A.STy,

P @ N
% &% UNIVERSITA Q
2 g;n; Z DEGLI STUDI N D S.
%\ eP & DI PALERMO

}7 NETWORKING AND SONTEIIGTED IVATING

2018 s\ RESEARCH GROUP

A Platform for the Evaluation of Distributed Reputation
Algorithms

Article

Accepted version

V. Agate, A. De Paola, G. Lo Re, M. Morana

In Proceedings of the 22nd IEEE/ACM International Symposium on
Distributed Simulation and Real-Time Applications (DS-RT 2018)

It is advisable to refer to the publisher's version if you intend to cite
from the work.

Publisher: ACM / IEEE

NDS LAB - Networking and Distributed Systems
http://www.diid.unipa.it/networks/

A Platform for the Evaluation
of Distributed Reputation Algorithms

Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco Morana
{firstname.lastname } @unipa.it
Universita degli Studi di Palermo
Viale delle Scienze, ed.6, 90128, Palermo, Italy

Abstract—In distributed environments, where unknown enti-
ties cooperate to achieve complex goals, intelligent techniques
for estimating agents’ truthfulness are required. Distributed
Reputation Management Systems (RMSs) allow to accomplish
this task without the need for a central entity that may represent
a bottleneck and a single point of failure. The design of a
distributed RMS is a challenging task due to a multitude of
factors that could impact on its performances. In order to support
the researcher in evaluating the RMS robustness against security
attacks since its beginning design phase, in this work we present
a distributed simulation environment that allows to model both
the agent’s behaviors and the logic of the RMS itself. Moreover,
in order to compare at simulation time the performance of
the designed distributed RMS with a baseline obtained by an
ideal RMS, we introduce an omniscient process called truth-
holder which owns a global knowledge all involved entities. The
effectiveness of our platform was proved by a set of experiments
aimed at measuring the vulnerability of a RMS to a common set
of security attacks.

Index Terms—Agent-based simulation, Multi-agent systems,
Distributed Reputation Management Systems

1. INTRODUCTION

Complex distributed environments consist of a great number
of autonomous entities that continuously exchange information
in order to achieve a common goal. In a completely distributed
architecture, these agents can take advantage of the lack of a
central authority to adopt malicious, e.g., selfish, behaviors
that may compromise the whole community. In this scenario,
Reputation Management Systems (RMSs) allow cooperating
agents to estimate the reliability of other nodes of the network
before establishing actual interactions.

The adoption of a distributed RMS prevents single points
of failure and represents a scalable solution because of the
elimination of performance bottlenecks. However, this choice
raises significant challenges for the designers. The aim of this
work is to provide a software platform, designed also as a
distributed application, that allows to evaluate the behavior of
distributed RMSs before their real deployment, thus helping
in the main challenges related to the design phase. First of
all, evaluating the accuracy of reputation estimation and the
time required to convergence is not a trivial task. Some RMSs
are based on a sound mathematical formulation, which allows
to theoretically evaluate them [1], but the underlying assump-
tions are not always valid and represent a strong constraint

978-1-5386-5048-6/18/$31.00 (©2018 IEEE

for designing new systems. The second issue concerns the
evaluation of the RMS robustness toward malicious users. This
point is crucial since the proper functioning of a distributed
RMS strictly relies on the truthfulness of user’s feedbacks.
Such dependence makes RMSs sensitive to security attacks
aimed to alterate the system capability of correctly estimating
the agents’ behavior. Moreover, the impact of an attack is hard
to estimate since it depends on the features of the considered
RMS [2]. Thus, a simulation environment that models the
RMS logic and the agents’ behavior can provide an invaluable
support to foresee the impact of different design choices.

As summarized in [3], the most desirable characteristics
of a simulation environment for RMSs should include i) the
opportunity of defining abstract RMS models that can be
easily implemented to represent specific systems, and that
maintain the independence from a specific application; ii)
the availability of well-defined metrics to evaluate the RMS’s
accuracy and its vulnerability to security attacks; iii) a high
flexibility in varying the set of security attacks, the aspects of
the RMS to be analyzed, and the simulation scenarios; iv) the
possibility of performing large-scale simulations.

According to such guidelines, the proposed platform aims
to be generic and not tailored to a specific application. Thus,
the evaluation enabled by our tool is focused exclusively on
RMS policies, agents’ behavior, and security attacks, paying
no attention to RMS implementation details and specific
communication protocols. A set of high-level interfaces allows
to disregard some low level details (e.g., implementing the
agent communications, driving the simulations), so to let the
researcher focus on higher level tasks, such as defining new
reputation algorithms, or selecting the specific features to
produce the desired resistance to security attacks. Moreover,
our platform allows to compare the performance of the de-
signed distributed RMS with a baseline obtained by an ideal,
omniscient, RMS. This oracle, called truth-holder, knows the
real outcome of each interaction and is able to apply the same
reputation estimation algorithm while neglecting the effect of
possible biased or malicious feedbacks.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related work. Section III provides a
description of the platform architecture. Section IV describes
the distributed simulation environment underlying our system.
Section V presents both an assessment of the simulation tool
itself, and its application to evaluate the impact of a set of

security attacks on RMSs characterized by different policies.
Finally, Section VI discusses our conclusions and indicates
some future work.

II. RELATED WORK

Some testbeds and simulators have been proposed in the
literature with the aim of enabling the evaluation of distributed
RMSs. Most of these solutions satisfy only a subset of the
requirements identified in [3]. In particular, their common lim-
itation is to be specific for a particular application, not allowing
for an easy comparison among RMS policies designed for
different domains.

The simulator described in [4] is defined as a competition
between different strategies that are compared by evaluating
the utility obtained by each agent at the end of the simulation.
Such approach enables a useful comparison in Multi Agent
Systems (MASs), but does not allow to evaluate the accuracy
of the reputation estimation, nor its capability of discouraging
malicious behaviors.

Some testbeds have been proposed to assess the RMS
resistance to security attacks, such as [5] and [6]. The authors
of [5] propose TREET, a simulation environment tailored for
a marketplace scenario that allows to measure the resistance
of a RMS to different types of attacks, such as reputation
lag, proliferation, and value imbalance. TREET agents can dy-
namically join or leave a simulation, but the specific pattern of
events is randomly generated and cannot be customized by the
designers. It is worth noting that security attacks considered
by TREET are meaningful in a marketplace scenario only,
and cannot be applied to a generic RMS. On the contrary, the
authors of [6] present a testbed which supports some generic
security attacks, such as slandering and promoting. Such a tool
requires to model the RMS as a sequence of transformations
of a graph that represents both transactions among agents and
their mutual trust. The main limitation of this environment
is that the adopted model does not allow to simulate agent
interactions nor to model complex agent behaviors. All these
solutions force the RMS designers to meet specific constraints
while modeling the behavior of the RMS.

These limitations are common to other works. ATB [7], for
instance, mainly focuses on the decision making mechanism
and neglects other relevant components of a RMS. TRMSim-
WSN [8] is intended only to model RMSs over wireless sensor
networks. The framework presented in [9] is a high flexible
solution allowing the designers to define both new RMSs and
security attacks. However, the performances of the RMS can
be evaluated in terms of hit rate only.

The work proposed here aims to overcome the limitations
of these simulators by proposing a generic RMS simulation
platform. The core of the distributed multi-agent architecture
we adopted has been briefly described in [10] and [11], while
an early evaluation module including some metrics for a
quantitative assessment of the RMS vulnerabilities to security
attacks was presented in [2].

These preliminary versions do not allow to perform a
comprehensive evaluation of the RMS policies, since the

SIMULATOR AGENT
CONFIGURATION CONFIGURATION

e V[sevice |
: '] EXCHANGE |

SIMULATION

EVALUATION
MODULE

RMS

'| PARAMETERS |! ! ;
: . AGENT ;
; _ 1| BEHAVIOUR |

SIMULATION CORE

SIMULATED .
i, NETWORK e

Fig. 1: Logical overview of the simulation platform. Users can
specify simulation parameters, agent characteristics, and algo-
rithms used by the RMS. The simulated network is analyzed
through a customizable evaluation module.

metrics adopted were specifically dependent on a given class
of attacks. In this paper, we introduce an overall error metrics
that allows to evaluate the RMS accuracy by highlighting the
error caused by the distributed nature of the adopted policy.
Moreover, in comparison with previous versions of our work,
the platform presented here allows the definition of complex
agent behaviors obtained by combining the different ways an
agent may act as resource and feedback provider.

III. PLATFORM ARCHITECTURE

The simulation platform is built according to a two-level
architecture, where the upper level is responsible for modeling
the RMS and the simulation scenario, and the lower level
implements the communication and control primitives needed
for actually driving the simulation. At the topmost layer,
the RMS is modeled as a fully distributed system in which
autonomous agents interact in order to exchange services.
Such a behavior is implemented in the lowest layer through
a distributed environment where each agent is mapped on a
different process, and where processes communicate with each
other by exchanging messages.

The platform structure and its working mechanisms are
developed with the aim of hosting a generic RMS. According
to the available interfaces, designers can re-define some system
features in order to model a novel distributed application
and its RMS, or they can combine existing solutions already
available in the platform.

As shown in in Fig. 1, the simulator can be adapted to model
different RMSs by specifying the agent configuration. This
phase allows to detail the service request/response policies,
the algorithms behind the RMS, and the different behaviors
that each agent can follow over time. Once such configuration
is completed, it is possible to perform the simulation config-
uration by specifying a set of available parameters. In this
phase it’s possible to specify the topology of the reputation
network that lists the set of neighbours each agent can interact
with. Moreover, users can specify the behavior each agent has

/ AGENT \

i T
EXCHANGE || BEVAVIOUR || ALGORITHM (" aeent) (" aeent)
I e e
COMMUNICATION S 2R v_ | IS ZE v__
_ INTERFACE % M) M)

COMMUNICATION CHANNEL

Fig. 2: The distributed multi-agent simulation scheme. Agents
are mapped to system processes that communicate through the
MPI protocol.

to follow during the simulation, and the possible sequence
of actions to perform. Finally, the Evaluation Module, which
analyzes the RMSs performance at the end of the simulation,
can be customized by defining any ad-hoc evaluation metrics.

During the simulation, the agents interact with each other in
order to provide/receive services and obtain a reward according
to the synchronous, time-discrete model proposed in [12].
The role of the RMS is to apply an incentive mechanism
that makes the reward proportional to the cooperativeness
of each agent, computed by taking into account the whole
community of agents. As result, agents are able to select a
service provider according to the policy established by the
RMS, e.g., by selecting the provider which corresponds to the
highest expected utility.

The simulation evolves through a set of rounds during which
all the agents cyclically perform the same sequence of steps.
The behavior of a single agent within a round is defined by
implementing some functions inherited from an abstract agent
class provided with the simulation library. More specifically,
the designers can specify:

o the service exchange logic, which rules the sending
of service requests and replies (according to the RMS
policy);

o the set of RMS algorithms, which specifies how to
spread agents’ opinion to their neighbourhood and how
to compute the reputation values;

« the agent behavior, which models its cooperativeness
during the service exchange.

With respect to service provisioning, the agent behavior can
be fully cooperative, fully selfish, or partially cooperative, with
a degree that can be specified as parameter. As regards the
contribution to the RMS, the agent behavior can be honest,
slander (if false negative feedbacks are provided) or promoter
(in case of false positive feedbacks). The adoption of the
composition over inheritance principle allows to easily define
new agents whose behavior is a combination of these two
behavioral dimensions. Moreover, new behaviors can also be
defined by inheriting the available abstract classes.

The Evaluation Module allows to analyse the RMS’s per-
formance with different levels of detail. For instance, the
simulator allows to evaluate the average reputation estimated
by the RMS over the whole network, but it makes also possible

I_--l I E

(@ (b) () (d time

Fig. 3: Parallel processes managed by the simulation platform:
(a) the MPI environment starts a set of identical processes; (b)
by reading the simulation parameters, each process adopts its
own behavior. (c) MPI messages sent by the leading process
cause some other processes to change their status (d).

to analyse with a high degree of granularity the trend over
time of the reputation of a given agent as estimated by one
of its neighbours. Furthermore, the Evaluation Module allows
to compare such outcomes with those obtained by the fruth-
holder in order to understand whether the errors are due to the
reputation algorithm, or to possible bias introduced by false
user feedbacks.

IV. THE SIMULATION ENVIRONMENT

One of the most important requirements of a simulation
environment for RMS evaluation is to guarantee a high degree
of parallelism to support large-scale simulations. To meet
this constraint, our simulator takes advantage of a distributed
environment where each agent is simulated by a process
running on a computer cluster. Fig. 2 highlights the four
elements characterizing an agent. Besides the aforementioned
components, i.e., service exchange, RMS algorithms, and agent
behavior, a communication interface is needed to enable
messaging over a communication channel. In order to provide
the programmers with a standard protocol, communication
between processes is based on Message Passing Interface.

The core of the platform we proposed is written in C++ and
exploits MPICH, a MPI library available for many UNIX like
distributions and Windows OS, to provide the designer with
an easy tool to implement his own distributed algorithm.

In order to simulate a dynamic network, the processes
started with the simulation kickoff include both active agents,
and a group of silent processes representing agents that could
later join the RMS network. While all processes are started
as identical copies of the same initial process, after the
initialization phase the process behavior is changed according
to the simulation parameters, as shown in Fig. 3-b. A process
assuming the role of leading process is responsible for the
management of the life cycle of other processes. For instance,
for simulating a new agent joining the RMS network, the
leading process wakes up one of the silent processes, send-
ing an appropriate message through the MPI communication
interface, Fig. 3-c. The process receiving the message will
change its status at the next simulation step becoming active,

Fig. 3-d. Conversely, when an agent leaves the RMS network,
the corresponding process is forced to change its status from
active to silent.

Finally, the truth-holder, collects all the transactions oc-
curred between RMS agents, allowing to evaluate the ground
truth about reputation, thus neglecting the effect of possible
biased or malicious feedbacks. The centralized coordination
performed by the leading process and the truth-holder only
concerns the management of the processes and the evaluation
of the RMS, while service exchanging and communications
within the RMS are performed in a totally distributed way.

A. Defining the Service Exchange Model

In distributed applications, the role of a RMS is to provide
the user with information needed to select the best agent to
interact with, according to the quality of past interactions
between providers and the whole community. Thus, agents
should be able to provide feedbacks any time a transaction is
completed in order to let the RMS compute and spread over
the network the new reputation values.

To this aim, in our platform, each agent maintains a list
of known providers and advertises the exported services by
means of a service announcement protocol, i.e., broadcasting
its provided services to the whole network, sending informa-
tion only to the neighbour agents, or to a group of agents by
using a hop-by-hop path.

The service selection method allows the single agent to
implement its final decision, e.g., by selecting the provider
with the highest reputation.

Finally, the service reply policy specifies whether and how
to reply to service requests. This method allows to implement
the incentive mechanism of the modeled RMS, e.g., it is
possible to define a policy according to which a provider
replies only to agents whose reputation is above a given
threshold, or randomly decides to reply with a probability
function of the consumer reputation. Decisions taken by the
service reply method, are further influenced by the agent’s
behavior as service provider, as detailed in section IV-C.

B. Defining the RMS algorithms

The main step for setting up the simulation environment
consists in the definition of the RMS algorithm.

Regardless of the specific reputation representation and the
reputation management algorithm, any RMS [10] includes four
common parts. Generally, each agent locally computes a first
estimation of the reputation of other agents by exploiting its
direct interactions with the community. This local trust can not
be used to predict the behavior of entities that have not been
previously seen. Thus, the local trust evaluation is supported
by two more components, namely the gossip protocol, which
allows agents to exchange information about the reputation of
their neighbours, and the information fusion mechanism, that
is used to merge local with gossiped reputation. The fourth
component is the incentive mechanism used by the RMS to
discourage antisocial behavior by rewarding trustworthy agents
and limiting malicious ones.

’ TRUTH-HOLDER

Fig. 4: The role of the truth-holder process.

In order to support the designers in the definition of specific
policies, the simulator provides the Reputation Interface which
allows to represent reputation as a scalar, as a discrete value
(e.g., good, medium, bad), as a vector containing different
parameters (e.g., type of behavior, cooperativeness, level of
engagement), or as a generic object.

C. Defining the Agent behavior

The distributed nature of RMSs makes them vulnerable to
several types of security attacks, as described in [13], [14].

In most cases, the worst type of attacks comes from the
inner of the distributed system, by authorized users that exploit
vulnerable system services. In such a scenario, the attacker is
usually allowed to cooperate with other malicious agents in
order to compromise the system integrity.

In general terms, an attack requires an agent or a group of
agents to adopt a specific behavior as service provider or RMS
member.

Promoting [15] and slandering [16], for instance, are two
examples of attacks that require a malicious behavior of a
group of agents as RMS members. Such attacks are performed
by spreading poisoned feedbacks in order to maliciously
alterate the RMS outcome. Both attacks can be neutralized
by working on the information fusion mechanism, allowing
the system to resist to a wild diffusion of fake information.

Whitewashing [17] and traitor attacks [18], on the other
hand, imply the malicious behavior of an agent as service
provider. Such attacks are performed by alternating coopera-
tive and selfish behaviors, in order to abuse system resources.

Our simulation environment includes a set of behavioral
patterns the designer can combine to describe the behavior of
single agents. While configuring a specific simulation scenario,
it is possible to choose how many agents should exhibit a
behavior b, where b can be either atomic, e.g., slander, or
obtained by composing n atomic behaviors, b = [by, ..., by].
For example, when planning a complex collusion attack, it
might be desirable that an agent A contributes both to rise
the reputation of an agent, and to reduce that of another
one. In such case, its behavior could be expressed as by =
[bsianders bpromoter] to let a specific agent perform both a
slandering and a promoting attacks with different targets.

D. Evaluation Module

In order to measure the robustness of a RMS against
different type of attacks, the simulation platform provides the

designers with an objective measure of the error between the
actual reputation values and those estimated by the RMS.

As discussed in the previous Sections, the mechanisms
implemented by a RMS to estimate the reputation of a given
agent can be maliciously biased by forged information sent to
counterparts. In order to evaluate the impact of false feedbacks
on the RMS under analysis, it is useful to consider the
reputation hypothetically estimated by an ideal omniscient
RMS that knowns the true outcome of each transaction, and
that can not be influenced by false feedbacks.

Such an ideal RMS is implemented through a truth-holder
process (see Fig. 4), external to the agents network, that, at
each simulation step, is responsible for collecting the real
outcomes of agent interactions in order to build the ground-
truth reputation R for each agent ¢. It is worth noting that the
truth-holder is totally transparent to the RMS, and it only aims
to provide a centralized tool to compute the error associated
with the reputation estimated by the RMS.

In order to distinguish the bias introduced by forged
feedbacks, it is convenient that the reputation aggregation
algorithm adopted by the truth-holder is the same used by the
network agents; thus, it must be redefined by the designers in
order to meet the behavior of the RMS under analysis.

The average reputation of the agent ¢ at time ¢ is computed
by the Evaluation Module by considering the reputation values
individually estimated by all the network agents:

2, ri(t)
__jEN
NI
where 7;; are the reputation values computed by the RMS for
all the agents j that received a service from ¢, and NN is the
number of agents involved in the simulation.

Thus, the single node error can be obtained step-by-step
as the difference between the ground truth and the average
reputation of the agent 7:

ei(t) = |R:(t) — (b))

7i(t) ey

@

This error can be considered as the instant measure of how
much the reputation values computed by the RMS diverge
from the actual behavior of the agents. The mean value of
these errors computed over the whole network represents the
average system error:
> ei(t)
i€EN

N
This value can be used to evaluate the performance of the
RMS since the first simulation steps. For instance, in order to
reduce the simulation time, if the average error of the RMS is
above a threshold fixed by the designer, the current simulation
could be stopped before its completion.

B(t) = 3)

V. EXPERIMENTAL ANALYSIS

In this Section, we first illustrate how to set up the simu-
lation platform to model the particular RMS to be analyzed.
Then we present a set of experiments aimed to assess both the

performances of the simulator itself, and the robustness of the
RMS to a common set of security attacks. These experiments
have been performed using a cluster of virtual machines,
managed by ESXi, a Vmware hypervisor.

A. Configuring the RMS under analysis

As regards the Service Exchange Model, we consider a
RMS where all agents provide the same single service; never-
theless, the number of available services and their distribution
among providers can be specified as simulation parameters.
Each agent sends the list of the exported services using the
service announcement protocol. In our case, the single service
is announced only to the direct neighbours (defined according
to the topology provided as input of the simulation) of the
agent. Using the service selection method, an agent can select
the service to be consumed. In order to make the RMS analysis
independent from a specific decision making strategy, we
implemented a dummy method that sends a service request to
each neighbour-agent without performing any specific choice.
In this way, the whole neighbourhood is uniformly explored,
avoiding the bias potentially introduced by a specific policy,
e.g., select the provider with the highest reputation.

The service reply method implements the simple incentive
mechanism proposed in [19], which consists in providing a
random reply with a probability proportional to the requester’s
reputation. The behavior as service provider method enforces
such probability proportionally to the agent’s cooperativeness
(a cooperative agent has a cooperativeness degree equal to 1,
while a totally selfish agent has a cooperativeness degree equal
to 0). Finally, an agent rates each successful interaction with
1, or 0 if the service has not been provided.

The considered RMS consists of four components. The local
trust evaluation, inspired to [1], computes the local trust of
a given provider as the number of satisfactory transactions
over the total number of requests sent in the last time interval.
A weighting factor « is used to specify how the local trust
affects the overall reputation that agents own about their
peers. The chosen gossip protocol establishes that information
is exchanged with neighbour agents only. The information
fusion mechanism is based on [20], which states that gossiped
information is weighted with reputation of the gossiper agents,
whilst the impact of received opinions on the overall reputation
is weighted by means of a parameter, 8. a and f3, together with
the initial default reputation value, are declared as varying
parameters so that they can be automatically tuned by the
simulator in different simulation runs.

The reputation values are represented as scalar in the range
[0,1], with 0.1 steps. In our case study the truth-holder
computes the ground-truth reputation of the agent i, i.e., R} (t),
according to the local trust evaluation algorithm:

> sat;i(t)
JEN

> (sath;(t) +unsaty;(t))’
JEN

Ri(t) = @)

where sat};(t) and unsat’,(t) are the number of transactions
that ¢ satisfied, or unsatisfied, by providing a service to j,

1.0
0.8 %—A
L’\ —
c 06 B
= RSgasttinssssnsnstitilitecstSntingRintassto oo
8 | 0 temmmmmmTTommeeToeeoeo
3
Q
2 0.4+
—— ground truth
10%
0.2 —— 20%
—*— 30%
-== 40%
0.0 T T T T T T
0 100 200 300 400 500

time steps

(a)

0.25 4
0.20 4
o
2
o 0.15
hel
o
c
[}
5 0.10 4
£
=
10%
0.05 - —— 20%
—x— 30%
0.00 —=- 40%
0 100 200 300 400 500

time steps

(®)

Fig. 5: Reputation (a) and average system error (b) of the RMS considered as case study during a slandering attack while

varying the percentage of malicious agent involved.

during the time window t. This value, calculated for each
of the N agents involved in the simulation and updated at
each simulation step ¢, can be computed considering all the
transactions occurred from the beginning of the simulation, or
a subset within a specified time window.

B. Resistance to attacks of increasing severity

The first set of experiments aimed to evaluate the robustness
of a specific RMS to security attacks based on the injection
of forged feedbacks.

The simulated network is fully connected and is composed
of 100 agents that interact to exchange a single service. In
order to speed up the reputation estimation process, at each
time step each agent interacts with all the others. For each
agent, the behavior as service provider is obtained by setting
a cooperative degree equals to 0.8.

For our purpose, we consider here the slandering attacks.
During such attacks, in order to reduce the reputation of
the victim agent, a variable percentage of malicious agents
(i.e., 10%, 20%, 30% and 40%), uses the gossip protocol
to disseminate forged feedbacks within the community. The
duration of the simulations are set to 500 time steps and the
attacks start after 50 time steps.

Fig. 5a compares the reputation computed by the fruth-
holder and the average reputation estimated by the distributed
RMS, while varying the percentage of malicious agents. As
we can observe, the reputation estimated by the RMS moves
away from ground truth as much as the percentage of mali-
cious agents increases. Specularly, Fig. 5b shows the average
system error of the considered RMS, evaluated as the average
difference between the reputation value estimated by the RMS
and the corresponding ground truth. Results suggest that the
error made by this specific RMS grows quite proportionally to
the percentage of implicated agents. Thus, it does not exhibit
an amplification of the false negative opinions, thanks to the
inclusion of the direct experience (i.e., local trust) in the
information fusion mechanism.

C. Comparisons among different RMS policies

The second set of experiments shows how the proposed plat-
form allows to compare different RMS policies by evaluating
their accuracy and resistance to forged feedbacks, given the
same network configuration. The reputation network for this
set consists of 300 agents, where 30% of them are implicated
to perform a slandering attack against a 10% of cooperative
agents. This experiment compares three policies obtained by
varying the parameter 5 of the RMS considered as case study.
The first policy uses only direct experience to estimate agents’
reputation, i.e., 8 = 0. The second policy is characterized by
a good balance between local trust and gossip information,
and is obtained by setting S = 0.2. The third policy relies
excessively on gossip information, with a weight 5 = 0.8.
Fig. 6a compares the reputation computed by the truth-holder
and the average reputation estimated by these policies, while
Fig. 6b shows the corresponding average system errors. As
expected, smaller weights to gossip information reduce the
vulnerabilities to attacks characterized by the injection of
false information. In the borderline policy where gossiped
information are not considered at all, the estimated reputation
corresponds to the ground truth, thus obtaining an average
error which quickly goes to zero.

The same analysis can be performed considering promoting
attacks, as shown in Fig. 6¢ and 6d. In this case, using the same
network configuration described above, promoting attacks are
performed to raise the reputation of a group of target agents
whose real cooperativeness is 0.2. As shown before, policies
that limit the weight of gossiped information are characterized
by greater resistance.

D. System scalability

Some tests were run to verify the capability of our platform
of measuring the actual performance of a given RMS, regard-
less of the size of the reputation network. In particular, we
considered a slandering attack launched by a set of implicated
agents (the 20% of the network) against other agents (the 10%

0.8 X
n
5
2 0.6 1
>
[=4
° e o
S 0.4+
=)
o
2
0.2
0 100 200 300 400 500
B=0 —— B=02 —— B=08 —— GT
(2)
0.9 1 B=0
0.8 p=02
—— B=0.8
wn
2 0.7 1 —*— GT
H
z 06
S - A=
205
3
5
= 0.4
0.3
0.2 w*
0 100 200 300 400 500

©

0.8
0.6
]
= e e
@ 0.4 4
0.2
o] B2
0 100 200 300 400 500
B=0 —— B=0.2 —— B=0.8
(b)
0.7 4 B=0
—+— B=0.2
0.6 B
—— B=0.8
0.5
‘é 0.4
5 e
0.3
0.2
0.1
0.0
0 100 200 300 400 500

(d

Fig. 6: Reputation (a, c) and average system error (b, d) measured while simulating slandering (a, b) and promoting (c, d)
attacks performed on a network of 300 nodes with 30% of implicated agents. The different curves are obtained while varying
the parameter S which weights gossip information with respect to the local trust. The GT curve shows the reputation computed

by the truth-holder.

of the network) that have a cooperation degree of 0.8. Fig. 7a
compares the reputation computed by the fruth-holder and
the average reputation estimated by the RMS on networks
of 100, 200, 300, 400, and 500 nodes. Fig. 7b shows that
the corresponding average system errors are quite similar, so
proving that the diagnostic capability of the simulator is not
dependent on the size of the network.

Other tests have been performed to measure how the simu-
lation time depends on the number of deployed computational
nodes. In particular, three experiments were run considering
clusters of 4, 8, and 16 single-core nodes (SCNs). Results from
Fig 8 show that the number of SCNs deeply impacts on the
number of agents the platform can simulate. In particular, the
current implementation of the simulator is not able to support
more than 300 agents when using 4 SCNs, while in order
to simulate a network of 500 agents at least 16 SCNs are
needed. This is mainly due to the inter-process communication
routines needed to support the simulation, according to which
every agent exchanges message with all other agents in the
network, regardless of the network topology. Nevertheless, for
any number of SCN, the simulation time exhibits a quadratic
growth, which is quite reasonable to simulate reputation net-

works of significant dimensions.

VI. CONCLUSIONS AND FUTURE WORK

Distributed environments where autonomous agents act co-
operatively need a Reputation Management System to estimate
the reliability of unknown agents before starting a service
exchange. In this work we presented a comprehensive sim-
ulation platform that can be used by developers to assess
a distributed RMS since the design phase. The proposed
solution allows to define new RMSs by exploiting a number
of existing interfaces, and to manage large-scale simulations
where agents can adopt complex behaviors that can be easily
implemented by inheriting basic behavioral patterns. Different
security attacks that can be defined by modifying the agent’s
behavior, and the robustness of the analyzed RMS to these
attacks can be evaluated through to a customizable evaluation
module.

The effectiveness of the proposed solution has been proved
by presenting a set of experiments which show how our
platform allows to assess the vulnerability of a RMS to a
common set of security attacks.

As future work, we plan to exploit the simulation tool to
evaluate the RMS under different conditions, e.g., by defining

0.90 A 100 —— 200 —— 300 —%— 400 —+— 500 GT
0.85
w
] -
= 0.80
>
c
K]
® 0.75
3
o
[
0.70 -
0.65 -
T T T T T T
0 100 200 300 400 500
time steps
(@)

0.20 1
0.15 1
s
£ 0.104
ﬂ)
0.05 A
0.00 1
T T T T T T
0 100 200 300 400 500
time steps
(b)

Fig. 7: Reputation (a) and average system error (b) measured while simulating a slandering attack in which the 20% of the
network is implicated and all the agents have a cooperativeness degree of 0.8. The different curves are obtained in networks
composed of 100, 200, 300, 400, and 500 nodes. The GT curve shows the reputation computed by the truth-holder.

03:30:00 4 —¢— 16 SCN
8 SCN
03:00:00 4 —#— 4SCN

02:30:00 1

02:00:00

time

01:30:00 4

01:00:00 4

00:30:00 4

00:00:00

100 150 200 250 300 350 400 450 500

number of simulated agents

Fig. 8: Simulation time using 4, 8, and 16 single-core nodes.

other decision making strategies to send a service request and
to select the service provider, or using more complex network
topologies. We are also working on the release of an open
source version of the platform including some popular RMSs
and common attacks proposed in the literature.

REFERENCES

[1] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust
algorithm for reputation management in P2P networks,” in Proc. of the
12th Int. Conf. on World Wide Web, 2003, pp. 640-651.

V. Agate, A. De Paola, G. Lo Re, and M. Morana, “Vulnerability
Evaluation of Distributed Reputation Management Systems,” in InfQ
2016 - New Frontiers in Quantitative Methods in Informatics, 2016, pp.
1-8.

E. Koutrouli and A. Tsalgatidou, “Reputation systems evaluation sur-
vey,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 35, 2016.

K. K. Fullam, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol,
K. S. Barber, J. S. Rosenschein, L. Vercouter, and M. Voss, “A specifi-
cation of the agent reputation and trust (ART) testbed: experimentation
and competition for trust in agent societies,” in Proc. of the 4th Int.
Jjoint Conf. on Autonomous agents and multiagent systems, 2005, pp.
512-518.

[5] R. Kerr and R. Cohen, “Treet: the trust and reputation experimentation
and evaluation testbed,” Electronic Commerce Research, vol. 10, no. 3,
pp- 271-290, 2010.

P. Chandrasekaran and B. Esfandiari, “Toward a testbed for evaluating
computational trust models: experiments and analysis,” J. of Trust
Management, vol. 2, no. 1, pp. 1-27, 2015.

2

—

[3

[t

[4

—_

[6

=

(71

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D. Jelenc, R. Hermoso, J. Sabater-Mir, and D. Trcek, “Decision making
matters: A better way to evaluate trust models,” Knowledge-Based
Systems, vol. 52, pp. 147-164, 2013.

E. G. Marmol and G. M. Pérez, “TRMSim-WSN, trust and reputation
models simulator for wireless sensor networks,” in Proc of the IEEE Int.
Conf. on Communications (ICC’09). 1EEE, 2009, pp. 1-5.

A. G. West, S. Kannan, I. Lee, and O. Sokolsky, “An evaluation
framework for reputation management systems,” Trust Modeling and
Management in Digital Environments: From Social Concept to System
Development, pp. 282-308, 2010.

V. Agate, A. De Paola, G. Lo Re, and M. Morana, “A simulation
framework for evaluating distributed reputation management systems,”
in Proc. of the 13th Int. Conf. on Distributed Computing and Artificial
Intelligence, 2016, pp. 247-254.

V. Agate, A. De Paola, S. Gaglio, G. Lo Re, and M. Morana, “A
framework for parallel assessment of reputation management systems,”
in Proc. of the Int. Conf. on Computer Systems and Technologies
(CompSysTech), june 2016.

N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.

K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Computing Surveys
(CSUR), vol. 42, no. 1, p. 1, 2009.

Y. Sun and Y. Liu, “Security of online reputation systems: The evolution
of attacks and defenses,” IEEE Signal Processing Mag., vol. 29, no. 2,
pp. 87-97, 2012.

Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li, “An empirical
study of collusion behavior in the maze p2p file-sharing system,” in Proc.
of the 27th Int. Conf. on Distributed Computing Systems (ICDCS’07).
IEEE, 2007, pp. 56-56.

S. Ba and P. A. Pavlou, “Evidence of the effect of trust building
technology in electronic markets: Price premiums and buyer behavior,”
MIS quarterly, pp. 243-268, 2002.

M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding and
whitewashing in peer-to-peer systems,” in Proc. of the ACM SIGCOMM
workshop on Practice and theory of incentives in networked systems.
ACM, 2004, pp. 228-236.

S. Marti and H. Garcia-Molina, “Taxonomy of trust: Categorizing p2p
reputation systems,” Computer Networks, vol. 50, no. 4, pp. 472-484,
2006.

C. Crapanzano, F. Milazzo, A. De Paola, and G. Lo Re, “Reputation
management for distributed service-oriented architectures,” in Proc. of
the 2010 Fourth IEEE Int. Conf. on Self-Adaptive and Self-Organizing
Systems Workshop (SASOW), 2010, pp. 160-165.

A. De Paola and A. Tamburo, “Reputation Management in Distributed
Systems,” in Proc. of the 3rd Int. Symp. on Communications, Control
and Signal Processing (ISCCSP), 2008, pp. 666—-670.

