = 0.054

V ∗W = 2.32

In order to evaluate the impact of the traitor attack, we
performed some experiments where a malicious agent alter-
nates cooperative and partially cooperative behavior (i.e.,
only 50% of received requests are satisfied). The honest be-
havior is maintained for a longer time interval in order to
guarantee that the reputation value increases enough. As
expected, Fig. 9 shows that RMSs with higher values of α,
i.e., the weight of recent experience, detect earlier a change
in agent behavior.

Moreover, experimental results show that the percentage
of time during which the traitor can behave non-cooperatively
without being detected is 20%, against a percentage of 35%
for a partially cooperative behavior. The resulting vulnera-
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Figure 8: Whitewashing attack: reputation values of
a trustworthy agent that joins the network after 70
time steps, while varying the initial reputation value
assigned by the RMS, with an automatic incentive
mechanism enabled.
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α=0.9 α=0.5 α=0.1 degree of cooperation

Figure 9: Traitor attack: reputation values of
a traitor agent which alternates honest and non-
cooperative behaviors, while varying the α factor
that weights the recent experience to build the lo-
cal reputation.

bility index is then:

ET (traitor) = 0.25

V ∗T = 5.00

In conclusion, the baseline RMS does not exhibit high
or critical vulnerabilities, whilst a medium vulnerability to
traitor attack is detected. These characteristics are summa-
rized by the following vulnerability indexes:

RMS vulnerability =

= {V ∗, num of V ∗high&critical} =

= {[V ∗SP , V ∗S , V ∗W , V ∗T ], num of V ∗high&critical} =

= {[1.78, 3.18, 2.32, 5.00], 0}.

8. CONCLUSIONS AND FUTURE WORK
In this work we presented a set of vulnerability metrics to

quantitatively evaluate the behavior of a Reputation Man-
agement System under attack. These metrics allow to com-
pare the effects of different design choices on the overall se-
curity of the RMS. We used a parallel simulation framework
for automatically compute the vulnerability indexes associ-
ated to four state-of-the-art attacks. This tool allowed us to
test the security of a case study RMS while varying the be-
havior of its inner components, namely local trust, gossiped
information and information fusion, and some general char-
acteristics, such as the default reputation values assigned to
new agents.

Results showed that the impact the different attacks have
on the RMS deeply depends on the choices made since its
design. For example, in order to overcome a slandering at-
tack a RMS should rely more on the direct experience than
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gossiped information, whilst is recommended to give more
importance to the direct and recent experience when dealing
with traitor attacks.

As future work, we plan to experimentally analyze the se-
curity of some of the most popular distributed RMSs, and to
consider possible attacks to the system architecture. In par-
ticular, masquerading attacks could allow malicious agents
to pretend to be loyal agents, so as to diffuse false feedbacks
through the gossip protocol. Moreover, we are considering
to extend our analysis to RMSs operating within large-scale
social networks [11, 12].
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