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Abstract. Multi-sensor data fusion is extensively used to merge data collected
by heterogeneous sensors deployed in smart environments. However, data coming
from sensors are often noisy and inaccurate, and thus probabilistic techniques,
such as Dynamic Bayesian Networks, are often adopted to explicitly model the
noise and uncertainty of data.
This work proposes to improve the accuracy of probabilistic inference systems by
including context information, and proves the suitability of such an approach in
the application scenario of user activity recognition in a smart home environment.
However, the selection of the most convenient set of context information to be
considered is not a trivial task. To this end, we carried out an extensive exper-
imental evaluation which shows that choosing the right combination of context
information is fundamental to maximize the inference accuracy.

Keywords: Multi-sensor data fusion; Dynamic Bayesian Networks; Context aware-
ness

1 Motivations and Related Work

Nowadays, users expect end-applications to provide useful context-aware services, by
exploiting the increasing number of sensors deployed in smart environments and smart-
phones [1]. To this end, pervasive computing applications need to accurately infer the
current context, by efficiently processing large amounts of raw sensory data.

For this purpose, multi-sensor data fusion is extensively used to combine data col-
lected by heterogeneous sensors [2]. However, since sensor data are often noisy and in-
accurate, probabilistic techniques are widely adopted to explicitly model the noise and
uncertainty of raw data, as described in [3]. In particular, Dynamic Bayesian Networks
(DBNs) [4] take into consideration the past belief of the system, in addition to data com-
ing from sensors, and allow to handle the dynamicity of the observed phenomena. Many
works leverage DBNs to perform adaptive data fusion for different applications, such
as fire detection [5], target tracking [6], and user presence detection [7, 8]. A detailed
survey on multi-sensor data fusion can be found in [9].

Many systems presented in the literature exploit context information to improve the
inference accuracy and reduce the uncertainty of unreliable sensor data [10]. Multi-
attribute utility theory is exploited in [11] for modeling and merging context attributes,
? Corresponding Author
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with the goal of achieving situation awareness. The authors of [12] propose a context
aggregation framework that can recognize context information of various scale (i.e.,
personal, local, city-wide, and global) and combine it hierarchically. Moreover, vari-
ous frameworks use context information to reduce unnecessary communications among
wireless sensors, thus reducing their energy consumption [13, 14].

We propose a context-aware multi-sensor data fusion system to infer high-level con-
text information about the world, that includes low-level context information in order
to refine the inference process. The output of the inference process can be further ex-
ploited by higher level reasoning modules to derive new knowledge, in a multi-layered
architecture that aims to provide a symbolic description of the environment.

We demonstrate the effectiveness of the proposed approach in an Ambient Intelli-
gence (AmI) [15] scenario, whose goal is to create smart environments which satisfy
users’ needs, by exploiting pervasive sensors and actuators that surround users, with a
low level of intrusiveness [16]. To meet such requirement, many AmI designers prefer
to use low-cost and low-impact devices, possibly already deployed in the environment,
rather than developing ad-hoc sensors to specifically monitor the features of interest,
and thus the collected data are usually only partially related to observed phenomena [8].

In the field of AmI, a key challenge is recognizing users’ activities [17,18]. Various
approaches have been proposed in the literature, depending on the kind of activities to
classify. For example, to recognize activities of daily living (e.g., sleeping, working,
eating), wireless sensors are often unobtrusively deployed in smart environments, so as
not to bother users [3]. Conversely, inertial sensors, such as those commonly found in
smartphones, are better suited to recognize activities that involve physical movements,
e.g., sitting down, walking, and running [19, 20].

We focus on user activity recognition in a smart home environment, and exploit
context information at different levels. The inference of context information, as a high-
level description of the users’ activity, is the main goal of the system. Moreover, basic
context attributes, such as time-related and location-related information, are used to
refine the inference process. Such basic context attributes can be reliably and easily
sensed, and thus do not increase the uncertainty of the system.

Unlike other works presented in the literature, we advocate that it is not always con-
venient to blindly include all available context information in the data fusion process.
On the contrary, as we demonstrate in the experimental section, choosing the right com-
bination of context information is fundamental to maximize the inference accuracy. To
this end, we propose to exploit only context attributes which are readily available and
easy to measure in a reliable way, so as not to increase the uncertainty of the system.
Moreover, we prove that choosing the right combination of context information is fun-
damental to maximize the inference accuracy, especially when only few sensors are
available. In such cases, our results show that exploiting context information improves
the accuracy of the system by almost 13%.

The remainder of this paper is organized as follows. Section 2 describes the multi-
layered architecture of the proposed system, focusing on the context-aware DBN that
performs the inference. Section 3 discusses the context information that can be ex-
ploited to increase the accuracy of the system. Section 4 presents the experimental
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Fig. 1: Multi-layered architecture of the context-aware data fusion system.

setting and the results of our analysis. Finally, Section 5 draws our conclusions and
proposes directions for future work.

2 Multi-layer Architecture

This paper proposes a novel approach to multi-sensor data fusion for intelligent sys-
tems based on the use of pervasive sensors. One of the main features of the system is
its capability of dealing with inaccurate and noisy data coming from sensory devices.
In particular, the use of probabilistic techniques allows our system to merge informa-
tion coming from multiple sensors by explicitly modeling the noise and uncertainty of
data [9].

Fig. 1 shows the multi-layered architecture of the system. At the lowest tier, the
Sensory module perceives the world through the pervasive sensory infrastructure. The
inference tier is composed of multiple levels: at each level, one or more Data Fusion
modules exploit context attributes coming from lower levels to perform probabilistic in-
ference on the pre-processed sensory data, fusing them to infer new context information
which provides a higher level description of the environment. The process of knowledge
abstraction continues until the context information requested by the top-level applica-
tion is inferred.

In this work, we will focus on a single Data Fusion module, and on the impact that
context information has on its inference accuracy. A more accurate description of the
Data Fusion module is presented in the following section.

2.1 Data Fusion Module

The proposed data fusion system is based on a DBN, which models the observed phe-
nomena taking into account the past state of the world besides current sensory readings.
DBNs are a specialization of Bayesian Networks that guarantee a great flexibility in
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Fig. 2: Structure of the Dynamic Bayesian Network (DBN) used for the inference.

model expressiveness [21]. They pose no restrictions on conditional probability distri-
butions, differently from Kalman filters [22], and allow for more general topologies
than Hidden Markov Models [23]. A DBN is partitioned in temporal slices, where each
slice represents the state of the world in a given moment, besides the evidences repre-
senting the observable manifestation of the hidden state of the world. Each slice of a
DBN can have any number of state variables and evidence variables.

Fig. 2 shows the structure of the DBN we designed. Our goal is to infer the state
of the world, in the form of a given feature of interest, on the basis of a set of sensory
readings, represented by the evidence nodes E

t

= (E1
t

, . . . , En

t

) at any time slice t.
Differently from prior work, we also exploit a set of context information, represented
by the evidence nodes C

t

= (C1
t

, . . . , Ck

t

) in the time slice t. We will analyze in detail
the choice of which context information to use in Section 3.

To fully characterize the DBN, it is necessary to define the sensor model and the
state transition model [4]. The probability distribution P (E

t

|X
t

) expresses how sen-
sory readings are affected by the state variable, and is named sensor model. The state
transition model, defined as P (X

t

|X
t�1,Ct

), represents the probability that the state
variable takes a certain value, given its previous value and the current context informa-
tion.

The belief of the system about a specific value of the state variable at time t is
defined as:

Bel(x
t

) = P (x
t

|E1:t,C1:t). (1)

By following a procedure analogous to that adopted in [24] for deriving the equation
of Bayes filters, it is possible to express Eq. (1) in the following recursive formulation:

Bel(x
t

) = ⌘ ·
Y

e

i
t

P (ei
t

|x
t

) ·
X

xt�1

P (x
t

|x
t�1,Ct

) ·Bel(x
t�1), (2)

where ⌘ is a normalizing constant. Using Eq. 2, we only need to store the last two
slices of the DBN, and thus the time and space required for updating the belief do not
increase over time. Calculating the belief for a single x

t

has a computational complexity
of O(n +m), where n is the number of sensor nodes and m is the number of possible
values of the state variable. The overall complexity of computing Bel(x

t

) for all values
of X

t

is therefore O(m2
+m · n).

In order to populate the conditional probability tables of the DBN, several different
methods can be adopted, depending on the training set. In a fully labeled dataset, we
can compute sample statistics for each node. Otherwise, if the values of one or more of
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the variables are missing for some of the training records, we can adopt the Expectation
Maximization (EM) algorithm or some form of gradient ascent [25].

3 Context-awareness

The role of context in our system is twofold. First, our main goal is the inference of
context information, intended as a high-level description of the surrounding world. In
particular, as described in Section 1, we are interested in recognizing the activities per-
formed by users in a smart home environment, which in turn will enable higher-level
applications to provide to users the most appropriate services.

Low-level context information, such as time and location, can be exploited by our
data fusion system to improve the accuracy of reasoning by refining the inference
process, as demonstrated by many context-aware data fusion systems proposed by re-
searchers over the years [11, 26].

However, using too many context attributes can actually be detrimental to the infer-
ence accuracy, as will be demonstrated in Section 4.3, and increases the computational
burden of the system, especially in the training phase. Thus, it is important to analyze
the possible context information and select only the most informative attributes, which
may vary depending on the application scenario.

We identify some principles that should drive the selection of context attributes.
First of all, context information should be readily available in all situations, regardless
of the sensors used. Therefore, we suggest to discard information provided by users
manually, together with context attributes which are difficult to sense or that cannot be
sensed directly and reliably, thus introducing new elements of uncertainty in the system.

The authors of [27] provide a widely accepted definition of context, which identifies
the primary categories of contextual information, i.e., identity, activity, location, and
time. Identity and activity are high level attributes, while location and time are low level
attributes. Thus, according to the principles stated above, we will focus on location-
related and time-related context information, analyzing the possible benefits they can
provide to the system, and validating our intuitions in the experimental section.

Time-related context information is used by most context-aware systems in litera-
ture, since it is very easy to obtain (i.e., it is sufficient to check the current date and
time). For activity recognition systems, in particular, time-related context information
provides remarkable improvements to the accuracy [28]. First of all, intuitively, activi-
ties performed by users may vary a lot in different periods of day: for example, sleeping
is the most probable activity during the night, and many users have lunch and dinner at
regular time each day. Thus, exploiting this context attribute should improve the accu-
racy of the system, with almost no drawbacks. However, the number of periods in which
a day is divided can influence the performance of the system, as we will demonstrate
in Section 4.3. Both too coarse-grained periods (e.g., intervals of 12 hours) and too
fine-grained ones (e.g., intervals of 1 minute) do not convey much information; hence,
finding the best granularity is very important.

Similarly, activities performed by users might be influenced by the current day of
the week and, to a lesser extent, by the month of the year. However, we expect the activ-
ities of users to be less correlated to these context attributes, with respect to the period
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of day. For example, it is possible that users will behave differently during weekends,
but it is unlikely that activities will change much among the other days. We defer further
considerations regarding the day of the week and month of the year to the experimental
section. Other time-related context information, such as the timezone, might be inter-
esting for different scenarios, but are irrelevant for our case study of activity recognition
in a smart house.

As regards location-related context information, we focus primarily on the position
of users, leaving to future work an analysis on how to exploit the position of objects to
improve the awareness of the system about users’ surroundings. In the case of a smart
home, with no strong assumption on the kind of sensors used, we propose to exploit
user location information with a room-level granularity. Regardless of the sensors used,
estimating the position of users with this level of detail is required to correctly inferring
their activities.

However, a system that relies primarily on location-related context information will
encounter difficulties in recognizing certain activities. Intuitively, this can be explained
by considering that some activities are performed in well-defined locations (e.g., sleep-
ing in the bedroom), and therefore are well recognized using this kind on information,
while other activities are more irregular (e.g., housekeeping, which may be carried out
in all rooms of the smart home), and more heterogeneous context information should
be exploited to recognize them with higher accuracy.

4 Experimental Analysis

In order to evaluate the possible contribute of different context information to the data
fusion process, we test the performance of the proposed system while varying the type
and granularity of context information.

4.1 Simulation Setting

We evaluated our system in a simulated smart home, pervaded by several sensor devices,
as proposed by [29]. Sensory traces and corresponding user activities were obtained
from the Aruba dataset of the CASAS Smart Home Project [3], at Washington State
University. This dataset contains annotated data collected in a smart apartment with
a single resident, over a period of seven months. Events are generated by 31 motion
sensors, 3 door sensors, and 5 temperature sensors, deployed in 8 rooms (5 sensors per
room on average).

We partitioned the sequence of sensor events into time windows of 30 seconds,
counting how many times each sensor was activated during each slice. We noticed a
low correlation between temperature readings and the activity performed by the user,
and thus we decided to discard this information.

The Aruba dataset considers eleven activities of daily living (ADLs), i.e., Bed to
Toilet, Eating, Enter Home, Housekeeping, Leave Home, Meal Preparation, Relax, Res-
perate1, Sleeping, Wash Dishes, and Work. We added a new activity, named Outside,

1 Resperate is a device used for the treatment of high blood pressure.
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that takes into consideration the periods of time when the user is not at home, i.e., the
intervals between Leave Home and Enter Home.

We also added another activity, named Other, which groups all the sensor events
that do not match any of the known activities. We think it is essential to detect this ac-
tivity class accurately in a real world scenario, since nearly 20% of the sensor events in
the dataset considered here belong to the Other class. However, considering the hetero-
geneity of the activities grouped by this class, it is very challenging to recognize it with
good accuracy, and many approaches in the literature ignore it altogether, relying on a
static list of known activities, as noted in [17].

We used the cross validation method to evaluate the system, dividing the dataset
into ten parts. For each test, nine parts were used for learning the CPTs (Conditional
Probability Tables) of the DBN, and the tenth was used for the test. This process was
then repeated changing the test set ten times and averaging the results.

After the pre-processing phase, the dataset consisted of 633 468 sensor events. Each
test of the cross validation used 570 121 sensor events as training cases, and 63 347 sen-
sor events as test cases. All experiments have been performed on a workstation equipped
with an Intel R� CoreTM i5-3470 CPU (4 cores, 3.20 GHz, 4 GB RAM). The training
phase required 4 914 ms on average.

4.2 Performance Metrics

We adopted the average accuracy as metric to evaluate the performance of the activity
recognition systems, defined as:

Acc =
TP + TN

TP + TN + FP + FN
, (3)

where TP, TN, FP, and FN are, respectively, the true positives, true negatives, false
positives and false negatives. However, accuracy alone is not sufficient to evaluate dif-
ferent approaches, since data are skewed towards the most probable activities. In fact,
activities such as Sleeping and Relax account for a large number of time slices, while
others like Resperate and Leave Home or Enter Home are much rarer and shorter. For
this reason, we adopted additional metrics to provide a more detailed analysis of the
performance of the systems.

To measure the uncertainty of the probabilistic reasoning performed by the systems,
we used an index based on the classic definition of Shannon entropy [30]. We also
calculated the average cross-entropy error function, which is defined as follows:

CE = � 1

N

NX

i=1

MX

j=1

y
ij

log p
ij

, (4)

where N is the number of timesteps, M is the number of activity classes, and y
ij

and
p
ij

are, respectively, the ground truth and the predicted probability for the jth activity
class at time i. The cross-entropy error is an information-theoretic measure of accuracy
that incorporates the idea of probabilistic confidence, measuring the cross-entropy be-
tween the distribution of true labels and the prediction of the system. This kind of error
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becomes extremely large (i.e., +1 in the extreme case) if the system is over-confident
about a wrong prediction, and it is thus useful to evaluate the accuracy of the belief
with a fine granularity. Finally, we determined the precision (positive predictive value),
as fidelity measure, and the recall (sensitivity), for measuring completeness, which are
defined as follows:

precision =

TP

TP + FP
, recall =

TP

TP + FN
. (5)

Precision and recall, in turn, are used to calculate the F-score, defined as the har-
monic mean of precision and recall, as follows:

F-score = 2 · precision · recall
precision+ recall

. (6)

4.3 Experimental Results

Time-related context information

The first set of experiments we present is a detailed analysis on the importance of some
time-related context attribute, i.e., period of day, day of week, and month.

We will begin by studying the performance of the system when changing the gran-
ularity of the period of day node. Fig. 3a shows the accuracy, uncertainty, F-score and
cross-entropy error of a system exploiting the period of day node, as a function of the
number of periods in which a day is divided, starting from a single period (i.e., a single
interval of 24 hours) up to a maximum of 48 periods (i.e., 48 intervals of 30 minutes).
We notice an increment of the accuracy and F-score when increasing the granularity up
to 6 periods (i.e., intervals of 4 hours). Likewise, uncertainty and cross-entropy error are
very low using this granularity. However, if we divide the day in more than 6 periods,
we observe a steady decrease of the F-score, as well as an increase of uncertainty, whilst
accuracy and cross-entropy remain unchanged. Thus, we can conclude that increasing
the time granularity is beneficial only up to a point; going further only adds to the noise,
resulting in a system that performs worse with no added benefits.

Our experimental results show that it is possible to improve accuracy and F-score
of the system even more by dividing the day manually in four periods, namely morning
(8AM - 12PM), afternoon (12PM - 8PM), evening (8PM - 11PM) and night (11PM -
8AM). This way, the periods closely follow the phases of the day when the type of activ-
ities performed by typical users changes, as shown in Fig. 3b. As the figure points out,
the user’s behavior changes remarkably during the day. For example, the Housekeeping
and Wash Dishes activities are much more probable during morning or afternoon, and it
seems the user works prevalently on afternoons. As expected, activities such as Sleeping
and Bed to Toilet take place mainly at night. However, some activities, such as Other,
show less variance during the day, and are thus more difficult to identify. Results show
that this granularity yields the best accuracy, F-score and uncertainty (0.793, 0.416, and
0.231, respectively), and one of the lowest cross-entropy errors, i.e., 1.858.

In order to evaluate the effect of context information concerning the day of week
and the month, we analyzed the frequency of the user’s activities, during the week
(Fig. 3c) and among different months (Fig. 3d). It is worth noting that the user’s behav-
ior is pretty regular during the week, including weekends. The only exception appears
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(a) System performance when varying the
granularity of the period of day node.

(b) Activities’ frequency during morning, af-
ternoon, evening, and night.

(c) Activities’ frequency in different days. (d) Activities’ frequency in different months.

Fig. 3: Analysis on the importance of time-related context information.

to be the Resperate activity; however, this is a fairly rare activity, thus its weight when
determining the accuracy of the system is limited. Even among different months, the
activities are quite regular (only Housekeeping and Resperate show a remarkable vari-
ance). By analyzing such results, it is easy to predict the different impact of the period
of day node with respect to the day of week and month ones.

In order to verify our analysis, we compared eight systems that exploit different
combinations of such context information, as reported in Table 1. The difference in ac-
curacy between the best and worst combination of context nodes is more than 10%. We
can observe that four systems out of the five with highest accuracy exploit the period of
day node. Moreover, these systems show high F-scores and low uncertainty and cross-
entropy errors. As expected, the accuracy of all systems improves significantly if the
Other activity class is ignored, increasing by about 10% on the average. Surprisingly,
the system which includes all three context nodes performs worse than the one which
excludes them. This can be explained by the interference of the month and day of week
nodes. In fact, the system that exploits only these two context nodes is the worst ac-
cording to all the metrics. Conversely, the system that performs better is the one which
uses only the period of day node. Activities are too regular during the week and among
months, and therefore the usefulness of the day of week and month nodes is limited.
Thus, at a first glance, it appears that the day of week and month nodes are not needed
to improve the performance of the data fusion system, and can, in fact, be detrimental.
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Table 1: Average accuracy (Acc), uncertainty, cross-entropy error (CE), and F-score of
the analyzed systems, sorted by accuracy in descending order.
Period of Day Day of Week Month Acc Acc w/o Other Uncertainty CE F-score

X � � 0.793 0.889 0.231 1.858 0.416
X X � 0.779 0.874 0.245 1.950 0.400
X � X 0.778 0.876 0.280 1.815 0.385
� � � 0.760 0.853 0.282 2.146 0.403
X X X 0.739 0.833 0.373 1.911 0.366
� X � 0.734 0.826 0.347 2.232 0.390
� � X 0.714 0.800 0.429 2.222 0.363
� X X 0.690 0.772 0.562 2.347 0.349

Fig. 4: Confusion matrix of the baseline data fusion system.

The system which uses only the period of day node will be considered as baseline
for comparison with other systems in next experiments. To provide a more detailed
analysis of its performances, its confusion matrix, row-wise normalized, is presented
in Fig. 4. Each cell C

ij

represents the number of instances of class i predicted to be in
class j by the system. Therefore, diagonal entries correspond to true positives, and non
diagonal entries correspond to classification errors. To explain why some activities are
more difficult to recognize than others, in the following we will analyze the location in
which each activity is carried out.

Location-related context information

Intuitively, we can hypothesize that some activities are performed in well-defined loca-
tions, and therefore are well recognized using only motion sensors, while other activ-
ities are more irregular. Furthermore, we supposed that some activities are performed
mainly in the same rooms (and roughly in the same time periods), such as Wash Dishes
and Meal Preparation. To verify these hypotheses, we divided the smart house in rooms,
and measured the variability of the association between activities and rooms, through
the diversity index, defined as the classical Shannon entropy [30]. Fig. 5a summarizes
the diversity index of the activities, which indicates how they are carried out in differ-
ent rooms. Activities performed in a well-defined location have a low diversity index,
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(a) Diversity index of each activity. (b) Frequency of activities in the kitchen.

Fig. 5: (a) Diversity index of the activities, and (b) frequency of activities performed in
the kitchen.

while activities carried out different rooms exhibit a high diversity index. As expected,
activities which are difficult to recognize correctly, such as Housekeeping and Other,
exhibit the highest diversity indices. On the other hand, activities that are easier to clas-
sify accurately, such as Sleeping, have low diversity indices. The Wash Dishes activity
seems to contradict this statement, since it sports a low diversity index, but is often
misclassified. However, this activity only takes place in the kitchen, since almost 80%
of sensor events associated with it comes from sensors deployed there. This accounts
for its low diversity index, but, as Fig. 5b shows, there are much more probable activi-
ties taking place in the same room, such as Meal Preparation (52.9% of sensor events)
and Other (37.7% of sensor events); even Relax is a more probable activity than Wash
Dishes, in the kitchen. Therefore, it is understandable that a system which relies mostly
on motion sensors will have a hard time identifying this kind of activity. To overcome
this problem, we can exploit the information associated to the duration of each activity.

Duration of activities

We observed that some activities exhibit a much longer average duration than others.
For example, Sleeping has an average duration of about 4 hours, while Eating generally
takes about 10 minutes. Thus, it is intuitive that making use of this kind of context
information should be beneficial to the system.

In order to verify the usefulness of such information, we tested a system with an
additional context node exploiting the duration of activities, and compared it to our
baseline system. Surprisingly, the resulting accuracy was lower than the baseline system
by about 2%, and the other metrics were unchanged or slightly worse. A closer look at
the data reveals that only a couple of activities (i.e., Sleeping and Outside) have average
durations longer than one hour. Most of the other activities have durations similar to
each other, generally between 10 and 30 minutes. It seems that this type of context
information fails to help the system if we can exploit enough data coming from the
sensory devices.

However, when performing data fusion, it might not always be efficient to sample
all available sensors. On the contrary, it may be useful to activate only a subset of sen-
sors, depending on the application scenario. For instance, if the sensory infrastructure
is composed of devices with limited energy resources, the use of a subset of devices
might increase the lifetime of the whole network.
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Fig. 6: Improvement of inference accuracy when exploiting context information with
different number of sensors.

For this reason, we repeated the comparison experiments using only a subset of sen-
sors, discarding the rest of the data. As expected, in these conditions context information
proved to be much more valuable. Using only 10 sensors (out of 34), the accuracy of the
baseline system is 65.87%, while exploiting duration information results in an accuracy
of 74.25%, with a significant improvement of 8.38%. As it turns out, the same is true
for other context information as well.

Fig. 6 shows the improvement in accuracy of systems exploiting activity duration,
month and day of week, with respect to the baseline system (i.e., the one exploiting only
the period of day) as a function of the number of sensors used. It can be noted that,
in the extreme case of using only 5 sensors, exploiting the activity duration improves
the accuracy of the system by almost 13%. Conversely, the benefits of using context
information decrease when there is enough data coming from the sensory devices. The
same holds true for the month node, whilst the improvement when using the day of week
is negligible even with few sensors.

5 Conclusions

In this paper, we have proposed a multi-sensor data fusion system that aims to improve
the accuracy of probabilistic inference by including context information in the fusion
process. The key idea is that context information can be involved at different levels
of the reasoning process. Basic context attributes can contribute to improve inference
accuracy, as demonstrated in the experimental evaluation. At the same time, the context
information inferred as result of the data fusion constitutes a high-level description of
the environment, and can be exploited by other reasoning engines to better support top-
level applications that provide context-aware services to users.

We have demonstrated the suitability of such approach in the application scenario
of user activity recognition in a smart home environment. The experimental results have
confirmed that choosing the right combination of context information is fundamental to
maximize the inference accuracy, especially when only few sensors are available, and
that exploiting the best context information set greatly improves the accuracy of activity
recognition systems.

As future work, we are interested in studying how to further use context information
to dynamically reconfigure the sensory infrastructure, by sampling a subset of sensors
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in order to minimize energy consumption, whilst maintaining a high degree of inference
accuracy.

Moreover, in this paper, we focused on a scenario involving a single user in a smart
apartment, and we will study multi-user scenarios in the future. However, recognizing
activities performed by multiple users is really challenging, since users can influence
each other. Several studies demonstrated that using personalized models for each user
dramatically improve systems performance [31], but learning personalized models is
computational expensive, and it is thus necessary to find a good trade-off between ac-
curacy and computational efficience. Finally, we are interested in considering training
and test data coming from different smart environments, so as to verify the generaliza-
tion potential of the system.

References

1. Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an
ambient intelligence scenario. In: Pervasive and Embedded Computing and Communication
Systems (PECCS), 2013. (2013) 29–34

2. De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: Mimicking biological
mechanisms for sensory information fusion. Biologically Inspired Cognitive Architectures
3 (2013) 27–38

3. Cook, D.J.: Learning setting-generalized activity models for smart spaces. IEEE Intelligent
Systems 2010(99) (2010) 1

4. Murphy, K.P.: Dynamic Bayesian Networks: representation, inference and learning. PhD
thesis, University of California, Berkeley (2002)

5. Cheng, N., Wu, Q.: A decision-making method for fire detection data fusion based on
Bayesian approach. In: Proc. 4th Int’l Conf. on Digital Manufacturing and Automation
(ICDMA), IEEE (2013) 21–23

6. Zhang, Y., Ji, Q.: Active and dynamic information fusion for multisensor systems with dy-
namic Bayesian networks. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics
36(2) (2006) 467–472

7. De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: User detection through
multi-sensor fusion in an AmI scenario. In: Proc. 15th Int’l Conf. on Information Fusion
(FUSION), IEEE (2012) 2502–2509

8. De Paola, A., Gaglio, S., Lo Re, G., Ortolani, M.: Multi-sensor fusion through adap-
tive Bayesian networks. In: AI*IA 2011: Artificial Intelligence Around Man and Beyond.
Springer (2011) 360–371

9. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of
the state-of-the-art. Information Fusion 14(1) (2013) 28–44

10. Huebscher, M.C., McCann, J.A.: Adaptive middleware for context-aware applications in
smart-homes. In: Proc. 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing,
ACM (2004) 111–116

11. Padovitz, A., Loke, S.W., Zaslavsky, A., Burg, B., Bartolini, C.: An approach to data fusion
for context awareness. In: Modeling and Using Context. Springer (2005) 353–367

12. Cho, K., Hwang, I., Kang, S., Kim, B., Lee, J., Lee, S., Park, S., Song, J., Rhee, Y.: HiCon:
a hierarchical context monitoring and composition framework for next-generation context-
aware services. IEEE Network 22(4) (2008) 34–42

13. Kang, S., Lee, J., Jang, H., Lee, Y., Park, S., Song, J.: A scalable and energy-efficient context
monitoring framework for mobile personal sensor networks. IEEE Trans. Mobile Computing
9(5) (2010) 686–702

DR
AF
T



14. Nath, S.: ACE: exploiting correlation for energy-efficient and continuous context sensing.
In: Proc. 10th ACM Int’l Conf. on Mobile systems, applications, and services (MobiSys),
ACM (2012) 29–42

15. Cook, D., Augusto, J., Jakkula, V.: Ambient Intelligence: technologies, applications, and
opportunities. Pervasive and Mobile Computing 5(4) (2009) 277–298

16. De Paola, A., Farruggia, A., Gaglio, S., Lo Re, G., Ortolani, M.: Exploiting the human
factor in a wsn-based system for ambient intelligence. In: Complex, Intelligent and Software
Intensive Systems, 2009. CISIS ’09. International Conference on. (2009) 748–753

17. Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive and
Mobile Computing (2012)

18. Gaglio, S., Lo Re, G., Morana, M.: Human activity recognition process using 3-d posture
data. Human-Machine Systems, IEEE Transactions on 45(5) (2015) 586–597

19. Gao, L., Bourke, A., Nelson, J.: Evaluation of accelerometer based multi-sensor versus
single-sensor activity recognition systems. Medical Engineering & Physics 36(6) (2014)
779–785

20. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerom-
eters. ACM SigKDD Explorations Newsletter 12(2) (2011) 74–82

21. De Paola, A., Gagliano, L.: Design of an adaptive Bayesian system for sensor data fusion.
In: Advances onto the Internet of Things. Springer (2014) 61–76

22. Meinhold, R.J., Singpurwalla, N.D.: Understanding the Kalman filter. The American Statis-
tician 37(2) (1983) 123–127

23. Sanchez, D., Tentori, M., Favela, J.: Hidden Markov Models for activity recognition in
Ambient Intelligence environments. In: Proc. 8th Mexican Int’l Conf. on Current Trends in
Computer Science, IEEE (2007) 33–40

24. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT press (2005)
25. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT

press (2009)
26. Nimier, V.: Introducing contextual information in multisensor tracking algorithms. In: Ad-

vances in Intelligent Computing (IPMU). Springer (1995) 595–604
27. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications. Human-Computer Interaction 16(2) (2001)
97–166

28. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for
the Internet of Things: A survey. Communications Surveys & Tutorials, IEEE 16(1) (2014)
414–454

29. Lalomia, A., Lo Re, G., Ortolani, M.: A hybrid framework for soft real-time WSN simula-
tion. In: Proc. 13th IEEE/ACM Int’l Symp. Distributed Simulation and Real Time Applica-
tions (DS-RT). (2009) 201–207

30. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review 5(1) (2001) 3–55

31. Weiss, G.M., Lockhart, J.W.: The impact of personalization on smartphone-based activ-
ity recognition. In: AAAI Workshop on Activity Context Representation: Techniques and
Languages. (2012)DR
AF
T


