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Abstract. In recent years, the percentage of the population owning a
smartphone has increased significantly. These devices provide the user
with more and more functions, so that anyone is encouraged to carry
one during the day, implicitly producing that can be analysed to infer
knowledge of the user’s context. In this work we present a novel frame-
work for Human Activity Recognition (HAR) using smartphone data
captured by means of embedded triaxial accelerometer and gyroscope
sensors. Some statistics over the captured sensor data are computed to
model each activity, then real-time classification is performed by means
of an efficient supervised learning technique. The system we propose also
adopts a participatory sensing paradigm where user’s feedbacks on recog-
nised activities are exploited to update the inner models of the system.
Experimental results show the effectiveness of our solution as compared
to other state-of-the-art techniques.

1 Introduction

Nowadays, smartphones have become an indispensable tool for everyday life,
offering a number of features that go beyond the simple calling or messaging
capabilities. In order to let the user perform different tasks, these mobile devices
are equipped with many sensors that make them real sensing platforms able to
extract relevant information. One of the most attractive scenario in which such
information can be exploited is Human Activity Recognition (HAR), where data
captured by motion sensors, e.g., accelerometer and gyroscope, can be analysed
to infer user’s current physical activity.

In this context, human activities can be intuitively considered as sequences of
recurrent patterns in raw data captured from smartphone’s sensors. Many HAR
algorithms have been presented in the literature, however their application is fre-
quently restricted to specific application scenarios, e.g., e-health, or their inner
behaviour is unknown. For example, one of the most reliable HAR technique is
that implemented in the Google APIs for Android, which unfortunately acts as
a black-box not providing neither a way to understand what mechanisms are be-
hind it, nor intermediate information to supervise the running of the recognition
process.

In this paper we present a framework for real-time human activity recognition
using smartphones. In particular, we address a participatory sensing scenario



where users contribute to the proper functioning of the system by providing i)
their own data through a secure client-server architecture, and ii) feedbacks on
the correctness of the recognised activities.

Such information is exploited to maintain the inner models of the systems
updated, so as to recognize even more instances of known activities performed
by different users. The core of the HAR module consists in a state of the art
machine learning technique, i.e., k-nearest neighbors (K-NN), which showed the
best performances both in terms of algorithmic efficiency and recognition accu-
racy.

The remainder of the paper is organized as follows: related work is outlined in
Section 2. The system architecture is described in Section 3, and the experimental
results are shown and discussed in Section 4. Conclusions follow in Section 5.

2 Related Work

Most of the methods presented in the literature in the area of human activity
recognition can be grouped in two main categories: vision and sensor-based.

The former can infer user’s activity by analyzing video sequences [3] captured
by a number of different devices. Early techniques were based on the extraction
of the users’ silhouettes from RGB images, however, the cost of image processing
algorithms needed for cleaning noisy input data make these approaches usually
unsuitable for real-time applications. More recently, the focus moved to unob-
trusive devices capable of capturing both RGB and depth information, e.g., the
Microsoft Kinect [21,24]. RGB-D data were proven to improve the recognition
process allowing for real-time analysis of the observed scene [14]. Some applica-
tions have been proposed in the context of ambient intelligent systems aimed to
recognize the user activities [11], e.g., for energy saving [10] purposes, or to im-
prove the user experience [20] providing unobtrusive interfaces. Unfortunately,
activity recognition through these sensors is quite limited to indoor environ-
ments.

Sensor-based HAR techniques analyze information from various sensors lo-
cated in different parts of the human body. This approach overcomes the limita-
tions of vision-based methods, but wearable sensors are reluctantly accepted by
the users due to their intrusiveness [25]. Early experiments were performed us-
ing only one accelerometer to capture acceleration values on the three axes [28].
However, since a single sensor is not suitable to describe very complex activities,
several studies have been presented merging information provided by multiple
sensors [13,23]. For example, in [5] the system acquires data from five biaxial
accelerometers, worn simultaneously on different parts of the body, to recognize
both simple and complex activities. In [6] the use of wearable devices in a e-
health scenario is presented. The authors of [4] describe a method to recognize
walking, sitting, standing, and running activities by means of five accelerometers.
Other studies tried to improve the performances of their recognition systems by
relying on the combinations of heterogeneous sensors, e.g., accelerometers and
gyroscopes, microphones, GPS, and so on [30,19].



Over the years, more and more works have focused on HAR using smartphone-
based applications. This choice is mainly due to the widespread diffusion of
smartphones which exhibited suitable characteristics, e.g., embedded sensors,
easy portability of the device, network connectivity, and higher computing power.

In [12] the authors present an approach that combines machine learning and
symbolic reasoning for improving the quality of life of diabetic patients. The
whole system is based on the recognition of some activities using smartphone sen-
sors in order to trace patients’ fatigue and depression while performing the daily
routines. The system described in [31] covers a mobile health scenario where neu-
ral networks, implemented on Android smartphones, are used to recognize five
activities: static, walking, running, upstairs, and downstairs. The same scenario
is addressed in [16], where a fall detection system using accelerometers and mag-
netometers is proposed. In particular, if a certain threshold value is exceeded, the
method is able to recognize falls in four different directions: backward, forward,
left and right. In [18], the authors describe an unsupervised learning approach to
human activity recognition using smartphone sensors, even when the number of
activities is unknown. However, the recognition process is strictly dependent on
the number of clusters chosen during the design phase. Thus, distinct activities
could be erroneously merged into one, or different instances of the same activity
could be seen as unrelated. KAFKA [26] is a system analyzing real-time data
collected by inertial sensors mounted on Android devices, i.e. smartphones and
smartwatches.

An open framework designed to ease the development of Mobile CrowdSens-
ing (MCS) systems is presented in [9,8]. Mobile Sensing Technology (MoST),
available for Android-based devices, provides some activity recognition and ge-
ofencing algorithms optimised to meet computational and power constraints of
smartphones. Activity recognition is performed by processing raw data captured
by on-board sensors, and allows to distinguish between three kinds of activities:
walking, running, and phone still. Geofencing aims to find and delimit the geo-
graphic area where a certain activity, or event, occurs. This is usually achieved
by correlating motion data captured by heterogeneous sensors with geographic
coordinates provided by GPS (Global Positioning System) or IPS (Indoor Posi-
tioning Systems). The latter can include a number of different algorithms and
sensors, for this reason MoST architecture is modular, allowing developers to ex-
tend its functionalities by implementing new techniques or considering custom
and virtual sensors.

Despite of the efforts made to design efficient frameworks, one of the best
performing HAR solution is still that proposed by Google [1] since its API level-
1. However, since such a tool is closed source, developers are not able to use
intermediate results as part of their systems, nor to provide any feedback to the
activity recognition routine.
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Fig. 1: System overview. The activities performed by the users are captured by
means of the smartphone sensors. Collected data are analyzed to detect some
relevant features, that are then used for classification. User’s feedbacks on recog-
nised activities are exploited to improve the classification process.

3 Activity Recognition System

The architecture we propose here aims at automatically inferring the activity
performed by the users, in a generic scenario, according to data collected through
their smartphones. The system components can be logically divided in three
parts (see Fig.1). The first is responsible for data collection, that is for capturing
raw data through the smartphone sensors while an activity is performed. The
raw values are sent as input to the features detection module, where a set of n-
dimensional points are extracted to distinguish different activities. Activities are
classified using a machine learning algorithm, then user can provide feedbacks
on the output of the recognition so as to allow the system to properly perform
future classifications.

Data collection is performed by using the MoST open-source library, simply
requiring that the user performs different activities while having its smartphone
in the pants pocket. Differently from [18], our system does not take into account
the gravity acceleration, allowing the user for holding the smartphone without
worrying about its orientation.

In order to understand how the activity patterns change according to ac-
celerometer and gyroscope readings, Fig. 2 shows values of three-axes acceler-
ation (top row) and angular velocity (bottom row) captured while performing
still, walking, running, and vehicle activities respectively.

As regards the acceleration values, even though these four activities look
somehow different from each other, some of them, i.e., still and vehicle share
a similar pattern, whilst others, i.e., walking and running are characterized by
high noise as they are intrinsically associated with a significant user movement.
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Fig. 2: Three-axes acceleration (top row) and angular velocity (bottom row) for
still (a), walking (b), running (c), and vehicle (d) activities .

On the contrary, by analyzing the values of angular velocity we noticed that
still and vehicle exhibit distinct patterns, whilst other activities are generally
characterized by oscillations of different width and frequency. For this reason we
combined data from the two sensors, so as to get the best from both sides.

To ensure real-time activity recognition, the system must be able to process
input data within certain time windows in order to extract the features that will
be used in the next classification stage. The entire process of feature extraction
is shown in Fig.3.

We define an activity a as the user behaviour observed from initial time ti
to final time tf . Given that the duration, in seconds, of the activity aj is de-
noted by dj , data captured within this interval is processed into fixed-length
windows of m × n samples, where m is the number of axes along which mea-
surements are performed. In particular, the activity recognition process is based
on (XA, YA, ZA) values provided by the accelerometer, and (XG, YG, ZG) values
from the gyroscope.

Choosing the proper length for the acquisition window is essential because
of the impact it could have on the whole system. Short windows may improve
system performance in terms of execution time and CPU load, but may not con-
tain enough information to properly capture the characteristics of the activity.
Vice versa, long windows may alter the system performances since information
about multiple activities performed in sequence might be analyzed within a sin-
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Fig. 3: Feature extraction mechanism. Accelerometer and gyroscope data are
processed within the n-th fixed-length time window Wn, in order to obtain the
corresponding feature vector fn.

gle window. Experimental results using windows of different length, suggested
us to use fixed-width windows of 3 seconds with no overlap.

In order to obtain a compact representation of input data, feature vectors
are built similar to [8] by considering (i) max value, (ii) min value, (iii) mean,
(iv) standard deviation, and (v) root mean square over the three accelerometer
and gyroscope axes. Therefore, each feature vector f contains 30 elements, i.e.,
15 values of acceleration and 15 values of angular velocity.

The classification process is based on the k-nearest neighbors (K-NN) tech-
nique. Given the set of feature vectors (f1, f2, · · · , fm), the key principle behind
K-NN is that an unknown feature point f , projected into a large training set of
labeled data, would be ideally surrounded by samples of its same class. If this
happens, the algorithm could assign to f the same class of its closest neighbor,
i.e., the closest point in the feature space. More generally, the set S contain-
ing the k closest neighbors of f is selected and the most recurrent class in S is
assigned to f .

As mentioned earlier, our system adopts a participatory sensing paradigm
[7], which aims at exploiting information provided by a community of users
to improve the system performances. To this end, a client/server architecture
has been designed, allowing each user to i) share its own data captured by the
smartphone, and ii) use the same device to leave feedbacks about the recognition
process, indicating, every time an activity has been recognized, whether the
output class is correct or not. Data sent by the client are analyzed within the
server to determine if the models of the different activities need to be updated.
In particular, the feature vector fnew received from the client is projected into
the current feature space, together with the class declared by the user. Then,
fnew is compared with existing data from the same class, and if they are similar
above a certain threshold, the activity models are re-computed and sent back to
the client for future classifications.



Model CPU RAM

Galaxy S7 Edge 8 Core 2 GHZ 4 GB
Galaxy S5 Neo 8 Core 1.6 GHZ 2 GB
Galaxy S4 4 Core 1.9 GHZ 2 GB
Galaxy S2 NFC 2 Core 1.2 GHZ 1 GB
Galaxy Note 2 Core 1.4 GHZ 2 GB

Table 1: Smartphone models used for the experiments.

4 Experiments

In order to evaluate the effectiveness of our framework, several experiments were
performed. First, we present a comparison between the results obtained while
using the K-NN method, and a classifier based on K-means clustering. Then,
the overall performances of the HAR system we propose are compared with two
state of the art techniques, i.e., the activity recognition tools provided by MosT
and Google.

The experiments were carried out using five different models of smartphones,
as summarized in Table 1, equipped with built-in accelerometer and gyroscope
sensors. Our application can be installed on any Android device with Ice Cream
Sandwich OS or higher.

The choose of the specific classification algorithm to adopt is mainly depen-
dent on two aspects: its accuracy, and its efficiency in terms of time complexity
and memory consumption. For this reason, we firstly compared K-NN with a
widely used clustering algorithm that can be adapted to classification.

4.1 Choosing the classification algorithm

In the considered scenario, given the set of feature vectors (f1, f2, · · · , fm), the
most common application of the K-means algorithm consists in partitioning the
m observations into k sets, C = (C1, C2, · · · , Ck), so as to minimize the intra-
cluster error:

E =

K∑
k=1

∑
fi∈Ck

‖fi − µk‖2 , (1)

where µk is the mean value of the k-th cluster Ck.
Nevertheless, K-means can also be used for classification, i.e., supervised

learning, according to two different schemes [15]. The first, straightforward, so-
lution is to apply K-means to the whole blended training set and observe how
data from k different classes are associated with each of the k centroids Ck. Then,
each centroid is marked as representative of a certain class i, with i = 1, ..., k, if
most of the samples in the cluster associated with Ck belong to i. Classification of
a new, unknown, feature vector f is performed by finding its closest centroid and
then assigning to f the same class of Ck. The major drawback to this method is
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Fig. 4: Examples of k-means classification adopting two different schemes. Data
from three classes (red, green, and blue) are classified into three clusters (crosses,
circles, and dots) using blended (a) or separated (b) training sets.

that performing K-means on blended data produces heterogenous clusters. i.e.,
there is no guarantee that all the points in the same cluster represent the same
class.

The second approach helps to overcome this limitation by separating the
training data in n distinct groups, each containing samples from one of the
n classes we want to recognize. The K-means algorithm is applied on each
group/class separately, so as to obtain k homogeneous clusters, i.e., all the cen-
troids within a single group represents the same class. Thus, classification can
be performed by comparing a new, unknown, feature vector f with the k × n
labeled centroids, and assigning to f the class of the closest one.

The differences between the two methods are summarized in Fig. 4. Original
samples from three classes are represented by red, green, and blue points. As a
result of the classification, points are marked as belonging to one of three clusters
denoted by crosses, circles, and dots. When using the first scheme, K-means is
applied to the whole blended dataset (Fig. 4-a) so that each cluster contains data
from different classes, e.g., the cluster denoted by crosses includes red, green, and
blue points. On the contrary, the second scheme (Fig. 4-b) is preferable since
it allows to apply K-means on each class separately, so obtaining homogeneous
clusters, e.g., the elements of the cluster denoted by circles are all greens.

As regards the choice of K, some experiments were conducted to determine
the best value for K-means and K-NN.

For K-means, the value of K is simply the number of activities to be recog-
nized, i.e., K = 4. In order to find the best value of K for the K-NN algorithm,
two techniques for predictive accuracy evaluation have been used, i.e., Resub-
stitution and Cross Validation. Since we addressed a scenario where limited
resource devices are employed, only odd values of K in the range [3, 9] were
considered. Experiments showed that best results are achieved with K = 7.

Then, tests were performed to compare K-NN with K-means (scheme 2) in
terms of accuracy, precision, and recall [29]. Fig. 5 shows that slightly better
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still walking running vehicle

still .87 .03 0 .1
walking 0 1 0 0
running 0 0 1 0
vehicle .12 .03 .06 .79

Table 2: K-means confusion matrix.

still walking running vehicle

still .97 0 .01 .02
walking 0 1 0 0
running 0 0 1 0
vehicle 0 .01 .02 .97

Table 3: K-NN confusion matrix.

results are obtained while applying the K-NN algorithm. This is mainly due
to the incapacity of K-means to distinguish between some similar activities. In
particular, as highlighted by the confusion matrices shown in Table 2 and Table
3, still and vehicle activities are frequently mistaken because of their similar
acceleration values (see Fig. 2). This error is almost negligible when adopting
the K-NN classifier.

The next set of experiments were aimed at comparing K-means and K-NN in
terms of time of execution and memory consumption. We performed some tests
to measure these two parameters while varying the duration of the processing
windows. Results are shown in Fig. 6(a) and Fig. 6(b). For the first two cases,
i.e., test A and test B, the duration of the window is about 2 minutes, whereas
smaller windows of about 50 seconds where used for C, D, and E. K-means is
generally faster than K-NN, whilst K-NN, independently of the length of time
windows, requires almost constant memory consumption.

Thus, since we want the HAR application to be as lightweight as possible so
as to prevent the system resources from being consumed more than necessary, we
decided to build the classification module on the K-NN algorithm. Such analysis
is also confirmed by the results reported in [22].
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Fig. 6: Time of execution (a) and memory consumption (b) of K-means and K-
NN classifiers measured under five different conditions denoted by {A,B,C,D,E}.

4.2 Comparison with MosT and Google

The last set of experiments was designed for comparing the system described in
Fig. 1 with two state of the art HAR techniques, i.e., those implemented by the
MosT framework and by the Google APIs.

As discussed in section 1, Google does not provide any detail of the algorithms
behind their products, thus we treated their recognition algorithm as a black-
box. On the contrary, MosT is based on a well known algorithm to efficiently
build decision trees, namely C4.5 [27].

Since MosT and Google are able to recognize different types of activities, in
order to perform a meaningful assessment two distinct subsets have been defined.
More precisely, the class other was added to cover the activities not considered
in both of the systems alternately compared. Thus, since Google technique is
unmodifiable, and it recognizes a greater number of activities than our system,
the comparison was based on a subset formed by still, walking, running, vehicle,
and other. On the contrary, even if MosT originally included only still, walking,
and running, we have been able to add the vehicle activity obtaining the same
set addressed by our system.

Accuracy, precision, and recall achieved by the system we propose as com-
pared to MosT are showed in Fig. 7. MosT results are detailed in the confusion
matrix reported in Table 4. As expected, walking and running are almost cor-
rectly classified, whilst the recognition of vehicle and still is more difficult to
perform. This can be explained because MosT considers only accelerometer data,
that, as shown in Fig. 2, are not useful enough for discriminating between a still
user and one driving at constant velocity. Moreover, decision trees are generally
less predictive than other classification approaches, since a small change in the
data can cause a large change in the final estimated tree [17].

As regards the results obtained comparing the proposed system with the
Google activity recognition tool (see Fig. 7), we can notice that Google perfor-
mances are quite lower than ours, and this can be explained by referring to the
Table 5. In fact, the implementation provided by Google is not able to correctly
distinguish between walking and running activities. In addition, as already dis-



still walking running vehicle

still .33 0 0 .67
walking 0 .96 .04 0
running 0 .02 .98 0
vehicle .43 0 0 .57

Table 4: MosT confusion matrix.

still walking running vehicle other

still .92 0 0 0 .08
walking 0 .56 .44 0 0
running 0 .45 .55 0 0
vehicle 0 0 0 .91 .09

Table 5: Google confusion matrix.
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Fig. 7: Comparison between the proposed system, MosT, and Google.

cussed, it is not possible to run further experiments, similar to those described
for MosT, to analyze how changing the set of activities would impact on the sys-
tem performance. This represents a further advantages of our system compared
with Google method.

5 Conclusions

In this paper we presented a novel human activity recognition framework based
on smartphone built-in accelerometer and gyroscope sensors. The characteristics
of four activities, i.e., still, walking, running, and vehicle, are represented through
some feature vectors obtained by processing input data within fixed-length time
windows. A K-NN classifier is then applied to recognize the activity performed
by the user. Moreover, our architecture includes a participatory sensory module
which allows to exploit user’s feedbacks on recognised activities to keep updated
the inner models of the system as more examples become available.

A set of experiments were run to compare the proposed solution with two
state of the art techniques, i.e., the MosT framework, and the activity recognition
tool provided by Google. Experimental results showed the effectiveness of our
implementation both in terms of accuracy and efficiency.



As future works, we want to introduce a dynamic mechanism to filter out
noisy data captured just before or after an activity is performed, e.g., when
the user interacts with its smartphone to start or stop the Android application.
Moreover, the adoption of variable length detection windows will be investigated.

We also plan to extend the set of activities by including some frequently
performed in everyday life, e.g., stairs down, stairs up, on bicycle, and so on.
This would be very useful in order to design a system that is able to recognize
complex activities composed of simple tasks, such as those described in this
paper. For example, the complex activity from home to work, could be recognized
as a concatenation of stairs down, walking, vehicle, walking, stairs up, and still.
In order to improve the user feedback mechanism, we want to investigate the
adoption of reputation management techniques, as discussed in [2].
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