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Abstract—In recent years, the percentage of the population

owning a smartphone has increased significantly. These devices

provide users with more and more functions that make them real

sensing platforms. Exploiting the capabilities offered by smart-

phones, users can collect data from the surrounding environment

and share them with other entities in the network thanks to

existing communication infrastructures, i.e., 3G/4G/5G or WiFi.

In this work, we present a system based on participatory sensing

paradigm using smartphones to collect and share local data in

order to monitor make a campus “smart”. In particular, our

system infers the activities performed by users (e.g., students) in

a campus in order to identify trends and behavioral patterns.

This information allows the system to decide in real-time which

actions are needed to provide the best possible services to users,

according to their needs and preferences. Experimental results

underline the benefits that the system might bring in a smart

campus.

I. INTRODUCTION

Nowadays, the growth of smartphone usage in everyday
life seems unstoppable. The pervasiveness of smartphones
has completely changed people’s lives, as only few other
technologies had been able to do in the past.

Today’s smartphones come equipped with a multitude of
heterogeneous sensors, such as accelerometer, gyroscope, dig-
ital compass, GPS, camera, temperature and humidity sensors,
heart rate monitor, and microphone. The combined use of data
from all these sensors, by applying a variety of data fusion
techniques [1], has allowed the emergence of new applications
in a lot of different domains, such as healthcare [2], security,
social networks [3], environmental monitoring [4], and traffic
analysis for intelligent transport systems [5].

Besides, the impressive mass of smartphones, with compu-
tational capabilities comparable to those of many PCs, makes
it possible to collect and analyze huge amounts of data without
requiring the installation of thousands of expensive fixed sen-
sors. This is even more important in the context of smart cities,
as the extensive area of interest makes it impossible to exploit
only fixed sensors; conversely, the myriad of information that
can be collected from mobile devices becomes absolutely
essential, paving the way for new types of applications that
would not otherwise be possible.

Unfortunately, in many cases, the use of sensor data alone
is not sufficient to achieve the desired results, since the events
of interest might be too complex to detect. For this reason,
the direct participation of users may be desired or even
required, as they can enrich the information collected from

smartphones and other mobile devices with totally different
and complementary information.

With the emergence of the participatory sensing
paradigm [6], it is now possible to use humans as sensors [7],
exploiting their unique abilities to devise sensing applications
that monitor the occurrence of complex events, which are
difficult to detect with traditional sensing paradigms.

Given the central role of people in the sensing process, the
success of participatory sensing systems largely depends on
the reliability of the data sent by users. As humans may exhibit
selfish and unreliable behavior [8], especially when they can
gain benefits from cheating the system, accurately classifying
the reliability of user reports and feedback is paramount.

In this regard, various incentive systems for users have
been proposed, using mainly game theory and auction the-
ory techniques. The main idea is to reward users for their
participation, hoping to improve it both quantitatively and
qualitatively. In addition to the obvious possibility of monetary
remuneration through micro-payments, various gamification
techniques have also been proposed and successfully imple-
mented. Gamification involves using game mechanics such as
leaderboards, levels and scoring systems to encourage users
to perform certain activities. The most famous example of
participatory sensing app that has successfully chosen this
approach is Waze, which uses several gamification elements,
such as rankings and scores, to encourage its users to send
information about traffic and road accidents.

Moreover, an implicit incentive for user participation is the
constant improvement of the services offered, exploiting the
information sent by users themselves.

Inferring information about the context and activities carried
out by users (Human Activity Recognition, HAR) is the
basis of many participatory sensing applications. Simply put,
inferring the user’s activity is a machine learning problem.
The first step is the learning phase, which involves collecting
preliminary data, from sensors inside smartphones, correctly
labeled according to the categories of interest (e.g., possible
user activities). The second step consists in identifying features
of interest in the training set, which can uniquely identify
each category. Finally, the last step is the choice of an
appropriate classification algorithm that is able to achieve a
high classification accuracy in the case under examination.

In this paper, we propose a participatory sensing system
within the context of a smart campus. The system collects
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data from sensors in smartphones, smart watches and other
wearable devices of users, and merges them to infer the activity
performed at that time, such as walking, running, biking, car
driving, etc. User activity, combined with contextual informa-
tion such as time and GPS position, allows the smart campus
intelligent system to analyze the flow of people currently on
campus, and to identify trends and behavioral patterns on many
factors of primary interest.

This information may be used to modify and improve
the quality of services offered to students, such as shuttles
or security services. In addition, the system also seeks to
positively change user behavior by encouraging them to use
sustainable modes of transport (e.g., bikes or public transport
instead of private cars), with incentives exploiting state-of-the-
art gamification techniques.

The remainder of the paper is organized as follows: related
work is outlined in Section II. Section III introduces our
proposed scenario of a participatory sensing application in
a smart campus, and the system architecture is described in
Section IV. The experimental results are shown and discussed
in Section V. Conclusions follow in Section VI.

II. RELATED WORK

Over time, many new research challenges have emerged in
the promising field of participatory sensing [9]. In this section,
we discuss several emerging application domains in which
this paradigm is adopted to offer advanced services to users,
making everyday life easier. Data sent by participants must
be protected by appropriate encryption techniques, and the
highest possible level of privacy must always be guaranteed,
especially when the data collected is sensitive, such as health
and location information [10]. This is not always easy, because
system functionality and privacy generally conflict, and trade-
offs are often necessary.

A common scenario addressed by participatory sensing is
the personal health care, in which a smart device embedded
sensors, collecting data in continuous way, can monitor stress-
level, hearth beat, etc. An example of such application is
presented in [11]. There, authors describe a system called
UbiFit Garden in which smart devices are used to capture and
share the levels of physical activities in order to encourage
users to perform more exercise during the day.

Other common scenarios concern the use of participatory
sensing in smart environments, so as to use information
coming from heterogeneous sensors to offer users a variety of
services [12]. To achieve such high level goals, these systems
need a precise understanding of the state of the surround-
ing environment. Traditionally, this requires the deployment
of costly sensing and tracking infrastructure. Participatory
sensing overcomes this limitation by enabling crowd data
collection via mobile devices, e.g., smartphones, smartwatches
and tablets.

Haze Watch [13] is a system that measures the concentration
of elements dangerous to humans in the air, i.e., carbon
monoxide, ozone, sulphur dioxide and nitrogen dioxide. The

system is based on mobile phones that, interfaced with geo-
referenced sensors capable of measuring air quality, enable
traditional weather stations to collect information about un-
predictable events (e.g., accidental pollution).

Another typical scenario for a smart environment involves
using mobile devices to monitor road and traffic conditions.
In [14], the authors describe a system called Nericell using
accelerometer, microphone and positioning mechanism (GPS
or GSM radio) to know both if a road is trafficked or not and
localize problems concerning the road conditions, for example
potholes. Thanks to the participatory sensing paradigm, the
application is able to provide users with a real-time service
that is continuously updated.

Other works in literature use the participatory sensing
paradigm in application scenarios dealing with Human Ac-
tivity Recognition (HAR). For example in [15], the authors
describe a system based on a client-server architecture that,
using embedded sensors in smartphones, is able to discriminate
four different activities, i.e., still, walking, running and vehicle.
In addition, the system is able to automatically update its
classification models through participatory sensing as clients
send both sensory data and feedback on recognized activity
to the server. MoST [16], [17] is a framework that allows to
discriminate between three different activities (i.e., walking,
running and standing still), and also provides programmers
with an Android library that implements some algorithms of
classification and geofencing.

In [18], the authors propose a framework based on the
XMPP protocol that uses the participatory sensing paradigm to
provide a variety of services to the end customer. The article
describes three application scenarios for a smart environment
in which the system can be exploited. Among these, the sce-
nario of a smart campus is of interest, since the data collected
by students are exploited to improve the services offered by
the campus, like suggesting a practical order of activities to
be carried out. However, the work described in [18] relies
primarily on data originating from social networks.

In contrast, our system merges data from heterogeneous
sensors such as accelerometer, gyroscope, as well as context
information to accurately infer user activity on campus and
surrounding areas. This allows our system to reason on much
finer-grained data and consequently to offer better services
tailored to users’ preferences.

III. APPLICATION SCENARIO

In order to demonstrate the feasibility and capabilities of
the proposed system, the smart campus of the University of
Palermo has been chosen as case study. A university campus
is a great place to test participatory sensing applications, since
there are thousands of students who perform various daily
activities within it, such as attending classes, having lunch,
using sports facilities, studying in the library, etc.

Populated by young digital natives, who are accustomed
to using a wide range of technological devices on a daily
basis, the smart campus of the University of Palermo is
well representative of a small-sized smart city, as it enrolls
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Fig. 1. Proposed system architecture.

more than 40,000 students. In this scenario, advanced services
to support users are needed. For instance, students may be
interested in real-time information about the campus’ internal
transport system, as well as in knowing whether the university
cafeteria is crowded or whether seats are available in a student
lounge or in the library.

A participatory sensing application can leverage information
gathered from user devices to provide a constantly updated
report of the services offered on campus, enriched with
information about the most crowded study sites or the real-
time location of shuttle buses. This will allow students to
make informed decisions about the timing and methods of
their campus movements, as well as better planning their
extracurricular activities.

The large number of students and employees of the univer-
sity, who move daily from one part of the city to another, from
and to the campus, has clear consequences on the viability of
the entire area surrounding it.

By analyzing the continuous data stream sent by partici-
pants, it will be possible to identify patterns in the overall
behavior of the student population, accurately understand their
habits and exploit this valuable information to constantly
improve the services offered.

For example, the system may suggest that administrators
change the times or frequency of the campus shuttle buses
to suit the expected influx of students during a certain peak
time. All this could be done in real-time and on the basis
of collected data grouped by day of the week, period of year
and time of day. In addition, if the system discovers that some
isolated areas of the campus are frequented by people jogging,
the patrols of the campus’ internal security system may be
modified accordingly to ensure their safety. Also, if on certain
days of the week some sports facilities are typically left unused
after a certain time, the opening and closing times can be
optimized.

Meanwhile, the system seeks to positively change the habits
of users by encouraging the adoption of more sustainable

means of transport, such as walking, running and biking
instead of using private cars. To do this, the system suggests
that students use alternative means of transport when the data
collected indicate that there will be an excessive peak in
vehicle traffic, for example.

Users could also be encouraged to use sustainable means
of transport by introducing a leaderboard and various score
thresholds that allow them to earn levels and trophies, ac-
cording to gamification techniques successfully used by many
commercial applications of participatory sensing, such as
Waze or Ingress.

IV. PROPOSED SYSTEM

In this paper, we propose a system adopting the participatory
sensing paradigm. We describe a client-server architecture in
which the client aims to collect sensory data, extract feature
vectors and share such information with the server that will
analyze them to infer user current physical activity and offer
several services to students. In particular, the system is divided
in four main modules.

The first aims to collect the raw data from on-board
sensors of client devices. In particular, 3D values provided
by the accelerometer (XA, YA, ZA) and by the gyroscope
(XG, YG, ZG) are considered. Data collection has been im-
plemented using the MoST open-source library and runs on
users’ smartphones. Differently from other works proposed
in literature [19], our system does not take into account
the gravity acceleration, allowing the user for holding the
smartphone in the pocket pants without worrying about its
orientation.

The second module aims to process raw data to extract
feature vectors that will be used as input to the classifier.
The entire feature discovery process consists of collecting
accelerometer and gyroscope values within fixed-length time
windows, and extracting a compact feature vector fv con-
taining maximum, minimum, mean, standard deviation, and
root mean square values over the three accelerometer and
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gyroscope axes. According to this representation, each feature
vector fv contains 30 elements, i.e., 15 values of acceleration
and 15 values of angular velocity.

One of most important aspects of this phase is to choose
the proper length for the acquisition window. On one hand,
long time windows could provide a better description of the
performed activity but could negatively influence the system
performances in terms of CPU load and execution time. On the
other hand, short windows may improve the performance of
the whole system but might not provide sufficient information
to correctly classify an activity. Consequently, we have chosen
a sampling window of 3 seconds, as discussed in our previous
work [15].

The entire classification process is performed on the client
and is based on K-nearest neighbours algorithm (K-NN),
which classifies a new element according to the similarity with
its K neighbors, where K is a small positive integer. Thus,
given a training set of labeled feature vectors, an unknown
feature fvunk is assigned to a particular class C if the number
of K instances closest to fvunk is greater than the other
classes. A key factor in a successful implementation of the
algorithm is the choice of K; thus, K is generally an odd
value to avoid the system ending up in a stalemate.

Finally, locally collected data are shared with the server that
will analyze them to identify patterns in user behavior so as
to improve the services that the campus provides.

V. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of our system, we
carried out an extensive experimental evaluation.

The experiments were carried out using different smart-
phone models, equipped with accelerometer and gyroscope.

Fig. 3. Error rate obtained with 10-fold cross validation and resubstitution
with K ranging from 1 to 50.

The application can be installed on any Android device with
Ice Cream Sandwitch OS or later. In particular, we tested the
system in several smartphones, such as Samsung Galaxy Note,
Samsung S4, Samsung S5 Neo, and Samsung S7. Figure 2
shows a screenshot of the Android app used to collect the
sensory data needed to classify the activities carried out by
participants. In particular, the app interface provides the user
with a history of the most recent activities recognized by the
system, as well as context information such as date, time and
GPS position.

Assessing the accuracy of the classification algorithm is
fundamental to understand the performance of the entire
system. Considering the smart campus application scenario,
we identified five main activities that our system needs to
recognize, namely standing still, walking, running, being in
a vehicle and biking.

The first set of experiments presented here aims to identify
the K value to be used for the implementation of the K-NN
algorithm. To assess the system performances while consid-
ering different values of K, we examined the Re-Substitution
and Cross Validation error rates.

Figure 3 shows the results of the experiments, with K
ranging from 1 to 50. Considering that the classification
algorithm is executed on devices with limited computational
and energy resources, we have not considered higher values of
K, since the computational complexity of the K-NN algorithm
increases as K grows. Figure 3 shows that a value of K
equal to 7 allows the system to achieve an accuracy that is
appropriate for our application. Obviously, this is a trade-off
between accuracy and computational resources. Such trade-
off can be evaluated differently depending on the particular
application scenario, giving for example higher priority to
energy saving or application responsiveness.

Having identified the K value, we proceeded to analyze the
performance of the classification module in terms of accuracy,
precision and recall.

To underline the importance of merging data coming from
heterogeneous sensors, we performed different tests by us-
ing only acceleration values and data obtained from both
accelerometer and gyroscope.



DRAFTFig. 4. Accuracy, precision, and recall obtained by exploiting only accelerom-
eter data, or both accelerometer and gyroscope data.

Figure 4 shows accuracy, precision, and recall obtained by
both systems. As expected, results confirm that gyroscope data
are extremely important.

In fact, exploiting only accelerometer data yielded an ac-
curacy of 66.6%, compared to 88.6% obtained by fusing data
from both sensors. Therefore, the experimental evidence con-
cludes that it is extremely advantageous to exploit data coming
from the gyroscope, in addition to those of the accelerometer.

To better understand the reasons for this marked difference,
as well as to analyze more deeply the results obtained, in
Figure 5 and 6 we present the confusion matrices obtained
by the two systems. In particular, each Cij cell represents the
number of occurrences in class i that have been classified by
the system as belonging to class j. Darker cells correspond to
higher values, up to a maximum of 1. Therefore, main diagonal
values correspond to true positives, and values outside the
diagonal indicate classification errors. Ideally, we would like
to get a very dark main diagonal, and lighter values in the
other cells, which would indicate a low degree of confusion
between activities.

Figure 5 shows that the system exploiting only accelerom-
eter data has difficulty in correctly classifying the activities of
standing still and being in a vehicle. Also, even running and
biking are often confused with each other.

These difficulties can be easily explained by the fact that
data come from only one type of sensor, which cannot
unambiguously describe the patterns of some activities. In
fact, using only the accelerometer it is difficult to distinguish
between a person who is simply stationary or stationary in a
vehicle. Similarly, the accelerometer data of those running or
biking may be similar.

As expected, adding gyroscope data overcomes the problem.
The confusion matrix in Figure 6 has a very marked main
diagonal, which shows how the system is able to recognize
all activities satisfactorily, without confusing them with each
other.

Finally, since Android smartphones are devices with limited
resources, further studies have been carried out to evaluate

Fig. 5. Confusion matrix obtained by considering only accelerometer sensor
data.

Fig. 6. Confusion matrix obtained by considering both accelerometer and
gyroscope sensor data.

the resource consumption of K-NN algorithm in terms of
processing time and memory load, as the data collection
window changed. Results show that, as the length of the data
collection window increases, the memory load obtained using
the K-NN algorithm is almost constant, whilst the processing
time grows linearly. These results are very encouraging, since
memory load is a critical factor that could drastically reduce
performances of smart devices, negatively influencing the user
experience.

VI. CONCLUSION

In this article, we described a system that exploits the
paradigm of participatory sensing aiming to improve services
provided to students on the university campus.

The main element of the proposed architecture is the activity
classification module. Indeed, if the recognized activity is
uncertain or inaccurate the system could provide meaning-
less services to campus students. The process of recognizing
human activities is based on the analysis of sensory data
collected from the accelerometer and gyroscope. In particular,
the system extracts from fixed length time windows the
features of standing still, walking, running, being in a vehicle
and biking activities and sends them as input to K-NN to
recognize the activity performed by the user. Experimental
results showed the effectiveness of our implementation both in
terms of efficiency and accuracy, precision and recall metrics.
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As future work, we want to improve the mechanism of

sharing local data by users as there may be users who inten-
tionally send incorrect data to create a disservice. To this aim,
techniques of reputation management could be investigated
and adopted.
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