

NDS LAB - Networking and Distributed Systems

http://www.diid.unipa.it/networks/

A Hybrid System for Malware Detection
on Big Data

A. De Paola, S. Gaglio, G. Lo Re and M. Morana

In Proceedings of the IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS)

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: IEEE

A Hybrid System for Malware Detection
on Big Data

Alessandra De Paola, Salvatore Gaglio, Giuseppe Lo Re and Marco Morana
Università degli Studi di Palermo, Palermo, Italy

{alessandra.depaola, salvatore.gaglio, giuseppe.lore, marco.morana}@unipa.it

Abstract—In recent years, the increasing diffusion of malicious
software has encouraged the adoption of advanced machine
learning algorithms to timely detect new threats. A cloud-based
approach allows to exploit the big data produced by client agents
to train such algorithms, but on the other hand, poses severe
challenges on their scalability and performance. We propose a
hybrid cloud-based malware detection system in which static and
dynamic analyses are combined in order to find a good trade-
off between response time and detection accuracy. Our system
performs a continuous learning process of its models, based
on deep networks, by exploiting the growing amount of data
provided by clients. The preliminary experimental evaluation
confirms the suitability of the approach proposed here.

I. INTRODUCTION

Nowadays, the accidental execution of malicious software
coming from different communication channels makes IT sys-
tems constantly exposed to risks. As a consequence, malware
detection represents one of the most critical issues faced
by computer security scientists. One of the most promising
approach followed to guarantee a high detection rate, even
with the constant increase of threats, is the adoption of cloud-
based solutions. Such an approach allows to remotely perform
malware detection through machine learning techniques capa-
ble of analyzing huge amounts of potentially infected files.
Moreover, the big data produced by a plethora of client agents
can be exploited in order to progressively refine the malware
detection system. The amount of such potential malware data
flow depends on several factors, such as the increasing number
of user devices capable of executing always more advanced
applications, and the simplified malware diffusion processes
through cloud services and social networks [1]. Although the
possibility of exploiting such big data, on one hand, represents
a great opportunity, on the other hand, enormous challenges
on the scalability and performance of the malware detection
system are to be faced.

Following such an idea, in this paper, we propose the
adoption of a cloud-based system which exploits a big data
infrastructure to gather and manage the huge amount of file to
be analyzed, to drive their classification and to exploit them
in a continuous learning process.

Malware detection methods, proposed in the literature, can
be roughly classified in two main categories depending on
whether the analysis is statically or dynamically performed [2].
The former category typically analyses only the information
contained in the potentially infected file, and does not require
any execution. On the contrary, the dynamic analysis observes

the execution behavior by exploiting a protected environment,
e.g., a “sandbox”, in which the malware can be executed,
without threatening a real working system. Static methods are
generally faster and less resource hungry, even if they can
exploit less information and are vulnerable to malicious code
obfuscation. On the other hand, the detailed analysis enabled
by dynamic approaches often require higher computing time
and resource consumption.

Our system overcomes such limitations by combining static
and dynamic analyses to obtain a good trade-off between
response time, required resources, and detection accuracy. The
main idea is to perform the static analysis by default and
to turn to the dynamic analysis only when the former does
not yield a sufficiently accurate classification. Moreover, the
results produced by the dynamic analysis, together with the
executable files submitted to be analyzed, contribute to update
the system through a continuous learning process. In the static
analysis, we adopt a lightweight pre-processing of executable
files and exploit deep learning techniques to automatically
extract relevant features directly from raw information.

The current static and dynamics analyses are tailored to
detect Windows malware, but it is worth noticing that the pro-
posed architecture is general and applicable to other platforms.

The remainder of this paper is structured as follow. Sec-
tion II presents an overview of the related work. Section III
describes the architecture of the proposed system, details the
static and dynamic analysis subsystems, and the continuous
learning process. Section IV reports the preliminary experi-
mental evaluation. Finally Section V presents our conclusions
and future work.

II. RELATED WORK

A. Deep learning for malware detection
Several works which adopt deep learning to perform mal-

ware detection have been presented in the recent literature,
based both on dynamic and static analysis [2].

The system proposed in [3] performs a dynamic analysis, by
adopting deep learning to automatically generate the signature
which represents such behavior. The authors use a deep belief
network implemented through stacked denoising autoencoders,
which processes the text file containing the transcription of all
the events occurred during a file run, adequately converted in
a binary form. The automatically-generated signature is then
processed by a SVM to perform the effective classification.
In [4], the sequence of system calls recorded while the

DR
AF
T

executable file is running is exploited by a Deep Neural
Network (DNN) which combines convolutional layers and
recurrent layers, using Long Short Term Memory (LSTM)
cells to increase malware detection capabilities.

In order to overcome the limitation of dealing with less
information than those obtained by dynamic analysis, some
works based on static analysis perform deep learning on high-
level features extracted according to a well-designed process.
The authors of [5] propose to build a large vector of features,
which is reduced through a random projection process. The
resulting vector is then analyzed by a deep classifier which is
pre-trained through a Restricted Bolzmann Machines (RBM).
The reduction of the feature vectors through random projection
is also adopted in [6], where JavaScript sources are processed
through a 5–layer deep neural network implemented with
stacked denoising autoencoders. In [7] four different sets of
static features, converted in a 1024-length binary vectors and
classified by a classic DNN, are used. A more complex set of
features is propose in [8], where data is obtained by merging
information coming from static and dynamic analysis.

Even though malware detection systems which combine
deep learning and high-level features provide good accuracy
values, some authors emphasize the convenience to adopt
features as simple as possible so as to design light and efficient
malware-detection systems [9]. We follow such direction in
order to design a lightweight system capable of performing
malware detection with short response time. The potentiality
of applying deep learning on simple raw data, as we propose
here, is confirmed by some works recently presented in the
literature, such as [10], where an android malware detection
system which applies a deep convolutional neural network
to the raw sequences of opcode extracted from disassembled
programs is presented.

B. Hybrid malware detection systems
The idea of combining static analysis and dynamic analysis

to design a hybrid system has been proposed by some works
in the literature. The common approach is to merge static
and dynamic features in a single feature vector, which is then
analyzed by a unique classification algorithm.

The authors of [11] present a comparative analysis of dif-
ferent classification algorithms applied to static and dynamic
features, often obtained through a sandbox tool, such as in [12]
and [13]. Even the authors of [14] propose the adoption of
a single feature vector with static and dynamic information.
Static features are obtained from the Printable Strings Infor-
mation (PSI) contained in the executable file. The dynamic
analysis is performed through the cuckoo sandbox [15] and
produces the sequence of system calls represented as n-grams,
using 3-API-call-grams and 4-API-call-grams. A similar sys-
tem is proposed in [16], which uses the Op-codes of the
disassembled executable file as static features, and the list
of API calls with their parameters, and raised exceptions as
dynamic features. The same information are exploited by the
system proposed in [17], which uses Markov chain graphs of
dynamic instructions and system calls.

Big	Data	Infrastructure	

Request	
Manager	

New	
unclassified	

files	

Deep	Network	
Parameters	

Sta>c	
Analysis	

Dynamic	
Analysis	

(1)	

(2)	

(3)	

(4)	

New	classified	
files	

(5)	

(6)	

Hybrid	cloud-based	malware	detec>on	system	

client	

Fig. 1: System Architectures

A different approach is adopted by the authors of [18],
which propose a hybrid system for detecting Android ran-
somware, composed by a static detection method which is
applied to determine whether to allow to run the software,
and a dynamic detection method to monitor software during its
execution. The authors of [19] propose a similar approach, but
where the dynamic analysis is performed only for suspicious
files.

Similarly, we propose a hybrid system in which the dynamic
analysis is performed only when the static analysis produces
a high degree of uncertainty. Such design choice is justified
by the need of guaranteeing a small computational burden in
a cloud-based system which has to exhibit reduced response
time even when a request peak occurs.

Moreover, to the best of our knowledge, our work is the
first which adopts dynamic analysis to produce new sets of
labeled data in order to perform a continuous learning process
which refines the static analysis. The continuous learning of
malware detection systems has been proposed by some other
works in the literature in order to guarantee a model always up-
to-date with respect to new threats. However, in such works,
new labeled dataset are obtained by the intervention of human
experts which annotate potential malware over time [20]–[22].

III. SYSTEM ARCHITECTURE

In this paper, we propose a cloud-based malware detection
system which combines static and dynamic analyses in order
to provide fast classification of executable files on very large
scale. Our system is based on a big data management infras-
tructure capable of ingesting data in real time and supporting a
continuous learning process which exploits such data to refine
the underlying models.

Figure 1 shows the architecture of our system and the
sequence of steps performed during the interaction with the
client agents. Clients send the executable files to be analyzed
to the Request Manager (RM) (1), a cloud agent responsible to
drive the whole malware detection process. Request Manager,
by applying simple hashing filters, discriminates between new
files and copies of already received. Each previously unseen
executable file is stored as new sample of unclassified data,

and will be used in successive learning phases (2). Malware
detection is performed by the Static Analysis subsystem (SA)
(3), which is based on a deep network capable of obtaining a
good classification accuracy by processing a small part of the
file through a lightweight process. Such subsystem provides
also the probability that the analyzed file is a malware, thus
giving a measure of its uncertainty degree. If the uncertainty
exceeds a given threshold, the request manager activates the
Dynamic Analysis (DA) (4), computationally more expensive
both in terms of CPU and memory waste, and consequently
exhibiting higher response times in comparison to the static
analysis. Such a hybrid approach allows to statistically provide
short response times in large scale systems, since it introduces
temporal delays only when necessary to guarantee a high
accuracy degree. The uncertainty threshold which triggers
the dynamic analysis can be also dynamically tuned at run-
time, in order to perform more extensive analyses when the
incoming load decreases. The classification results obtained
by dynamic analysis are then associated by the Big Data
Infrastructure (BDI) to the analyzed files (5), thus building
a new set of labeled files for the continuous learning process.
Finally, classification results are delivered to the clients (6).

In the following subsections, we describe the static and
the dynamic analyses. Moreover, we describe the learning
process which is responsible of training the system before its
activation, performing the continuous learning by exploiting
new unclassified files provided by clients, with the associated
results of the dynamic analysis.

A. Static Analysis
The Static Analysis subsystem we propose is based on a

two-phase training deep neural network, where a first un-
supervised pre-training with stacked denoising autoencoders
[23] is followed by a supervised fine-tuning through back-
propagation.

Features extraction is performed by accessing DOS Header,
File Header, Optional Header and Section Table of the PE
packaging. Each header contains a number of different fields,
for each of which three values are read: data contained
in the field and two offsets. In order to obtain a compact
representation of fields data, simple values are handled as
unsigned integers, whilst other data, e.g., timestamps, arrays,
strings, are processed by means of a hashing function. Offset
values are needed to preserve any spatial information related to
the fields. In particular, the local offset specifies the position
of a certain field within the header, whilst the global offset
represents the displacement from the beginning of the file.

Since a file can have a variabile number of sections and
the classifier is designed to process fixed-size data, we limit
the number of Section Tables to be processed. To this aim,
some experiments were performed on real data showing that
a reasonable threshold on the number of sections is 13. If a
file contains less sections than the threshold then the elements
of the feature vector related to the missing sections are set to
zero; otherwise, if the number of sections is higher than the
threshold, the extra sections will be ignored. Thus, 19 fields of

Big$Data$Infrastructure$

Ini0al$
unlabeled$
dataset$

Deep$Network$
Parameters$

Unsupervised$
training$

(1)$

(2)$

Hybrid$cloudCbased$malware$detec0on$system$

Supervised$
Fine$tuning$

Ini0al$labeled$
dataset$

(4)$
(3)(3)

Fig. 2: Two-phase training of the deep network, core of the
static-analysis subsystem.

the DOS header, 7 of the file header, 30 of the optional header,
12 of the section section header (for each of the 13 sections)
were analysed, obtaining feature vectors of 636 elements in
the range [0, 1]. Since data are not extracted from the entire
file but only from its headers, the feature extraction process is
very fast and independent of the file size.

The deep network proposed here consists of five layers. The
input layer has 636 elements, the three hidden layers contain
256, 64, and 16 nodes respectively, whilst the output layer
consists of a single node. For all nodes, sigmoid activation
functions are used. In this neural network, the total amount of
trainable hyper-parameters is of 180, 577 elements.

The training of the deep network is performed in two
steps (see Figure 2). At the first step, rather than randomly
initializing the model parameters, an unsupervised pre-training
is performed on the unlabeled dataset in order to obtain a first
estimation of weights and biases of the hidden layers. This
first learning phase is implemented through stacked denoising
autoencoders. According to such model, each hidden layer
is pre-trained individually by means of a support network
consisting of an input layer, a corrupted layer, an encoder,
and a decoder layer (see Figure 3), where the encoder layer
corresponds to the hidden layer to be pre-trained. On the
contrary, the input, the corrupted, and the decoder layers have
the same number of nodes, which is equal to the number of
inputs of the hidden layer to be pre-trained.

This support network is trained through a back-propagation
algorithm and processes each input vector by i) corrupting

input&

corrupted&
input&

encoder&
decoder&

Fig. 3: Structure of the denoising autoencoder.

Big$Data$Infrastructure$

New$
unclassified$

files$

Deep$Network$
Parameters$

Unsupervised$
training$

(1)$
(1)$ (2)$

Hybrid$cloudCbased$malware$detecDon$system$

(a)

Big$Data$Infrastructure$

New$classified$
files$

Deep$Network$
Parameters$

Supervised$
fine<tuning$

(1)$
(1)$ (2)$

Hybrid$cloud<based$malware$detecDon$system$

(b)

Fig. 4: Continuous learning of the deep network through (a) unsupervised learning and (b) supervised fine-tuning.

it with some kind of noise, ii) encoding the resulting noisy
signal, and then iii) reconstructing the encoded signal. The aim
of the corruption layer, which adds isotropic Gaussian noise
to the input signals, is to force the encoding layer to learn the
most useful information from input vectors, by automatically
neglecting noise from the corrupted input. The iteration of the
pre-training for all the hidden layers produces a deep neural
network in which each layer is able to extract and represent
features at a higher level of abstraction than its predecessors.
The pre-training of the first hidden layer is performed using
the original dataset, while the other hidden layers are pre-
trained through an encoded version of the dataset, obtained
by exploiting the current trained denoising autoencoders to
build a temporary network which extracts the output of the
encoding layer that precedes the layer to be trained.

The second training step is the fine-tuning of the network,
which is implemented through a supervised back-propagation
algorithm with the Adam stochastic optimization, applied by
considering the binary cross entropy as objective function.
During this stage, weights and bias of all hidden layers are
initialized with the values produced by the pre-training.

B. Dynamic Analysis
The modularity of our system allows an easy integration

of different dynamic analysis algorithms without affecting the
system architecture and its functioning logic. In its current
version, the dynamic analysis subsystem is based on the
cuckoo sandbox environment [15], installed under Windows
10 with the VirtualBox virtual machine, in order to create a
secure evaluation environment. The cuckoo sandbox allows
the real execution of the potentially infected codes producing
as result a set of log files which summarize the behavior of
the executable file during its execution. The tool can be tuned
in order to produce different types of information, such as the
list of API calls, each with its parameters, register alterations,
heap memory addresses, process addresses, network usage,
and so on. As proposed in [14] we use the sequence of API
calls represented through the 3-grams and 4-grams method,
as dynamic features. Other works, such as [11], suggest to
enrich this feature vector with other information, such as the

frequency of API calls, but the authors of [14] proved that
even the simple adoption of API-n-grams allows to obtain
an accuracy of 97.16%. Such features are analyzed through
the random forest algorithm, which obtains good results for
malware classification in several environments [14].

C. Continuous Learning
One of the most relevant features of our system is its

capability of updating the internal model through a continuous
learning process triggered by external input data.

In this process, the first input consists of big data flow
generated by the client agents which submit classification
requests. Such dataset continuously evolves following the
natural advancement of application software and malware. The
second input considered is constituted by the labeled data
samples produced by the Dynamic Analysis subsystem when
activated to classify the most uncertain files.

An off-line training phase precedes the system activation.
During this step, as previously described, the deep network
representing the heart of the Static Analysis subsystem is
trained in two phases. In the first phase, an unlabeled dataset is
used to train the network, in order to automatically identify the
relevant information contained in the feature vector, regardless
of whether the file is a malware or not. The second phase
performs a fine-tuning of the network parameters using a
labeled dataset, in order to learn how the relevant information
corresponds to the two file classes (malware or not).

During all the normal life cycle, our cloud-based system
is in charge of classifying huge amounts of data. In our
approach, we propose to exploit such data in order to up-
date the deep network parameters using an auxiliary network
of stacked denoising autoencoders, as in the initial learning
phase (see Figure 4a). This way, starting from a set of already
refined parameters, the system accomplishes those internal
adjustments which allow to capture relevant features in new
malware samples.

It is worth noticing that such unlabeled dataset has been
already analyzed by the deep network whenever the clients
submit the classification requests. After the static classifica-
tion, the Big Data Infrastructure characterizes each file by its

Classifier Loss Accuracy Precision TPR FPR AUC
(%) (%) (%) (%) (%)

Deep model (600) 0.075 97.39 97.48 97.33 2.55 97.39
Deep model (800) 0.074 97.48 98.09 96.88 1.91 97.48
Deep model (1000) 0.074 97.49 97.92 97.08 2.09 97.49
Deep model (fine tuning only) 0.087 96.73 96.69 96.82 3.37 96.73
Classic-623-256 0.095 96.48 95.98 97.10 4.15 96.47

TABLE I: Average values Loss, Accuracy, Precision, TPR (True Positive Rate), FPR (False Positive Rate), and AUC (Area
Under Curve) using different classifiers. The number of pre-training epochs is reported in parentheses.

probability to be a malware. Only the most uncertain files are
further analyzed by the Dynamic Analysis subsystem. Such
dynamic analysis is completely independent from the static
one, and is statistically more accurate. Its results are thus
utilized as new descriptions for those further analyzed files, in
order to create a new labeled dataset. When the amount of new
annotated data exceeds a given threshold, or at regular time
intervals, a new fine-tuning process through back-propagation
is started, in order to further refine the network parameters
(see Figure 4b).

Such an approach allows to overcome one of the most
relevant issues in deep network design, that is the availabil-
ity of a big amount of data to be exploited for training.
Furthermore, the exploitation of dataset collected in different
time intervals, allows the network to dynamically follow the
continuous evolution of the software.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation presented here aims to evaluate
the effectiveness of the proposed approach and the impact of
the design choices we made.

The dataset used for the experimental evaluation was ob-
tained by merging 12.000 samples of malware obtained from
VirusShare 1 and 11.874 samples of certified software obtained
from a clean Windows 10 installation.

Firstly, we wanted to investigate whether there is a con-
nection between the number of epochs used to train the
deep network and the performance of the whole system.
For this purpose we compared the performance obtained by
varying the maximum training epoch threshold (i.e., 600, 800,
and 1000) for the pre-training phase. The second evaluation
aimed to assess the effectiveness of the pre-training phase,
by comparing our system with a deep network characterized
by the same topology, but trained only through the second
training phase. Finally, we intended to verify the impact of the
hierarchical stratification of our deep classifier on the overall
performances of the malware detection system. To this aim, we
compared our system with a classic neural network obtained
by removing the last two hidden layers from our classifier, so
obtaining three layer of 636, 256 and 1 nodes respectively.

The evaluation is performed through a K-fold cross val-
idation with a stratified sampling, in order to preserve the
percentage of samples per class, with K = 5.

The classification performance are evaluated by analyzing
the trend of the ROC curve (Receiver Operating Characteristic)

1https://virusshare.com

with respect to the training epochs. Furthermore we computed
the final loss, the final accuracy, as well as several other
metrics, i.e., TPR (True Positive Rate), FPR (False Positive
Rate), Precision, and AUC (Area Under Curve) of ROC
curve. This last metrics allows to evaluate the classification
performance independently of the threshold adopted for the
last layer of the deep network.

In Table I, the average values of the considered performance
metrics are shown. We can observe that higher accuracy values
are obtained by using the pre-trained classifiers, and this
confirms the effectiveness of the two-phase training. However,
increasing the number of pre-training epochs (e.g., from 600
to 800 or 1000) does not significantly improve the accuracy,
nor reduce the loss value.

The performances of the model that uses fine tuning only are
worse than the pre-trained models on all metrics. Furthermore,
the lowest values are achieved by using the classic model,
suggesting that the hierarchical stratification is effective, but
only when combined with the pre-training phase.

A more in-depth analysis of the average accuracy achieved
using different models is shown in Figure 5a, which uses
results from the second training phase. Results confirm that
the pre-trained deep models exhibit a better trend along all
the time line. Figure 5b shows the average ROC curves from
which AUC score was calculated. Even in this case, pre-trained
models outperform the others, with no significative differences
when using 800 or 1000 pre-training epochs.

V. CONCLUSIONS AND FUTURE WORK

In this work, we propose a cloud-based malware detection
system, capable of facing big data amount produced on the
network. Our system performs a static analysis based on
deep networks to provide a fast classification of potential
malware files, and a more burdensome dynamic analysis only
when the detection uncertainty exceeds a given threshold. The
continuous flow of data produced by client agents and the
classification results of the dynamic analysis are exploited to
refine the deep network in a continuous learning loop. Such
mechanism makes the system always up-to-date with respect
to new malware versions.

The preliminary experimental evaluation presented here
suggests the effectiveness of the proposed approach based
on an unsupervised learning which understand how to extract
relevant information from raw data, and a supervised learning
which understands how correlate such information to the
malicious or benign nature of the analyzed file.

DR
AF
T

(a) (b)

Fig. 5: Average accuracy (a) and ROC curves (b) of different models. Pre-train epochs are reported in parentheses.

As future work, we plan to perform an exhaustive experi-
mental evaluation to assess the effectiveness of the continuous
learning loop with malware samples collected in different time
periods. Moreover, we will evaluate the possibility of adopting
a deep network as core of the dynamic analysis, built as an
extension of the deep network used for the static analysis.

Finally, we will address some issues related to the cloud
infrastructure, such as the potentially huge amount of traffic
generated from the clients. We plan to overcome such problem
by designing a lightweight version of the static analysis to
be performed on mobile devices, thus triggering the com-
munication toward the remote server only to perform the
dynamic analysis. Such improvement will allow clients to
analyze executable files even during offline periods.

REFERENCES

[1] J. H. Abawajy, A. Kelarev, and M. Chowdhury, “Large iterative multitier
ensemble classifiers for security of big data,” IEEE Trans. on Emerging
Topics in Computing, vol. 2, no. 3, pp. 352–363, 2014.

[2] K. Mathur and S. Hiranwal, “A survey on techniques in detection
and analyzing malware executables,” Int. J. of Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 4, 2013.

[3] O. E. David and N. S. Netanyahu, “Deepsign: Deep learning for
automatic malware signature generation and classification,” in Proc. of
the 2015 Int. Joint Conf. on Neural Networks (IJCNN), 2015, pp. 1–8.

[4] B. Kolosnjaji, A. Zarras, G. D. Webster, and C. Eckert, “Deep learning
for classification of malware system call sequences,” in Proc. of the
Australasian Conf. on Artificial Intelligence, ser. Lecture Notes in
Computer Science, vol. 9992. Springer, 2016, pp. 137–149.

[5] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in Proc.
of the 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2013, pp. 3422–3426.

[6] Y. Wang, W.-D. Cai, and P. Wei, “A deep learning approach for detecting
malicious javascript code,” Security and Communication Networks,
vol. 9, no. 11, pp. 1520–1534, 2016.

[7] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Proc. of the 2015
10th Int. Conf. on Malicious and Unwanted Software, 2015, pp. 11–20.

[8] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos, “Hadm: Hybrid analysis
for detection of malware,” in Proc. of the SAI Intelligent Systems Conf.,
2016, pp. 1037–1047.

[9] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proc. of the Sixth ACM Conf. on Data and
Application Security and Privacy, 2016, pp. 183–194.

[10] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, and G. Joon Ahn,
“Deep android malware detection,” in Proc. of the Seventh ACM on Conf.
on Data and Application Security and Privacy, 2017, pp. 301–308.

[11] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of
malware based on integrated static and dynamic features,” J. of Network
and Computer Applications, vol. 36, no. 2, pp. 646–656, 2013.

[12] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative
assessment of malware classification using binary texture analysis and
dynamic analysis,” in Proc. of the 4th ACM Work. on Security and
Artificial Intelligence, 2011, pp. 21–30.

[13] K. Schütt, M. Kloft, A. Bikadorov, and K. Rieck, “Early detection of
malicious behavior in javascript code,” in Proc. of the 5th ACM Work.
on Security and artificial intelligence, 2012, pp. 15–24.

[14] P. Shijo and A. Salim, “Integrated static and dynamic analysis for
malware detection,” Procedia Computer Science, vol. 46, pp. 804–811,
2015.

[15] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “The
cuckoo sandbox,” last accessed 03 Jan. 2018. [Online]. Available:
https://cuckoosandbox.org

[16] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas, “Opem: A
static-dynamic approach for machine-learning-based malware detection,”
in Int. Joint Conf. CISIS12-ICEUTE 12-SOCO 12 Special Sessions,
2013, pp. 271–280.

[17] B. Anderson, C. Storlie, and T. Lane, “Improving malware classification:
bridging the static/dynamic gap,” in Proc. of the 5th ACM Work. on
Security and artificial intelligence, 2012, pp. 3–14.

[18] A. Ferrante, M. Malek, F. Martinelli, F. Mercaldo, and J. Milosevic,
“Extinguishing ransomware - a hybrid approach to android ransomware
detection,” in The 10th Int. Symp. on Foundations Practice of Security,
2017, pp. 1–16.

[19] A. Gharib and A. Ghorbani, “Dna-droid: A real-time android ran-
somware detection framework,” in Int. Conf. on Network and System
Security, 2017, pp. 184–198.

[20] B. Miller, A. Kantchelian, S. Afroz, R. Bachwani, E. Dauber, L. Huang,
M. C. Tschantz, A. D. Joseph, and J. D. Tygar, “Adversarial active
learning,” in Proc. of the 2014 Work. on Artificial Intelligent and
Security, 2014, pp. 3–14.

[21] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li,
“AI2: training a big data machine to defend,” in Proc. of the IEEE Int.
Conf. on High Performance and Smart Computing, and IEEE Int. Conf.
on Intelligent Data and Security, 2016 IEEE 2nd Int. Conf. on Big Data
Security on Cloud, 2016, pp. 49–54.

[22] A. Beaugnon, P. Chifflier, and F. Bach, “Ilab: An interactive labelling
strategy for intrusion detection,” in Int. Symp. on Research in Attacks,
Intrusions, and Defenses, 2017, pp. 120–140.

[23] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. of Machine Learning
Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

DR
AF
T

