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Abstract—Nowadays, the population’s average age is 
constantly increasing, and thus the need for specialized home 
assistance is on the rise. Smart homes especially tailored to meet 
elderly and disabled people's needs can help them maintaining 
their autonomy, whilst ensuring their safety and well-being. This 
paper proposes a complete context-aware system for Ambient 
Assisted Living (AAL), which infers user's actions and context, 
analyzing its past and current behavior to detect anomalies and 
prevent possible emergencies. The proposed system exploits 
Dynamic Bayesian Networks to merge raw data coming from 
heterogeneous sensors and infer user's behavior and health 
conditions. A rule-based reasoner is able to detect and predict 
anomalies in such data, sending appropriate alerts to caregivers 
and family members. The effectiveness of the proposed AAL 
system is demonstrated by extensive experimental results carried 
out in a simulated smart home. 

Keywords—Ambient Assisted Living; Multi-sensor data fusion; 
Dynamic Bayesian Networks; Context awareness; Rule-based 
Reasoning. 

 

I.  INTRODUCTION  AND RELATED WORK 
Multiple studies of the World Health Organization clearly 

show that the population’s average age is rapidly increasing, 
and thus the number of elderly people is constantly growing, 
exceeding two billions by 2050, according to various estimates 
[1]. This implies an ever increasing need for specialized home 
assistance. In fact, elderly people have special needs, and often 
have to be assisted by dedicated caregivers to live safely and 
comfortably. 

Smart homes especially tailored to meet the needs of older 
people can noticeably improve their quality of life, by 
exploiting intelligent sensors and actuators pervasively 
deployed in the environment. In this regard, the paradigm of 
Ambient Assisted Living (AAL) [2] strives to develop 
unobtrusive intelligent systems that quietly assist users (and, 
particularly, disabled and elderly people) in their everyday life. 

Recognizing users' activities is one of the key features of 
such systems, since it enables their modules to reason about the 
current situation unambiguously, thus detecting anomalies and 
actively taking action to prevent emergencies. In the case of 
patients affected by dementia, the system can even warn users 
if they are skipping their usual activities, such as taking 
medicines [3][4]. Finally, all the usual benefits of smart homes 

apply to elderly people as well: the system will unobtrusively 
modify the environment to improve their comfort and satisfy 
their needs, whilst reducing energy consumption [5]. 

Smart home systems generally exploit ambient sensors to 
measure physical quantities (e.g., temperature, lighting, and 
humidity), and actuators to automatically influence them 
depending on users' preferences [6]. Additionally, AAL 
systems leverage wearable sensors installed in smartphones, 
smart watches, and wristbands, to better monitor the user's 
behavior and disambiguate among similar situations [7]. In 
case of specific health conditions, it is also possible to 
accurately monitor patients' vital signs by means of specialized 
devices [8][9]. For a survey on AAL tools to improve elderly 
people’s lives, please refer to [10]. However, accurately fusing 
data coming from such heterogeneous sensors can prove to be 
very challenging, given the intrinsic inaccuracies of sensory 
measurements [11]. In this regard, probabilistic techniques, 
such as Dynamic Bayesian Networks (DBNs) [12], can help by 
explicitly modeling the uncertainty of data collection. In recent 
years, DBNs have been exploited by many state-of-the-art 
systems for different applications, such as fire detection [13], 
target tracking [14], and user presence detection [15][16]. 

Furthermore, context information can be exploited by such 
systems to enrich raw sensor measurements, as demonstrated 
by many works in literature [17][18][19]. This, in turn, allows 
the system to better distinguish among ambiguous situations, 
such as a user with high temperature and blood pressure: this 
can be normal if the user is exercising, or anomalous if the user 
is not performing physical activities. Experimental results show 
that exploiting context information can greatly improve the 
system accuracy and reduce such ambiguities [20]. 

Selecting the best available context information is thus 
critical to improve the effectiveness of the system. Context 
information can be exploited by AAL systems as input of 
reasoning modules, in order to disambiguate complex 
situations [21]; at the same time, basic context attributes, such 
as time and location, may be used to refine the inference 
process. 

Our contribution in this paper is to propose a multi-tier 
architecture for an AAL system that unambiguously recognizes 
users' behavior and health conditions, detecting potential 
anomalies and proactively warning caregivers and family 
members to prevent health emergencies and other dangerous 



situations. The end goal of such system is improving the 
quality of life of elderly and disabled people, by preserving 
their autonomy whilst ensuring their safety and maintaining 
their preferred environmental conditions. To this extent, we 
propose a context-aware, multi-sensor data fusion module 
based on a DBN to recognize users' activities. Such inferred 
information is fused with sensory readings coming from 
specialized health sensors, and exploited by a rule-based 
reasoner capable of assessing the current situation and sending 
alerts to family members and caregivers in case of anomalies. 

The remainder of this paper is organized as follows. Section 
2 presents the multi-tier architecture of our AAL system. 
Section 3 and Section 4 focus, respectively, on the activity 
recognition and rule-based reasoning modules. Section 5 
describes the case study and analyzes experimental results. 
Finally, Section 6 presents our conclusions. 

II. MULTI-TIER ARCHITECTURE 
We propose a multi-tier architecture for an AAL system 

that aims to understand the surrounding environment in order 
to analyze the behavior of users, producing a high level 
description of the current context, inspired by [22]. Such 
awareness is exploited by a rule-based reasoner to detect and 
signal potential anomalies, and to actively modify the 
environment by controlling Heating, Ventilation, and Air 
Conditioning (HVAC) and lighting systems. 

The proposed architecture, shown in Fig. 1, is composed by 
several modules. The Sensor Manager module is responsible 
for collecting raw data from sensors (e.g., lighting, 
temperature, motion and door sensors, bluetooth beacons and 
Microsoft Kinect devices [23]), as well as dynamically sending 
control messages depending on the current context, putting 
some of them in a low power state [24]. Collected data is then 
analyzed by the Pre-processing module, which filters out 
inaccurate readings by removing outliers and noisy 
measurements. 

The Activity Recognition module constitutes one of the 
most important components of the architecture, since its 
accuracy heavily influences the effectiveness of the whole 
system. The adopted DBN exploits readily available context 
information and data coming from lower tiers to accurately 

infer the activity performed by the user and continuously 
update its profile. 

The Environmental Modeler tries to predict the effect of 
actuator actions on the environment (e.g., how temperature and 
humidity change when turning on or off HVAC systems), so as 
to estimate the best course of actions to reach the desired 
environmental conditions. The module is trained using indoor 
sensors and external data coming from weather forecast 
stations, according to the model proposed in [25]. The 
parameters used by the Environmental Modeler are constantly 
updated by exploiting a feedback loop with the Actuator 
Manager and past readings from sensors, in order to maximize 
its prediction accuracy over time. 

At the top level, the Reasoner module adopts a rule-based 
approach to infer the user's condition, depending on his current 
activity (identified by the Activity Recognition module), his 
vital signs (measured by specialized health sensors) and his 
past behavior. Depending on the estimated user's condition, the 
system dynamically decides whether to trigger alerts to family 
members and caregivers, if anomalies are detected. 

Finally, the Reasoner coordinates the operations of the 
Actuator Manager. Such module is capable of controlling the 
state of the environment by means of actuators (e.g., air 
conditioning and lighting systems), in order to satisfy users' 
needs and preferences. To this end, the Reasoner plans the best 
sequence of actuator actions to perform in order to maintain the 
environmental conditions desired by the user, by exploiting the 
constantly updated data coming from the Environmental 
Modeler. 

III. ACTIVITY RECOGNITION 
In this section, we focus on the Activity Recognition 

module, which is fundamental for the functioning of the 
system. Given the unavoidable noise and inaccuracy of sensors, 
probabilistic data fusion techniques are often used to cope with 
data uncertainty. In particular, the Activity Recognition module 
exploits a Dynamic Bayesian Network (DBN) to better 
recognize dynamic phenomena, such as the users’ activities. 

DBNs are a generalization of Hidden Markov Models 
(HMMs), which allow for general topologies [12]. In a DBN, 
time is modeled as slices: each slice represents the state of the 
observed phenomena at a given moment. Each slice is 
composed of an arbitrary number of state nodes (e.g., the 
activity performed by the user) and evidence nodes (e.g., 
sensor readings). Our system adds the concept of context 
nodes, which are special evidence nodes providing further 
information by exploiting easily obtainable context attributes, 
e.g., location or time. To define a DBN, it is necessary to 
specify the structure of each slice, its sensor model, and its 
transition model. The sensor model correlates the value of the 
sensory readings with that of the state variable, while the 
transition model specifies the probability of each possible state 
given its previous value. 

The DBN of the Activity Recognition module maintains a 
belief about each possible user’s activity (𝑥!), in the time slice 
𝑡, calculating the following probability: 

                    𝐵(𝑥!) = 𝑃(𝑥!| 𝑬!:! ,𝑪!:!)                          (1) 
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Fig. 1: Architecture of the proposed system. 



where 𝑬!:! and 𝑪!:! represent, respectively, the evidences 
(sensor readings) and context values from the beginning to the 
time slice 𝑡. Equation (1) might seem difficult to implement in 
a real system, given its dependence on all previous sensor and 
context values. However, [24] has shown that (1) can be 
expressed with the following recursive equation: 

𝐵(𝑥!) = 𝜂 𝑃(!!
! 𝑒!!|(𝑥!) ∙ 𝑃(𝑥!!!!! |𝑥!!!,𝑪!) ∙ 𝐵(𝑥!!!)  (2) 

where 𝜂 is a normalizing constant. Equation (2) shows that the 
belief can be updated recursively, knowing its value at the 
previous timestep (𝑡 − 1). It is therefore sufficient to store only 
two slices of the DBN at any time. In particular, [24] 
demonstrated that the computational complexity of calculating 
(2) for a single value of the state variable is 𝑂(𝑛 +𝑚), where 
𝑛 is the number of sensor nodes, and 𝑚 is the number of 
possible values of the state variable, i.e., the number of user’s 
activities. The overall complexity of updating the belief for 
each possible activity is thus 𝑂(𝑚! +𝑚 ∙ 𝑛). 

IV. RULE-BASED REASONER 
The Reasoning module follows a rule-based approach to 

determine user conditions based on information provided by 
the Activity Recognition module and retrieved from the user 
profile. Afterwards, the Reasoner uses this information to plan 
the actions needed to ensure user safety and comfort while also 
saving energy. 

A special property, named user condition, heavily 
influences the behavior of the Reasoner module. This property 
describes the user's condition as it is perceived by the system, 
and can assume three different values, i.e., normal, anomaly or 
emergency. During execution, the system dynamically modifies 
its behavior according to the value of the user condition. For 
example, the Reasoner may decide to increase the sampling 
rate of sensors when more accuracy is needed to assess the 
seriousness of the situation; conversely, the system may decide 
to lower the sampling rate (or turn off some sensors altogether) 
when the condition is normal, so as to minimize energy 
consumption. The user condition also influences who will 
receive alert messages and their frequency, which can be 
sporadic in a normal situation or constant and very detailed in 
case of emergency. 

In particular, the condition is considered normal if data 
from specialized health sensors are in the norm, and no 
anomalies in user behavior have been detected. In this case, the 
system enters into power saving mode and lowers the sampling 
rate of unnecessary sensors. The system reports an anomaly if 
the values from the health sensors are slightly out of the norm, 
or if it detects an inconsistency in user behavior. In this case, 
the Reasoning system tries to collect as much data as possible, 
in order to make an informed decision based on the real 
conditions of the user; if it deems it necessary, at this stage it 
starts sending alerts to family members. Finally, the system 
enters an emergency state if it detects a long-term anomaly or if 
the health data are completely out of range. The time that the 
system waits before considering an anomaly as long-term 
depends on the severity of the event itself, and can be specified 
by the system administrator in a fine-grained manner. 

Below, we present the Prolog-like pseudo-code of a small 
subset of the rules used by the Reasoner, to illustrate how the 
system uses the user condition. The first example is a rule that 
puts the system in an anomaly condition if the user's blood 
pressure is too high and the user is lying on the bed: 
anomaly_high_blood_pressure(User, UserCondition) :- 
 bloodPressure(high), 
 activity(User, lying_on_bed), 
 UserCondition = anomaly. 
 

It is interesting to note that the same sensory reading can 
also be considered perfectly normal under different 
circumstances. For example, if the user is doing physical 
activity, the system realizes this is causing high blood pressure 
and infers that the user's condition is not anomalous, as shown 
by the following rule:  
normal_high_blood_pressure(User, UserCondition) :- 
 bloodPressure(high), 
 activity(User, exercising), 
 UserCondition = normal. 
 

On the other hand, if the system detects a serious medical 
emergency, it immediately sends warnings to family members, 
caregivers and medical staff: 
emergency_heart_rate(User, UserCondition) :- 
 heartRate(very_high), 
 activity(User, lying_on_the_floor), 
 UserCondition = emergency, 
 send_alerts([family, caregivers, medical_staff]). 
 

We also introduce the notion of user satisfaction. When 
setting up the system, the user specifies his preferred 
temperature for each activity, along with a tolerance range and 
tolerance time. As a simplified example, let's assume the user's 
preferred temperature when working is 22 °C, his tolerance 
range is ± 2 °C, and his tolerance time is 10 minutes. In such a 
case, if the user is working and the temperature of the room is 
in the range 20 - 24 °C, the user is satisfied. On the other hand, 
if the temperature of the room is outside this range for more 
than 10 minutes, he becomes unsatisfied, and directly acts to 
correct the temperature, by manually turning on (or off) the air 
conditioner. 

The following rule checks whether there are satisfactory 
environmental conditions in the room where the user is located: 
user_satisfied(User) :- 
 activity(User, Activity, Room), 
 preferred_temp(User, Activity, PrefTemp), 
 room_temperature(Room, RoomTemp), 
 temp_in_range(User, RoomTemp, PrefTemp). 
 

This rule obtains the user's inferred activity from the 
Activity Recognition module, interrogates the user profile to 
obtain his preferred temperature, checks the temperature value 
in the room and, finally, verifies whether the room temperature 
is in an acceptable range. Then, if the user is unhappy for a 
sufficiently long time, he becomes unsatisfied: 
user_unsatisfied(User) :- 
 \+ user_satisfied(User), 
 unsatisfied_timer(User, Timer), 
 timer_expired(User, Timer). 
 



Finally, we present one of the rules used for turning on the 
air conditioner if the user is dissatisfied and the room 
temperature is inadequate: 
 turn_on_air_conditioner(User, Room, RoomTemp) :- 
 user_unsatisfied(User), 
 too_cold(User, RoomTemp), 
 air_conditioner (Room, on, heating). 
 

V. EXPERIMENTAL EVALUATION 

A. Experimental Setting 
We tested the effectiveness of the proposed AAL system in 

the application scenario of a simulated smart home. Sensor 
traces utilized during the experiments originate from the Aruba 
dataset of the Washington State University's CASAS Smart 
Home Project [26]. Such dataset is annotated with 11 activities 
of daily living (ADL), i.e., housekeeping, relax, work, sleeping, 
bed to toilet, meal preparation, eating, wash dishes, enter 
home, leave home, and resperate (a device for high blood 
pressure). The dataset comprises raw data collected from 39 
ambient sensors (31 motion sensors, 5 temperature sensors, and 
3 door sensors) over a period of seven months in a smart home 
with a single user. Hourly external temperature data needed by 
the Environmental Modeler come from a weather forecast 
station installed near the smart home, provided by the 
AgWeatherNet project of Washington State University [27]. 

Sensor data was preprocessed by grouping them into time 
windows of 30 seconds, and by adding two more ADLs, 
namely outside and other. The outside activity records when 
the user is not in the smart home (i.e., in the intervals between 
the leave home and enter home activities), and it is exploited by 
the Reasoner to infer that the majority of sensors and actuators 
can be safely turned off to save energy, without sacrificing 
accuracy and user’s satisfaction. 

The other activity combines all time windows that are not 
labeled in the original dataset. This kind of activity takes into 
consideration the fact that it is almost impossible to predict all 
activities that will be performed by users in a real setting, as 
suggested in [28]. Since the other activity groups 
heterogeneous activities, it is really difficult to classify, 
accounting for a 10% difference in activity recognition 
accuracy. 

Additionally, original data have been classified based on 
the location of sensors, dividing the smart home into eight 
rooms, with an average of five sensors per room. During our 
experiments, we considered four main rooms, namely 
bedroom, living room, kitchen, and office. For the sake of 
simplicity, we assume that each room is provided with a 9000 
BTU air conditioner, which can be automatically controlled by 
the Actuator Manager. 

To evaluate the Activity Recognition module, we considered 
the average inference accuracy, defined as follows: 

 𝐴𝑐𝑐 =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 are the true positives, true 
negatives, false positives and false negatives, respectively. To 

measure inference uncertainty, we adopted an index inspired 
by the classical definition of Shannon’s entropy [29]. Finally, 
we also calculated precision (P), recall (R), and F-score, as 
follows: 

          𝑃 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃        𝑅 =  𝑇𝑃

𝑇𝑃 + 𝐹𝑁         (3) 
 

                                    F-score = 2 ∙ 𝑃 ∙ 𝑅
𝑃+𝑅                      (4) 

 As explained in the previous sections, the Reasoner module 
leverages data coming from lower levels to infer the user's 
location and activity, in order to plan the best sequence of 
actions to ensure the user's well being. However, if the user is 
unhappy with any of the system’s decisions, he can override 
them and manually modify the status of the actuators. 

A workstation equipped with an Intel® Core™ i5-3470 
CPU (3.20 GHz, 4 cores, 4 GB RAM) has been used to 
perform all experiments. 

 

B. Experimental Results 
We adopted the cross-validation method to perform our 

experiments. In particular, we divided the Aruba dataset into 
ten parts, chose one of them as test set, and exploited the rest 
for training the Activity Recognition module. In the following, 
we will present the average results obtained by repeating our 
experiments ten times, with different test sets. The user 
condition is considered normal during all experiments. 

The first set of experiments presented here evaluates the 
overall performance of our system, according to the metrics 
introduced in the previous section. To better analyze the 
performance of the Reasoner, we compared our smart AAL 
system against a baseline manual system where the user is not 
aided in his decisions and has to manually turn on or off the air 
conditioners. 

Table I summarizes the results of the cross-validation 
experiment, reporting the average activity recognition accuracy 
(both considering and ignoring the other activity), the inference 
uncertainty (normalized and not normalized), the F-score, and 
the user satisfaction obtained during the simulation. Table I 
also reports the user satisfaction ratio, i.e., the ratio of the user 
satisfaction when exploiting the AAL system over the 
satisfaction obtained without it, and the energy savings 
compared to the manual system. 

Accuracy 80.5% 

Accuracy without other 89.7% 

Uncertainty 0.294 

Normalized uncertainty 7.9% 

F-score 0.413 

User satisfaction 77.6% 

User satisfaction ratio 0.917 

Energy savings 35.1% 

TABLE I. CROSS VALIDATION RESULTS OF THE PROPOSED SYSTEM. 



We can observe that the Activity Recognition system 
achieves a noteworthy accuracy of 80.5%, which is remarkable 
because it was obtained while considering the other activity. 
Indeed, if we repeat the experiment while ignoring such 
activity, the system achieves an impressive accuracy of 89.7%, 
which is almost ten percent more. Such results are expected, 
considering the unpredictable nature of the other activity, 
which groups heterogeneous ADLs, and the peculiarity of the 
Aruba dataset, which mostly exploits motion sensors. 

Table I also demonstrates that the system’s inference 
uncertainty is sufficiently low throughout the experiment, 
reporting a value of 0.294 over a maximum of 3.7, which is the 
base 2 logarithm of the number of possible activities. This 
means that the uncertainty registered by the system is only 
7.9% of the maximum. The F-score is in line with the values 
obtained by similar systems, as reported in [28], which 
compares 8 different activity recognition systems using 3 
different datasets. 

As regards the Reasoner module, we observe an overall 
77.6% user’s satisfaction, which is noteworthy if we consider 
that the experiment took place in a cold environment, with a 
minimum temperature of -25.17 °C, and that the user’s 
preferred temperature was 22 °C on average. Filling such 
massive gap whilst turning off air conditioners to save energy 
is thus really challenging. The comparison with the manual 
system confirms that our AAL smart system performs very 
well, since the reported satisfaction ratio is 0.917, while the 
average energy saving is 35.1%. 

Next, we present a detailed analysis of the behavior of the 
system in the living room. This room is ideal for our 
discussion, since it is the one where the user performs more 

activities. The first two graphs in Fig. 2 show, respectively, the 
accuracy and uncertainty trends. We can immediately notice 
that accuracy remains very high throughout the period, with an 
average of 84.6% and a peak of 98%. At the same time, the 
second graph shows that uncertainty always remains below 1, 
with a minimum very close to 0. 

The other two graphs in Fig. 2 concern the performance of 
the reasoning system. In particular, we can see how the system 
manages to maintain the internal temperature in the range 
desired by the user, with an average of 21.95 °C. Considering 
that the average temperature preferred by the user is 22 °C, the 
difference is only 0.05 °C. This fact is clearly shown by the 
latest graph, which represents user satisfaction throughout the 
period. As expected, we can see that the user is almost always 
satisfied. This is especially good if we consider that the system 
is also saving more than 35% of energy with respect to a 
manual system, whilst keeping the user safe and satisfied. Fig. 
2 also shows that the performance of the system is very regular, 
and is not affected by factors such as the day of the week or the 
period of the day, although these obviously influence the 
activities performed by the user.  

Finally, Fig. 3 shows the activity recognition accuracy and 
user presence in each of the four main rooms considered in the 
experiments. It is interesting to note that accuracy remains very 
high in all rooms, which testifies to the system's excellent 
capabilities regardless of the environment and type of activities 
performed by the user. In fact, the four rooms are very different 
from each other. The bedroom and living room are the two 
areas in which the user spends the most time (34.8% and 
30.8% of the time, respectively). On the contrary, kitchen and 
office are rarely visited (8% of the time in total). Nevertheless, 
the accuracy observed during experiments is almost the same. 

Fig. 2: Activity recognition accuracy, inference uncertainty, internal and external temperature, and user satisfaction in the living room 
during a given week. 



The bedroom and living room are also very different from each 
other: the first one is used almost exclusively during the night, 
to sleep, and therefore presents very regular and long lasting 
activities. Conversely, the living room offers the greatest 
variety of activities, as explained above. Fig. 3 therefore allows 
us to conclude that the system manages to maintain its high 
performance even when context conditions vary, which is of 
fundamental importance for a system that has to be used in the 
real world.  

VI. CONCLUSIONS 
In this work, we have proposed the architecture for a 

complete AAL system which is capable of analyzing users' 
behavior and detect anomalies in their health conditions, trying 
to prevent emergencies by alerting appropriate caregivers and 
family members. The end goal of our system is improving the 
quality of life of elderly and disabled people, by preserving 
their autonomy whilst ensuring their safety. Users' activities are 
inferred by a probabilistic multi-sensor data fusion module 
which also exploits available context information, such as time 
and location. Such high-level data is merged with readings 
coming from specialized health sensors to accurately determine 
the user's current condition. Finally, a rule-based reasoner 
detects anomalous situations and sends appropriate warnings to 
caregivers, as well as directly modifying the environment to 
satisfy the user. 
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