
NDS LAB - Networking and Distributed Systems
http://www.dicgim.unipa.it/networks/

WSN Design and Verification using On-board
Executable Specifications

S. Gaglio, G. Lo Re, G. Martorella, D. Peri

In IEEE Transactions on Industrial Informatics

Article

Accepted version

D

R

A

F

T

1

WSN Design and Verification Using

On-board Executable Specifications

Salvatore Gaglio, Member, IEEE, Giuseppe Lo Re, Senior Member, IEEE, Gloria Martorella, and Daniele Peri

Abstract—The gap between informal functional specifications
and the resulting implementation in the chosen programming
language is notably a source of errors in embedded systems
design. In this paper, we discuss a methodology and a software
platform aimed at coping with this issue in programming
resource-constrained wireless sensor network nodes (WSNs).
Whereas the typical development model for the WSNs is based
on cross compilation, the proposed approach supports high-level
symbolic coding of abstract models and distributed applications,
as well as their test and their execution, directly on the target
hardware. As a working example, we discuss the application
of our methodology to specify the functional behavior of a
radio transceiver chip. The resulting executable specifications
are augmented with automatically generated runtime verification
code. Our approach is also compared to code development for
two prominent WSN general-purpose operating systems.

Index Terms—Embedded systems, resource-constrained de-
vices, symbolic programming, system programming, system spec-
ification, wireless sensor networks.

I. INTRODUCTION

TRANSLATING hardware and software specifications into

a high-level programming language implementation is

notably error prone and embedded systems make no excep-

tion [1]. In fact, even if a description of the functional behavior

is provided that seems clear in natural language, it is not

usually so in the programming language of choice for the

mainstream development platforms [2]. Moreover, datasheets

and specification documentation may leave out some informa-

tion or provide details about typical operation cases regardless

of the target operating environment, e.g. timing constraints

or resources. The incorporation of runtime verification tech-

niques is thus quite desirable to enrich information provided

by datasheets and to ensure that the system adheres to its

functional specification during execution [3].

The burden posed to the design of embedded systems

becomes relevant when the target devices are cooperative

units composing Wireless Sensor Networks (WSNs), which are

intrinsically characterized by severe hardware limitations [4],

[5]. To reduce the decoupling between specification and ex-

ecution, and the loss of expressivity during the translation

process, the adoption of programming environments includ-

ing languages meaningful enough to specify even low-level

hardware operations is needed. The environments should also

be lightweight enough to run on resource-constrained sensor

nodes. Designers could thus benefit from the possibility of

The authors are with the Dipartimento dell’Innovazione Industriale e

Digitale, Universit`a degli Studi di Palermo, Palermo 90128, Italy (e-mail: sal-

vatore.gaglio@unipa.it; giuseppe.lore@unipa.it; gloria.martorella@ unipa.it;

daniele.peri@unipa.it). Digital Object Identifier 10.1109/TII.2018.2840534

developing code aligned with high-level specifications to make

implementations semantically clearer and to speed up code

correction when bugs are detected [6].

In WSNs, keeping the semantic content of the target code

high is difficult, especially in the context of the interpreta-

tion of collected data. Current solutions involve the use of

ontologies that allow a high-level knowledge representation

while maintaining tight bonds with the domain of interest [7].

Conventionally, the abstract model of the functional descrip-

tion passes through a series of intermediate representations

that must then be translated in the target programming lan-

guage [8], [9], [10], [11]. During this process, either automatic

or not, the expressiveness of the high level specifications

is progressively lost. In other solutions, abstract models are

graphically represented and functionally specified using im-

perative code and specialized toolkits [12].

We propose, instead, the combination of symbolic compu-

tation with an interactive programming methodology to make

testing take place during development [13].

The proposed methodology produces executable specifica-

tions capturing as much information as possible from the

informal specifications provided by datasheets. Executable

specifications inherently include verification. An oracle, which

is code recording and verifying the runtime behavior of

hardware components, is automatically generated from the

specifications.

The remainder of the paper is organized as follows. In

Section II we present the semantic model. In Section III we

describe its basic features and real implementation on WSN

nodes. In Section IV we provide guidelines and principles to

write executable specifications. Section V describes the step-

by-step development of executable specifications for a radio

transceiver chip.

In Section VI, we provide experimental results. In Sec-

tion VII, we discuss advantages and drawbacks of our se-

mantic approach and possible future investigations. Finally,

Section VIII reports our conclusions.

II. THE SEMANTIC MODEL

We propose a methodology and a development environment

based on a symbolic paradigm that is suitable for resource-

constrained devices. Leaving out the formal aspects, as in

the concept of denotational semantics [14] the meaning of

an expression is formally determined by the meanings of its

subexpressions, in our model the task is defined in terms of

the words used to describe it.

In our symbolic-based model, words are executable. This

implies that a common meaning of a word can be associated

D

R

A

F

T

2

with a computation. This approach lends itself to be composi-

tional since each symbol has a meaning, and the sequence of

words defines the semantics of the entire computation. There-

fore, this semantic model is an abstraction that maps symbols,

which can be indistinctly numbers, adjectives, objects or

actions, to the real world. Moreover, the interpretation of the

meaning from the instances themselves permits to express

information without the need for conventional metamodeling

techniques [15] since it is based on natural language words

carrying shared semantics.

In this perspective, we adopted Forth [16] as our foun-

dational tool. Forth is a postfix stack-based programming

language that does not have a formally defined syntax, but

rather permits the syntax itself to be semantically defined by

the order in which the words follow each other. In a Forth-

based environment, new words can be easily created and added

to the system dictionary. The word : (colon) is the Forth word

to define a new word and ; (semicolon) ends its definition. A

word definition entails the association of a computation that

is expressed as a sequence of executable words already in the

dictionary. For instance, the following code:

: 2* 2 * ;

defines the word 2* that multiplies the value on top of the

stack by 2 using the constant 2 and the previously defined

word *. This concept is similar to the action of explaining

the meaning of a word in everyday speech as a sequence of

other words with well-known meaning. This means that the

programming paradigm is model-oriented, in the sense that the

designer incrementally includes new words in the environment,

eventually defining a new language made up of words that are

aligned with the requirements and the high-level domain. New

symbols can be defined as deferred words. The computation

associated to these symbols can be set to that of any word

in the dictionary. This technique is adopted in Section VI to

enable or disable the online monitoring feature.

III. A SEMANTIC ENVIRONMENT RUNNING ON WSN

NODES

The typical WSN programming model, which is supported,

for instance, by the widespread TinyOS and Contiki operating

systems, is based on hosted cross compilation. Instead, the

semantic model we adopted enables interactive development

of high-level implementations for the low-level task hard-

ware management. Indeed, we developed a number of words

grouped into word sets to deal with the on-board hardware and

provide basic functionality for developing high-level task. Our

reference hardware platform is the IRIS mote, which is based

on an AVR Atmega 1281 microcontroller (MCU) running at

nearly 8 MHz and equipped with 128 KiB Flash, 8 KiB RAM

and 4 KiB EEPROM memories. Word definitions are stored in

Flash memory. Data, stacks and variables are located in RAM.

A few pointers and global values are stored in the EEPROM.

The semantic model described in Section II is inherent in

the AmForth environment [17] that we ported to our hardware

test platform. AmForth is written in Forth and assembly,

and permits the interaction with AVR MCUs via a shell

in a serial terminal. We also developed words to support

the implementation of sensing and actuation tasks as well

as networking abstractions. To specify distributed computing

tasks, since in the natural description of a cooperative task it

can be said that a node tells another node to do something,

we defined a syntactic construct that perfectly fits this informal

description. The sequence of words between the words tell:
and :tell is sent to a remote node and instantaneously

executed on the receiving side.

We thus provide a programming environment in which it

is possible to develop code structurally similar to the original

specifications, by encapsulating lower level implementations

–i.e. to set ports, registers and so on– in expressive words

operating directly on the hardware device. This poses the

basis to develop code that is fully aligned with its functional

description, but in an effective way since it runs directly on

the hardware without any other intermediate translation stage.

The on-board interpreter permits to implement tasks on

remote nodes and in real circumstances without the need

of simulation tools. While syntactically correct statements

in most widespread programming languages are formally

described by grammars, the syntax of Forth is guided by

semantics [18]. Additionally, Forth is not only interpreted

but offers on-board compilation as a standard programming

method.

Other attempts to bring onboard interpreters to resource-

constrained devices target either simple languages as BA-

SIC [19] or higher-level languages, such as Java and Python.

Among these, T-RES [20] is a Python-based implementation

above Contiki and WiSMote [21], Mat´e [22] is built above

TinyOS and MicaZ[23], and TakaTuka [24] lies above a re-

stricted Java VM running on IRIS mote. These approaches do

not offer enough expressiveness to justify their huge resource

consumption, though. For instance, VMs of both T-RES and

Mat´e occupy about 15 KiB RAM over 16 KiB and about 3

KiB over 4 KiB of the available RAM, respectively. Con-

sidering that the available RAM, which stores the bytecode,

is almost saturated, runtime verification of symbolic code is

impracticable.

Supporting symbolic computation as well as other program-

ming abstractions on-board these VMs, e.g. aspect-oriented

programming, may also require to extend existing program-

ming languages [25]. Differently, in our approach the word

dictionary is stored in the relatively abundant Flash, while

RAM just holds temporary data, stacks and buffers. Moreover,

our methodology does not require cross compilation, as both

application and system code can be sent even to deployed

nodes [5]. Our methodology also supports runtime evaluations

of the verification code and symbolic interchange model gen-

eration, both on the target hardware, as shown in Section VI.

IV. KEY STEPS TO MAKE HIGH-LEVEL DESCRIPTIONS

EXECUTABLE

In this section we describe the key steps to translate informal

specifications into executable ones expressed through symbolic

code for the semantic environment previously presented.

• Step 1: Assessment of functional aspects. The primary

step is grasping and abstracting the main aspects of the

D

R

A

F

T

3

system. For distributed computing applications, as our

paradigm allows for the exchange of executable code be-

tween nodes, the task must be implemented according to

an “interaction-oriented” model as a set of computations

that take place locally, and interactions in which a node

tells another one what to do [5].

• Step 2: Key concepts identification. After the whole

high-level operation has been figured out, it is necessary

to extract the key concepts from the specifications ex-

pressed in natural language. A good practice is trying

to explain the operation by putting the main concepts

into words. This step allows identifying the essential

parts and decomposing the problem–e.g. system oper-

ation, algorithms and distributed protocols–into smaller

computations.

• Step 3: Translation of concepts into words. The main

concepts already identified in the previous step are quite

abstract and can be thought of as the words of the

high level code in our semantic model. To maintain

a high semantic content, is therefore, good practice to

include words whose name refers to the computation

associated with it. Therefore, the design proceeds through

a top-down approach, from general concepts to more

specialized ones. Essentially, a generic concept is the

composition of more specific concepts as well as a high-

level word is defined on the basis of more specific words.

• Step 4: Wordset definition. In this phase coding is

carried-out, as words are being defined on real hardware

devices. The design process proceeds in a top-down

manner, coding follows a bottom-up path. In fact, as the

definition of new words is based on words that are already

defined, more specific words must be coded before more

general ones. The proposed environment is interactive

even on deployed nodes through the wireless connection,

and this feature makes it possible to define a word and

immediately test its operation. Code correction simply

involves the redefinition of the word, i.e., its association

with another computation.

These guiding principles are applicable even for the de-

velopment of distributed protocols in the WSN scenario as

well as for the development of hardware component drivers.

Nevertheless, the design of new protocols and components

goes beyond the aim of this discussion. In the next section, we

focus instead on practical development on real resource-poor

nodes, and on the attainment of executable specifications for

hardware components.

V. CASE STUDY: EXECUTABLE SPECIFICATIONS FOR

RUNTIME VERIFICATION OF AN ON-BOARD RADIO

In this section we apply the outlined methodology showing

how to map informal specifications provided by datasheets to a

high-level running implementation that drives a hardware com-

ponent. In particular, we focus on the AT86RF230 transceiver

chip [26], which is embedded in our reference hardware

platform. For verification purposes, we show the development

of an online oracle for monitoring the radio operation during

execution and assess that the system operates as expected. The

goal is not only to check that the subsystem complies with the

specifications but also to discover information omitted by the

reference documentation.

Usually, the implementation of an oracle on resource-

constrained systems involves considerable overhead [4]. We

show instead that the outlined methodology allows for an im-

plementation with low memory footprint. In the remainder of

the section we describe the implementation of the executable

specifications (Listing 3) as it was actually performed on the

target hardware using the symbolic programming methodology

and environment described previously. The resulting code is

just one of the many possibilities that the designer may choose

from. Interestingly, different symbolic formalisms can coexist

in the same environment given the plenty of storage space that

remains available after the installation of the interpreter.

A. Step 1 in practice

The abstract model used in the data sheet to represent the

radio operation is a finite state machine (FSM). Radio key

functionalities, such as transmission or frame reception, are

enabled by performing state transitions.

Henceforth, we use italics for some keywords in the system

functional description that can be found in the final code.

Following the specifications, running a certain command, a

state reaches another state. This occurs either by writing the

transition identification number to a predefined radio register,

by asyncronous events, or by rising or falling the SLP TR

pin. Symbols performing state transitions are: trx off, pll on,

rx on, sleep, force trx off, tx start. The sfd detected event

indicating the detection of an incoming valid frame, and the

frame end event to signal the end of reception/transmission

also cause state transitions. The transceiver distinguishes be-

tween six events on the same interrupt line that are dispatched

by reading the IRQ STATUS register. A transmit operation can

be triggered by writing tx start to the TRX STATE register,

if the radio is in the pll on state, whereas frame reception

is enabled in the rx on state. A successful state change can

be confirmed by reading the somewhat confusingly named

TRX STATUS register. The abstract model arising from the

first step is illustrated in Figure 1.

B. Step 2 in practice

In this step, non functional requirements, such as state

transition timings, which are also provided by the reference

documentation, are needed to enrich the FSM description.

Therefore, another useful concept that was identified is the

typical time needed to perform a state transition.

C. Step 3 in practice

Keywords should be aligned with their specific code-

implementation. Proceeding from the top downward, as in-

dicated in Figure 2, high-level words are decomposed into

more specific concepts. Word names should be chosen as

close as possible to those used in the description. This step

should not be underestimated, as it is essential to maintain the

semantic content of the specifications in the names of words.

D

R

A

F

T

4

p_on

trx_off

sleep

pll_on busy_txrx_onbusy_rx

reset

rx_on_
noclk

trx_off

trx_off

trx_off

rx_on

rx_on

pll_on

pll_on

sfd_detected

frame_end
frame_end

sfd_
detected SLP_TR=H

or tx_start

SLP_TR=H

SL
P

_T
R

=L

SLP_TR=L

RST=H
(all states except p_on)

RST=L

Control Signal via IC pin
SPI Write to register TRX_STATE
Event
Internal event

force_trx_off
(all states except sleep)

tx_aret
on

busy_
tx_aret

SLP_TR=H or
tx_start

frame_end

from
trx_off

rx_aack_
on

busy
rx_

aack

sfd_detected*

transition finished *

rx_aack_
on_noclk

rx_aack_
noclk

frame
accepted*

sfd_detected*

frame rejected *

SL
P

_T
R

=H

Extended Operating Mode State

Basic Operating Mode State*

Fig. 1: Step 1. The operation of the radio transceiver chip is described

by a finite state machine in the datasheets. The frame_end event in

transmission is actually generated differently, as found with the runtime

component verification tool (Sect. VI-B). Internal events are not exposed to

the MCU.

trx_off

trx_off_state cmd_wr

trx_state reg_wrtrac_status

Fig. 2: Step 3. High level concepts must be translated into expressive words.

The design proceeds following a top-down approach, from general concepts

that are progressively specialized.

The top-down approach is reflected in the design of the words

that proceed toward a gradually lower level of abstraction

until built-in words are reached. As an example, performing

trx_off involves executing the command associated to the

trx_off state (Listing 3, line 63). In turn, cmd_wr uses the

word reg_wr that writes to the TRX STATE radio register

using the SPI interface (Listing 3, lines 12, 8).

D. Step 4 in practice

Let us translate the high level functional abstract model in

Figure 1 into a program to be executed on the target ma-

chine for the component verification. The word set to specify

FSMs includes words to express concepts, such as events,

states, symbols, and state transitions. The words state: and

symbol: define states and symbols of the radio module, as

follows:

8 state: trx_off
symbol: trx_off

The code captures the fact that the two uses of trx_off
are semantically different. In the first case, it indicates a

state name, preceded by a state number, and in the latter, the

symbol that causes the identically named state transition. The

word event: is used to define high-level events, as follows:

event: frame_end

The words used to refer to symbols, states and events are rather

generic and can be used to specify other hardware components

whose functional behavior can be represented with a FSM.

To provide a generic and abstract way of specifying FSM

state transitions, the word running: is used to specify an

input symbol or event causing the state transition, whereas

the word reaches: is used to express the transition among

two states caused by the execution of the specified symbol.

The underlying idea is to translate the FSM into expressive

sentences that bring to mind the graphical representation.

For instance, running trx_off, the pll_on state reaches

trx_off. This is expressed by the following target code:

running: trx_off state: pll_on reaches: trx_off
doing: nothing

The optional word doing: is followed by a word whose

associated computation is the sequence of actions to be done

reaching the arrival state. In this case, the computation asso-

ciated to the word nothing is a no-operation.

Previous steps also highlighted the high-level concept of

transition timing. As the datasheet associates a unique symbol

to each transition timing, the word time: is used to specify

such a symbol. For instance, as found in the chip specifica-

tions, tr5 is the symbol identifying the state transition from

the pll_on state to trx_off. The typical time spent in this

state transition is 1 µs. The transition timing, if found in the

specifications, can be expressed as follows:

1 us time: tr5

and incorporated into the executable specifications using the

optional prefix taking:.

running: trx_off state: pll_on reaches: trx_off
doing: nothing taking: tr5 time

The executable specifications concerning the FSM are pro-

vided in Listing 3. For comparison, the code extracted from

the Contiki source base that is most related to ours is shown in

Listing 4. Although both codes define the FSM state change,

they do not overlay perfectly. Indeed, in almost the same lines

of code, the former includes all the definitions from the high-

level ones defining the FSM to the reg_wr word driving

the SPI bus signals. The whole transition beginning with the

SPI handshaking (ss_h, ss_l) and enclosed by critical

section markers (int+, int-) is compactly represented. In

the Contiki code, the hardware driving code is hidden in lower

level layers but adds up to the overall source length. In fact, the

same abstract model commingles with the language structures,

and constraints and debug macros are used. Moreover, Contiki

code makes use of busy loops and uses extended states which

slightly simplify management of ACK transmission (Fig. 1),

whereas ours is totally interrupt driven. Similar considerations

apply to the TinyOS radio driver code, which is not shown.

The AT86RF230 transceiver distinguishes between six events

on the same interrupt line, although only two of them signal

state transitions and are reported in the state diagram. The

executable specifications bind state transitions, interrupts, and

the symbols triggered by the latter, defining an interrupt

dispatcher as follows:

D

R

A

F

T

5

dispatcher rf230-dispatcher
conditions: (-- 0)
cond: irq_value trx_end equals ;cond --> frame_end
cond: irq_value rx_start equals ;cond --> sfd_detected
cond: irq_value pll_lock equals ;cond --> noop
cond: irq_value pll_unlock equals ;cond --> noop
cond: irq_value trx_ur equals ;cond --> noop
cond: irq_value bat_low equals ;cond --> noop
;conditions

The word dispatcher is used to define a dispatcher named

rf230-dispatcher. Then interrupt conditions are listed,

each of which is enclosed in the cond: <code> ;cond syn-

tactic construct. The word equals compares the signaling bit

of the irq register to the bitmask of a state, while --> is used to

specify the word to be executed once the condition is verified.

Events are executable symbols corresponding to interrupt

service routines to handle low level interrupts. For instance,

a frame_end event is triggered once the irq_value, i.e.

the value in the IRQ STATUS register, has the trx_end bit

set. Event and bit names are exactly the same reported in the

datasheet.

E. A Runtime Component Verification Tool

As specifications are executed on the target hardware plat-

form, implementing a runtime component verification tool

only requires to redefine words whose execution causes a state

transition. The tool, hereinafter called the oracle, monitors the

radio transceiver operation and verifies that it adheres to its

state machine model during execution. Actually, the construct

running: <symbol> redefines <symbol> as preamble
<symbol> conclusion.

The words preamble and conclusion are deferred

words. By default preamble and conclusion are set

to a noop operation and the online monitoring feature is

disabled. To enable it, both words are simply redefined. The

redefined preamble checks that the current radio state in

the TRX_STATUS radio register equal the value of the status

variable. The redefined conclusion records the timer value,

the expected reached state from the FSM table, and the

corresponding transition timing.

The oracle uses status variables storing the expected radio

state as well as some statistics about the expected and actual

transition timing, and the current number of right and wrong

transitions. Then, the actual radio state is compared to the

expected one and statistics are updated.

VI. EXPERIMENTAL EVALUATION

In this section we discuss the use of the oracle to gather

useful metrics by running the specifications on the target

platform. In all but the first test, symbolic code is exchanged

by nodes and locally executed to perform the respective task.

To provide values of actual transition timings as accurate

as needed, test code was executed repeatedly recording the

aggregate time for state transitions and the expected time

computed from specifications. Runs with 1, 10, 1000 and

10000 repetitions were performed 5 times each to record the

trends as the number of repetitions increased. The average time

per repetition along with standard deviation, and minimum

and maximum value is reported for each test in Table I.

We also performed tests to assess the oracle overhead by

performing the runs with 10000 repetitions twice. On the first

series of runs the oracle was enabled, on the second one it

was disabled. Again, each series of runs was carried out 5

times to obtain average, standard deviation, and minimum and

maximum values for the turnaround time. Estimates for oracle

overhead were then obtained by comparing the timings of the

two runs along with the aggregate transition timings provided

by the oracle (see Table II).

A. FSM State Path Test

In the first test the runtime oracle monitored the radio

operation of the reference platform during the execution of

a task consisting in repeatedly switching OFF and ON the

on-board transceiver. From the abstract model perspective,

this high-level task involves the transition from the trx_off
state to the pll_on state and back again to the trx_off
state. As an example of the how close the code can be to the

specifications, we provide the complete definition, which is a

transposition of the informal description given in the sentence

above into a do-loop, of the FSM test:

: fsm-path 0 do trx_off pll_on trx_off loop ;

The number of repetitions must be left on the stack before issu-

ing the fsm-path command. The oracle response confirmed

that, during all the test executions, the radio operation met the

specifications as no mismatch between expected and actual

states occurred. The runtime verification tool also provided

useful information about the transition timing.

Results show that the time required to traverse the state path,

which is calculated according to typical transition timing found

in the datasheets, always exceeded the actual time needed for

this execution on the real target machine (see Table I).

B. Transmission Stress Test

Whereas switching the radio transmitter ON and OFF does

not involve dealing with interrupts, the correct transmission of

a frame is signaled by a high-level radio event.

The aim of the transmission stress test was to analyze the

radio behavior during repeated frame transmissions to verify

that events are handled according to specifications.

A 26-B IEEE802.15.4-2003 standard compliant frame with

a payload consisting in the code to turn ON the green LED of a

deployed node was used. The data collected by the oracle show

that even in this case, the actual time spent to perform repeated

frame transmissions was lower than the value reported in the

datasheet.

However, the oracle indicated a violation of the specifi-

cations, revealing incorrect state transitions although frame

transmission proceeded properly. This seeming incoherence

occurred when the oracle found the radio in the pll_on
state, whereas it expected it to be in the busy_tx state

on the frame_end in transmission (Figure 1). In fact, only

having a look at the FSM diagram included in the transceiver

specifications, the asynchronous frame_end event seemed

responsible of the state change from busy_tx to pll_on.

Instead, in another part of the documentation is reported that

after a correct transmission the system re-enters the pll_on

D

R

A

F

T

6

TABLE I: Results of the FSM State Path, Transmission Stress, and Transmis-

sion and Reply Tests, as repetitions increase.

State transition overall Repetitions
time per repetition [µs] 10 100 1000 10000

FSM State
Path

Computed from specifications 181.00 181.00 181.00 181.00

Actual (Average) 45.76 45.42 45.41 45.53

Std. Dev. 0.72 0.14 0.03 0.03

Min Value 44.80 45.28 45.38 45.49

Max Value 46.50 45.63 45.47 45.55

Transmission
Stress

Computed from specifications 48.00 48.00 48.00 48.00

Actual (Average) 26.06 25.98 25.97 25.98

Std. Dev. 0.18 0.06 0.02 0.01

Min Value 25.80 25.91 25.95 25.97

Max Value 26.30 26.04 25.99 25.98

Transmission
and Reply

Computed from specifications 28.80 24.48 24.05 24.01

Actual (Average) 4245.20 4309.46 4340.15 4344.86

Std. Dev. 1.45 0.83 0.05 0.02

Min Value 4243.60 4308.54 4340.11 4344.82

Max Value 4247.00 4310.32 4340.21 4344,88

state, and only after that the frame_end event is generated.

To resolve such a discrepancy, as interrupting events are

asynchronous and can be triggered by the system at any

time, a refinement process of the executable specifications was

needed that permitted treating transitions caused by events and

symbols differently. In fact, events signal that a state has been

reached. Therefore, we slightly changed the executable spec-

ifications to take into account events by using specifications

like:

occurring: frame_end reached: pll_on from: busy_tx
taking: tr11 time

This way, a frame_end event detection in the pll_on state

made the oracle consider state transitions as correct, even if

it was unable to assess the radio had transitioned through the

operatively “invisible” busy_tx state.

C. Transmission and Reply Test

The transmission and reply test was aimed at assessing the

behavior of the radio component in a distributed computation

task. The experimental setup consisted of two WSN nodes. In

turn, each node incremented a shared value, stored it and then,

after a 10-ms delay accounting for packet collision overhead

in larger networks, sent it to the other node along with the

sequence of symbols to command it to do the same. The

exchange continued until the maximum number of repetitions

was reached on a node. The overall state transition time thus

aggregates the time for n repetitions of the message exchange

task involving both nodes. This test made intensive use of

the radio so the symbolic interrupt management code was

particularly stressed. Actual time exceeded the expected one

as the oracle measured, besides the time needed for state

transitions, the time the radio transceiver remained in the

reception state until the event signaling reception occurred.

Measurements of this kind are often used as metrics to assess

energy consumption. In our case, the oracle provided precise

results in a real application on real hardware, without needing

to resort to simulated environments.

VII. DISCUSSION

To provide an overall comparison of our methodology

to the typical WSN development practice we discuss the

implementation of application code using the radio subsystem

whose executable specifications were defined in the previous

TABLE II: Turnaround timings along with oracle and test code execution time

for FSM State Path, Transmission Stress, and Transmission and Reply Tests

over 10000 repetitions (t4 = t1 � t2, t5 = t2 � t3)

Timings per repetition [µs] FSM State
Path

Transmission
Stress

Transmission
and

Reply
Turnaround

time
Oracle on (t1)

24623.80 87541.40 2974077.00

Oracle off (t2)

4504.40 45879.60 1284048.60

State transition overall time (t3) 45.53 25.98 4344.86

Execution
time

Oracle (t4)

20119.40 41661.80 1690028.40

Test Code (t5)

4458.87 45853.62 1279703.74

t1 Std. Dev. 17.40 33.56 52.18

t1 Min Value 24610 87507 2974020

t1 Max Value 24653 87590 2974159

t2 Std. Dev. 0.55 1.14 1.52

t2 Min Value 4504 45878 1284047

t2 Max Value 4505 45881 1284051

TABLE III: Comparison of two WSN programming models based on cross

compilation and the interactive one of the experimental setup.

TinyOS Contiki Experimental Setup
Source Code (Driver+Application)

Lines of code 4200+210 4328+61 649+8

Size in bytes 99775+6501 185720+3838 19266+410

Memory Footprint (RAM+Flash) [B]
Application 474+11968 3238+20570 1058+5808

Interpreter and compiler n.a. n.a. 289+17306

sections. We picked one of the WSN applications provided

with TinyOS (v. 2.1.2), which are written in its native C-

derived programming language nesC, and wrote versions for

our environment (Listing 1) and Contiki. The application con-

sists in sampling the environmental temperature with a given

interval between samples (default 1s). Every 10 samplings

the values are transmitted to a base station. Such a simple

application is actually disadvantageous for our approach as the

benefit of high level symbolic code become generally more

evident as the complexity of tasks arise. The three versions

of the applications were compared in terms of source lines

of code, source size, and memory footprint, with separate

figures for driver and application code. Results are reported

in Table III. Excluding the overhead of the interpreter and

compiler, our driver and application source code turned out to

be more compact than the other two, whereas the three are

comparable in terms of memory footprint. However, the on-

board interpreter and compiler support interactive and experi-

mental programming. Thus, hardware driving and application

code can be written and tested definition-by-definition on

the target hardware. Moreover, our code is sent via radio, a

feature that the other environments lack. This also enables

testing interactively distributed applications. For instance, the

behavior of the example application (Listing 1) can be changed

dynamically on deployed nodes simply by sending them a new

symbolic rule. Listing 2 shows the code to broadcast a rule

making each node to decrease the sampling interval by 10 ms

if the maximum value sampled by the node is below 50.

Although the interactivity of the testing phase makes it fast,

it cannot prevent every malfunction and error. It is impossible,

in fact, for the designer to enumerate all the potentially

occurring situations as well as the behavior of the system

for all the possible inputs. Future work will concern on-board

formal verification and automatic translation of specifications.

Listing 1: Code of the test application. In-line comments follow a backslash.

1 variable base-station \ A variable for the receiver address

2 10 buffer samples \ A buffer for 10 samples

3 variable interval 1000 interval ! \ The default interval is 1000 ms

D

R

A

F

T

7

4

5 : send-samples default-pkt dest addr base-station @ s_addr! payld

addr samples buffer-ptr samples buffer-count a>pkt outbound

transmit ;

6 : oscilloscope.isr 1 timer3.tick +! temperature samples buffer-add

samples buffer-full? if send-samples samples buffer-reset then ;

7 : oscilloscope [’] oscilloscope.isr interval @ timer3.init

timer3.start ; \ Init time3 to trigger the interrupt service

8 \ routine with the interval value, and start it.

Listing 2: Code enclosed between tell: and :tell is broadcast to make

each node adjust its sampling interval by processing its last readings.

1 bcst tell: samples buffer-max 50 < [if] -10 interval +! [then] :tell

VIII. CONCLUSIONS

In this paper, we proposed a development methodology

for distributed computing based on a very high-level and

interactive programming approach that is feasible for resource-

constrained devices such as those usually found in WSNs.

We applied the proposed approach showing how to proceed

from the descriptions provided by datasheets to a high-level

implementation of a driver for a WSN radio transceiver chip.

Moreover, the executable specifications also provide an oracle

for the runtime verification of the hardware module. The final

code is compact and coherent with the FSM functional model

in the datasheets. We also discussed the implementation of

a WSN application using the radio driver in our interactive

programming environment and compared it to versions for two

prominent WSN programming environment. We showed how

our application code, while high-level and compiled on-board,

has direct access to the hardware low-level details. Moreover,

the behavior of our implementation can be changed at runtime

by sending a symbolic rule to deployed nodes.

REFERENCES

[1] E. Estevez and M. Marcos, “Model-Based Validation of Industrial

Control Systems,” IEEE Transactions on Industrial Informatics, vol. 8,

no. 2, pp. 302–310, May 2012.

[2] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level:

Towards Verification-driven Design Based on Natural Language Pro-

cessing,” in Forum on Specification and Design Languages (FDL), 2012,

Sept 2012, pp. 53–58.

[3] S. Fischmeister and P. Lam, “Time-Aware Instrumentation of Embedded

Software,” IEEE Transactions on Industrial Informatics, vol. 6, no. 4,

pp. 652–663, Nov 2010.

[4] P. Iyenghar, E. Pulvermueller, M. Spieker, J. Wuebbelmann, and

C. Westerkamp, “Time and Memory-aware Runtime Monitoring for

Executing Model-based Test Cases in Embedded Systems,” in 11th IEEE

International Conference on Industrial Informatics (INDIN), 2013, July

2013, pp. 506–512.

[5] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “DC4CD: A

Platform for Distributed Computing on Constrained Devices,” ACM

Trans. Embed. Comput. Syst., vol. 17, no. 1, pp. 27:1–27:25, Dec.

2017. [Online]. Available: http://doi.acm.org/10.1145/3105923

[6] N. Moha, Y.-G. Gu´eh´eneuc, A.-F. Meur, L. Duchien, and A. Tiberghien,

“From a Domain Analysis to the Specification and Detection of Code

and Design Smells,” Formal Aspects of Computing, vol. 22, no. 3-4, pp.

345–361, 2010.

[7] J. Serrano, J. Serrat, and J. Strassner, “Ontology-Based Reasoning for

Supporting Context-Aware Services on Autonomic Networks,” in IEEE

International Conference on Communications, 2007. ICC ’07, June

2007, pp. 2097–2102.

[8] A. F. Martins and R. de Almeida Falbo, “Models for Representing Task

Ontologies,” in Proceedings of the 3rd Workshops on Ontologies and

their Application, 2008.

[9] H. Wada, P. Boonma, J. Suzuki, and K. Oba, “Modeling and Executing

Adaptive Sensor Network Applications with the Matilda UML Virtual

Machine,” in Proceedings of the 11th IASTED International Conference

on Software Engineering and Applications. ACTA Press, 2007, pp.

216–225.

[10] M. Shahbaz, K. C. Shashidhar, and R. Eschbach, “Iterative Refinement

of Specification for Component Based Embedded Systems,” in Pro-

ceedings of the 2011 International Symposium on Software Testing and

Analysis, ser. ISSTA ’11. New York, NY, USA: ACM, 2011, pp. 276–

286.

[11] M. A. Wehrmeister, C. E. Pereira, and F. J. Rammig, “Aspect-Oriented

Model-Driven Engineering for Embedded Systems Applied to Automa-

tion Systems,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4,

pp. 2373–2386, Nov 2013.

[12] A. Bakshi, J. Ou, and V. K. Prasanna, “Towards Automatic Synthesis

of a Class of Application-specific Sensor Networks,” in Proceedings

of the 2002 International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems, ser. CASES ’02. New York, NY,

USA: ACM, 2002, pp. 50–58.

[13] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “A Fast and Interactive

Approach to Application Development on Wireless Sensor and Actuator

Networks,” in Proceedings of the 2014 IEEE Emerging Technology and

Factory Automation (ETFA), Sept 2014, pp. 1–8.

[14] H. F. Guo, L. Cao, Y. Song, and Z. Qiu, “Automated Test Oracle

Generation via Denotational Semantics,” in 2014 14th International

Conference on Quality Software, Oct 2014, pp. 139–144.

[15] V. Vyatkin, “Software Engineering in Industrial Automation: State-of-

the-Art Review,” IEEE Transactions on Industrial Informatics, vol. 9,

no. 3, pp. 1234–1249, Aug 2013.

[16] D. M. Hanna, B. Jones, L. Lorenz, and S. Porthun, “An Embedded Forth

Core with Floating Point and Branch Prediction,” in 2013 IEEE 56th

International Midwest Symposium on Circuits and Systems (MWSCAS),

Aug 2013, pp. 1055–1058.

[17] “AmForth Documentation,” 2013, available online at http://amforth.

sourceforge.net/amforth.pdf.

[18] B. Stoddart, C. Ritchie, and S. Dunne, “Forth Semantics for Compiler

Verification,” in Proceedings of the 28th EuroForth Conference, 2012,

pp. 45–58.

[19] J. S. Miller, P. A. Dinda, and R. P. Dick, “Evaluating a BASIC Approach

to Sensor Network Node Programming,” in Proceedings of the 7th ACM

Conference on Embedded Networked Sensor Systems, ser. SenSys ’09.

New York, NY, USA: ACM, 2009, pp. 155–168.

[20] D. Alessandrelli, M. Petracca, and P. Pagano, “T-res: Enabling recon-

figurable In-network Processing in IoT-based WSNs,” in 2013 IEEE

International Conference on Distributed Computing in Sensor Systems,

May 2013, pp. 337–344.

[21] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and

flexible operating system for tiny networked sensors,” in 29th Annual

IEEE International Conference on Local Computer Networks, Nov 2004,

pp. 455–462.

[22] P. Levis and D. Culler, “Mat´e: A Tiny Virtual Machine for Sensor

Networks,” in Proceedings of the 10th International Conference on

Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS X. New York, NY, USA: ACM, 2002, pp.

85–95. [Online]. Available: http://doi.acm.org/10.1145/605397.605407

[23] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, TinyOS:

An Operating System for Sensor Networks. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 115–148. [Online]. Available:

http://dx.doi.org/10.1007/3-540-27139-2 7

[24] F. Aslam, C. Schindelhauer, G. Ernst, D. Spyra, J. Meyer,

and M. Zalloom, “Introducing TakaTuka: A Java Virtualmachine

for Motes,” in Proceedings of the 6th ACM Conference on

Embedded Network Sensor Systems, ser. SenSys ’08. New York,

NY, USA: ACM, 2008, pp. 399–400. [Online]. Available: http:

//doi.acm.org/10.1145/1460412.1460472

[25] E. Lakshika, C. Keppitiyagama, and D. Wathugala, “AOnesC: An

Aspect-Oriented Extension to nesC,” in 2008 New Technologies, Mo-

bility and Security, Nov 2008, pp. 1–5.

[26] “AT86RF230 Datasheet,” 2016, available online at http://www.atmel.

com/images/doc5131.pdf.

D

R

A

F

T

8

Listing 3: Executable specifications for the radio subsystem

1 $7F constant reg_addr_mask $E0 constant trac_status_mask

2 $80 constant reg_rd_command $C0 constant reg_wr_command

3 $08 constant trx_off_state $02 constant trx_state

4

5 : reg_rd

6 reg_addr_mask and reg_rd_command or

7 -int ss_h ss_l spi! spi@ ss_h +int ;

8 : reg_wr

9 reg_addr_mask and reg_wr_command or

10 -int ss_h ss_l spi! spi! ss_h +int ;

11 : trac_status trx_state reg_rd trac_status_mask and 5

rshift ;

12 : cmd_wr trac_status 5 lshift or trx_state reg_wr ;

13

14 14 states 10 symbols 1 events

15

16 00 state: p_on 01 state: busy_rx 02 state: busy_tx

17 06 state: rx_on 08 state: trx_off 09 state: pll_on

18 15 state: sleep 17 state: busy_rx_aack

19 18 state: busy_tx_aret 22 state: rx_aack_on

20 25 state: tx_aret_on 28 state: rx_on_noclk

21 29 state: rx_aack_on_noclk 30 state: busy_rx_aack_noclk

22 start: rx_aack_on

23

24 symbol: trx_off symbol: pll_on symbol: tx_aret_on

25 symbol: rx_aack_on symbol: tx_start symbol: rx_on

26 symbol: SLP_TR=H symbol: SLP_TR=L symbol: RST=L

27 symbol: RST=H

28

29 event: frame_end

30

31 880 time: tr1 880 time: tr2 35 time: tr3 180 time: tr4

32 1 time: tr5 180 time: tr6 1 time: tr7 1 time: tr8

33 1 time: tr9 16 time: tr10 32 time: tr11 1 time: tr12

34 120 time: tr13

35

36 running: trx_off state: p_on reaches: trx_off taking tr1 time

37 running: trx_off state: pll_on reaches: trx_off taking: tr5

time

38 running: trx_off state: rx_on reaches: trx_off taking: tr7

time

39 running: pll_on state: trx_off reaches: pll_on taking: tr4

time

40 running: pll_on state: rx_on reaches: pll_on taking: tr9 time

41 running: rx_on state: trx_off reaches: rx_on taking: tr6 time

42 running: rx_on state: pll_on reaches: rx_on taking: tr8 time

43 running: tx_start state: pll_on reaches: busy_tx taking: tr10

time

44 running: tx_aret_on state: pll_on reaches: tx_aret_on

45 running: pll_on state: tx_aret_on reaches: pll_on

46 running: rx_aack_on state: pll_on reaches: rx_aack_on

47 running: pll_on state: rx_aack_on reaches: pll_on

48 running: tx_aret_on state: trx_off reaches: tx_aret_on

49 running: rx_aack_on state: trx_off reaches: rx_aack_on

50 running: tx_start state: tx_aret_on reaches: busy_tx_aret

51 running: SLP_TR=L state: rx_aack_on_noclk reaches: rx_aack_on

52 running: SLP_TR=H state: rx_aack_on reaches: rx_aack_on_noclk

53 running: SLP_TR=L state: rx_on_noclk reaches: rx_on

54 running: SLP_TR=H state: rx_on reaches: rx_on_noclk

55 running: SLP_TR=H state: pll_on reaches: busy_tx

56 running: SLP_TR=H state: tx_aret_on reaches: busy_tx_aret

57 running: SLP_TR=H state: trx_off reaches: sleep

58 running: SLP_TR=L state: sleep reaches: trx_off

59 occurring: frame_end reached: pll_on from: busy_tx taking:

tr11 time

60 occurring: frame_end reached: tx_aret_on from: busy_tx_aret

61 unmeasurable busy_tx unmeasurable busy_tx_aret

62

63 : trx_off trx_off_state cmd_wr ;

Listing 4: Contiki source code of the radio state change function

1 radio_set_trx_state(uint8_t new_state)

2 {

3 uint8_t current_state;

4 if (!((new_state == TRX_OFF) ||

5 (new_state == RX_ON) ||

6 (new_state == PLL_ON) ||

7 (new_state == RX_AACK_ON) ||

8 (new_state == TX_ARET_ON))){

9 return RADIO_INVALID_ARGUMENT; }

10

11 if (hal_get_slptr()) {

12 DEBUGFLOW(’W’);

13 return RADIO_WRONG_STATE;

14 }

15

16 rf230_waitidle();

17 current_state = radio_get_trx_state();

18

19 if (new_state == current_state){

20 return RADIO_SUCCESS;

21 }

22

23 if(new_state == TRX_OFF){

24 if (hal_get_slptr()) DEBUGFLOW(’K’);DEBUGFLOW(’K’);

25 DEBUGFLOW(’A’+hal_subregister_read(SR_TRX_STATUS));

26 radio_reset_state_machine();

27 } else {

28 if (((new_state == TX_ARET_ON) && (current_state ==

RX_AACK_ON)) ||

29 ((new_state == RX_AACK_ON) && (current_state ==

TX_ARET_ON))){

30 hal_subregister_write(SR_TRX_CMD, PLL_ON);

31 delay_us(TIME_STATE_TRANSITION_PLL_ACTIVE);

32 }

33 hal_subregister_write(SR_TRX_CMD, new_state);

34

35 if (current_state == TRX_OFF){

36

37 #if defined(__AVR_ATmega128RFR2__) ||

defined(__AVR_ATmega256RFR2__)

38 hal_subregister_write(SR_TRX_RPC, rpc);

39 #endif

40 delay_us(TIME_TRX_OFF_TO_PLL_ACTIVE);

41 } else {

42 delay_us(TIME_STATE_TRANSITION_PLL_ACTIVE);

43 }

44 }

45

46 current_state = radio_get_trx_state();

47 if (current_state != new_state) {

48 if (((new_state == RX_ON) && (current_state ==

BUSY_RX)) ||

49 ((new_state == RX_AACK_ON)&&(current_state ==

BUSY_RX_AACK))){

50 } else {

51 DEBUGFLOW(’N’);DEBUGFLOW(’A’+new_state);

52 DEBUGFLOW(’A’+radio_get_trx_state());DEBUGFLOW(’N’);

53 return RADIO_TIMED_OUT;

54 }

55 }

56

57 return RADIO_SUCCESS;

58 }

Side-by-side comparison between the executable specifications for the AT86RF230 transceiver and part of the code managing the same device in

Contiki. The executable specifications fully describe the operation of the transceiver and include the low-level code driving the SPI interface to which

it is connected. Definitions for states, timings and transitions are clearly separated. The few lines of the IRQ dispatcher shown in Section V-D and of

the state-changing words other than trx_off were omitted here.

D

R

A

F

T

9

Salvatore Gaglio (M’76) received the Laurea degree

in electronic engineering from the University of

Genoa, Italy, in 1977, and the degree of M.S.E.E.

from the Georgia Institute of Technology, USA, in

1979. He has been a Full Professor in computer

science and artificial intelligence at the University

of Palermo, Palermo, Italy, since 1986. From 1998

to 2002, he was the Director of the Study Center

on Computer Networks of the National Research

Council (CNR), Italy, and from 2002 to 2016, he

was the Director of the Branch of Palermo of the

High Performance Computing and Networks Institute of CNR. From 2005 to

2012, he was member of the Scientific Council of the ICT Department of

CNR, Italy, and from 2015 to 2018, he was the President of the Accademia

Nazionale di Scienze, Lettere ed Arti di Palermo, Italy. His current research

interests include artificial intelligence and robotics. He is a member of IEEE,

ACM, and AAAI.

Giuseppe Lo Re (SM’11) received the Laurea

degree in computer science from the University of

Pisa, Pisa, Italy, in 1990, and the Ph.D. degree

in computer engineering from the University of

Palermo, Palermo, Italy, in 1999. He has been an

Associate Professor in computer engineering with

the University of Palermo, since 2004. In 1991, he

joined the Italian National Research Council (CNR),

where he achieved the Senior Researcher position.

His current research interests include computer net-

works and distributed systems, broadly focusing on

wireless sensor networks, ambient intelligence, Internet of Things. Dr. Lo Re

is a senior member of IEEE and of its Communication Society and ACM.

Gloria Martorella received the Master’s and Ph.D.

degrees in computer engineering from the University

of Palermo, Palermo, Italy, in 2013 and 2017 re-

spectively. She is currently a Postdoctoral Research

Fellow in computer engineering with the University

of Palermo. Her current research interests include

ambient intelligence, distributed systems, logic and

symbolic programming, and formal methods for

specification and verification of resource-constrained

embedded systems.

Daniele Peri received the Master’s and Ph.D. de-

grees in computer engineering from the University

of Palermo, Palermo, Italy, in 1998 and 2004, re-

spectively. He is cuurently an Assistant Professor

in computer engineering with the University of

Palermo. His current research interests include intel-

ligent and distributed embedded systems, embedded

architectures, system software design, symbolic and

logic programming, as well as specification and

verification of embedded systems.

