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A Fog-based application for human activity recognition
using personal smart devices

FEDERICO CONCONE, University of Palermo, Italy
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The di�usion of heterogeneous smart devices capable of capturing and analysing data about users, and/or
the environment, has encouraged the growth of novel sensing methodologies. One of the most attractive
scenario in which such devices, e.g., smartphones, tablet computers, or activity trackers can be exploited to
infer relevant information is Human Activity Recognition (HAR). Even though some simple HAR techniques
can be directly implemented on mobile devices, in some cases, i.e., when complex activities need to be analysed
timely, users’ smart devices can operate as part of a more complex architecture. In this paper we propose a
multi-device HAR framework that exploits the fog computing paradigm to move heavy computation from the
sensing layer to intermediate devices, and then to the cloud. As compared to traditional cloud-based solutions,
this choice allows to overcome processing and storage limitations of wearable devices, while also reducing the
overall bandwidth consumption. Experimental analysis aims to evaluate the performance of entire platform
in terms of accuracy of the recognition process, while also highlighting the bene�ts it might bring in smart
environments.

CCS Concepts: • Information systems → Collaborative and social computing systems and tools;
Mobile information processing systems; • Human-centered computing → Ubiquitous and mobile
computing systems and tools; Collaborative and social computing devices;

Additional Key Words and Phrases: human activity recognition; mobile crowdsensing; fog computing.

1 INTRODUCTION
In recent years, the di�usion of smart mobile devices, such as smartwatches, smartphones, and
tablet computers, has enabled new pervasive sensing strategies in which raw data captured by on
board sensors can be analysed to infer high-level knowledge about the user, and/or the environment.
Mobile crowdsensing [17] aims to understand large-scale phenomena by collecting information
through a community of individuals [10]. One of its most relevant applications concerns Human
Activity Recognition (HAR) in scenarios ranging from health care to urban mobility management,
ambient intelligence, and assisted living [24].

Sensor-based HAR has been widely addressed in the literature and most of the proposed solutions
use a single mobile device to perform data collection and simple activity recognition [31, 32].
Unfortunately, in order to perform more intensive tasks, e.g., real-time classi�cation of complex
activities, mobile devices with limited resources need to be supported by a solid infrastructure to
capture, manage, process, and store data coming from heterogenous sensors.

In this scenario, cloud computing could provide a feasible solution to move heavy computation
towards the cloud, while using the mobile device as a pure sensing platform. However, all the
bene�ts brought by this approach could be negligible in real-time applications where data are
continuously transferred from/to the cloud [5].
In 2012, the fog computing paradigm was introduced by Cisco as an extension of the cloud

computing at the edge of the network. Nowadays, the fog has been widely accepted as a reasonable

Authors’ addresses: Federico Concone, federico.concone@unipa.it, University of Palermo, Viale delle Scienze, ed.6, 90128,
Palermo, Italy; Giuseppe Lo Re, giuseppe.lore@unipa.it, University of Palermo, Viale delle Scienze, ed.6, 90128, Palermo,
Italy; Marco Morana, marco.morana@unipa.it, University of Palermo, Viale delle Scienze, ed.6, 90128, Palermo, Italy.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article . Publication date: August 2018.



alternative to the cloud [5], when dealing with large amounts of data which need to be processed
locally, and timely.

Thus, due to its intrinsic pervasive nature, HAR represents the ideal scenario where fog computing
can provide a signi�cant improvement to the system performances. The general rule is that the
closer a device is to the user, the lower is its computing power. Thus, a fog architecture [45] can be
exploited to distribute data collection, analysis, and storage tasks among di�erent devices located at
distinct logic levels.

This work includes two contributions. The �rst contribution is the de�nition of a fog architecture
for complex human activity recognition, in which di�erent devices cooperate to understand the
users’ behaviour. Data are processed as closest as possible to each user, e.g., in our case study
the processing units are the users’ smartwatches and smartphones, so as to guarantee real-time
recognition, whereas a remote cloud infrastructure is responsible for maintaining an overall,
consistent, view of the whole activity set. By adopting such a general architecture in di�erent
application scenarios, the output provided by a single fog devices could be merged with those
coming from the users’ community to enable more advanced services. For example, elderly people
living in a nursing home could be monitored by means of unobtrusive wrist-worn devices (one per
user), whilst a few smartphones (or any other device) owned by the home could be used to perform
activity recognition. In such a scenario, data from every user can be processed at the cloud level to
de�ne a global normal behaviour, that can be exploited to reveal warning, or danger situations. In
wider terms, data coming from the community could be used to support the recognition process
itself. For example, if a number of people visit a certain location, GPS data from multiple users
could reveal the relationships between an activity and the place where it is performed. This could
improve the system performance by limiting the recognition process to some of the most likely
activities, e.g., if the activity is performed in a urban park, then it will be probably a sport or some
kind of dynamic activity. The second contribution of this paper is a novel HAR technique which
combines three machine learning algorithms, i.e., K-means clustering, Support Vector Machines,
and Hidden Markov Models, in order to recognise complex activities modelled as sequences of
simple micro-activities.
The remainder of the paper is organised as follows: Related work is outlined in Section 2. The

system architecture and its deployment in HAR scenarios are described in Section 3. Section 4
provides an in-depth analysis of the activity recognition algorithms. Experimental setup and results
are presented in Section 5. Conclusions will follow in Section 6.

2 RELATEDWORK
In recent years, Human Activity Recognition (HAR) has become a relevant research area due to its
suitability for di�erent application scenarios.

The recognition of human activities has been generally approached focusing on vision or sensor-
based solutions. In the �rst case, video sequences that capture the user’s movements and gestures
are analysed. This kind of techniques presents some issues [29] that limit their implementation
in many real-world scenarios. The �rst is that video processing techniques are computationally
expensive, thus they can be rarely executed in real-time on resource constrained devices. Moreover,
the performances of these systems are strictly dependent on the position of the camera and the
appearance of the scene; thus the recognition is often limited to indoor environments.

In order to overcome these limitations, many HAR techniques exploiting sensors directly carried
by the users have been presented in the literature. Early solutions were based on acceleration sensors
only [41]; however, since a single sensor is not suitable to describe very complex activities, several
works proposed to merge information provided by multiple sensors. For example, [2] presents a
system that acquires data from �ve biaxial accelerometers, worn simultaneously on di�erent parts
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of the body, in order to recognise both simple and complex activities. The system presented in [30]
combines heterogeneous sensors, e.g., accelerometers and gyroscopes, microphones, and GPS, in
order to improve the recognition performances. Unfortunately, approaches based on wearable
sensors are not suitable for real application scenarios due to their intrusiveness [36].
Recent HAR techniques exploit the widespread di�usion of smart devices. The authors of [12]

present a system that aims to improve the quality of life of diabetic patients combining machine
learning and symbolic reasoning techniques. Smartphone sensors are used to recognise some
activities in order to trace patients’ fatigue while performing their daily routines. In [27], the
authors describe an unsupervised learning approach to recognise human activities using smartphone
sensors. The recognition process is strictly dependent on the number of clusters chosen during the
design phase; thus, distinct activities could be erroneously merged into one, or di�erent instances
of the same activity could be seen as unrelated. One of the best performing HAR framework is
proposed by Google [18] since its API level-1. However, these APIs represent a black box and the
developers are not able to use intermediate results as part of their systems, nor to provide any
feedback to the activity recognition routine. For this reason, the Google framework can be only
used to develop some simple Android applications, or as reference for comparing novel activity
recognition techniques. In [11] a framework based on smartphone embedded accelerometer and
gyroscope sensors for real-time simple activity recognition is presented.
More recently, the focus has moved to the recognition of more complex activities, which can

be modelled as a composition of simple actions. The authors of [43] propose a description-based
approach that allows to encode a complex activity through a context-free grammar (CFG), and to
model it as an interaction between simpler activities. Similar approaches are used in video-based
activity recognition, where a set of silhouettes can be extracted and analysed to describe a particular
human activity. For example, in [35] a probabilistic context-free grammar (PCFG) is built from
atomic actions. In [16], a Kinect device is used to observe the user and each activity is modelled as
a spatio-temporal evolution of known postures extracted by some joints of the human body.
Some other works exploit probability based-algorithms, such as Conditional Random Fields

(CRFs) [28] and Hidden Markov Models (HMMs) [40], to model complex activities. In [31], a
framework based on an adaptive HMMs is presented. Each complex activity is modelled as a
sequence of simple activities performed by user, and user’s personal experience is considered as
a priori information to train HMMs. In addition, unlike conventional methods that consider all
data from sensors in computational process, such system proposes an adaptive Viterbi algorithm to
speed up the classi�cation.
Lately, the ever-increasing need for measuring large-scale phenomena has encouraged new

approaches that aim at analysing data captured from di�erent entities. The Mobile CrowdSensing
(MCS) system [7, 8] provides some activity recognition and geofencing algorithms that are optimized
to meet computational and power constraints of smartphone devices. In particular, the activity
recognition sub-system allows to detect three kinds of activities (walking, running, and phone still),
whilst geofencing aims to �nd and delimit the geographic area where a certain activity, or event,
occurs.

In order to obtain scalable and time-e�cient solutions, several works exploit the cloud computing
paradigm to provide HAR services according to the most common delivery models, e.g., Software as
a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Unfortunately,
cloud data centres are usually far away from the end devices/users [33], making the development
of real-time applications quite critical. Some works focused on combining cloud computing and
mobile devices taking the best of both worlds. In [9], a system that allows to run mobile applications
on the cloud is described. The basic idea of such work consists in creating and migrating an image
of the smartphone to the cloud in order to perform CPU-intensive tasks on servers that have more
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Fig. 1. System architecture. Heterogeneous sensing devices (SD) at the sensing layer are responsible for
capturing, pre-processing, and sending data to the fog layer. Here, fog devices (FD) perform data analysis,
also exchanging information with other devices at the same layer. At the upmost layer, a Central Data Centre
(CDC) performs time-consuming processing of data coming from the whole community.

resources than a mobile device. Another example is presented in [49], where a model that permits
to decompose a mobile application in several components is proposed. Each component can be run
either on a mobile device, or migrated to the cloud, so as to overcome any computation or storage
constraints.
As previously mentioned, the fog paradigm has been recently adopted in several application

scenarios [13, 37] to move data processing close to the point where data are produced, e.g., by
performing resource expensive computing in lightweight servers placed at the edge of the network.
A common scenario addressed by fog computing is the distributed video-surveillance, in which
traditional client-server architectures would not allow to transmit and analyse huge amount of
video streams e�ciently [20].

Just a few applications of fog computing in a HAR scenario have been presented in the litera-
ture. CARDAP [23] is a fog-based data analytics platform for supporting mobile crowd-sensing
applications in a smart city. The main goal of this system is to perform real-time recognition of
the citizens’ activities by analysing data collected by mobile and IoT devices. The authors of [38]
describe a general platform addressing three di�erent scenarios (i.e., environmental monitoring,
rehabilitation, health) in which wearable sensors are used to measure air quality, user’s movements,
and sounds. In such a framework, Internet Connected Objects (ICOs) are used at the edge of the
network, whilst user smartphones are exploited as intermediate gateways. Wearable sensors are
also used in FAAL [47], a fog-based patient monitoring system that traces user’s movements in
order to recognise neurological diseases. In [6], a fog-based platform designed to detect user’s falls
in a e-health scenario is described. This system distributes the fall detection task between edge
devices and the cloud, allowing lower response time and energy consumption than traditional
non-fog approaches.

4



3 SYSTEM ARCHITECTURE
The system we propose here is based on a three-tier architecture, see Fig. 1, in which heterogeneous
smart devices are exploited to perform tasks of increasing complexity.
At the lowest level, n Sensing Devices (SD) are responsible for collecting rough data and, if

required, performing simple data preprocessing/aggregation. The devices at the sensing layer do
not communicate to each other, but share captured data with intermediate devices at the upper
layer through low-power network protocols, e.g., Bluetooth, Zigbee, Z-Wave, NFC, according to
a many-to-one relationship. At this level, since the system processes rough - not sensitive - data,
communications are not encrypted, also meeting the computing constraints of the adopted smart
devices.
At the intermediate level,m Fog Devices (FD) are used to perform in-depth analysis on data

obtained from the sensing layer. Fog devices can also exchange information with other devices at
the same layer by exploiting more robust wireless technologies, such as WiFi, or GSM/xG cellular
networks. Here, data transmission is protected through encryption and authentication techniques,
which guarantee both data integrity and user’s privacy.

Information produced at the fog layer is sent to a Cloud Data Centre (CDC) which is responsible
for resource-consuming analysis of data coming from all the underlying devices. The results of this
analysis are stored in the CDC, and sent back to the fog devices in order to update their behaviours,
making the whole system consistent. The amount of data exchanged between fog and cloud devices
is usually noteworthy, thus compression algorithms can be applied to improve the transmission
e�ciency. Moreover, the use of security protocols, both at the network and the transport layer,
guarantees information security.

3.1 Application scenarios
The main purpose of our work is to present a general fog-based architecture that can be adopted to
build a distributed human activity recognition (HAR) application.

A straightforward solution in mobile scenarios could be to exploit the power capability of users’
personal devices, e.g., smartphones, to process data in the fog. Nevertheless, in a multi-user scenario,
a single fog device with a higher level of performance, e.g., a personal computer, can be used to
process and integrate data from multiple devices worn by a community of users. We could also
consider di�erent situations in which, for instance, the HAR system exploits information directly
captured by users’ smartphones. Here, these devices would be logically located at the bottom layer
of the architecture, whilst the fog layer could consist of other types of units.
The generality of the architecture we propose allows to use at the fog layer any device with

enough computing power to perform raw data analysis, and sending aggregated data to the cloud.
For instance, an HAR system based on video sensors could be implemented by means of RGB/RGBD
cameras (sensing layer), which send raw data to some local processing units responsible for
performing activity recognition (fog layer), and then to remote storage and synchronisation centres
(cloud layer).

Moreover, in order to carry out the HAR process in more complex scenarios, devices at the
fog layer can share information with each other. For example, three situations where fog-to-fog
communication can be e�ective are:

• Alerting: monitoring the user’s activities in critical environments would allow to timely
detect dangerous situations. In such a scenario, the output of the HAR process performed
by a fog device could be used to send prompt alerts to other devices at the same layer, that
is bypassing the cloud. For instance, in a nursing home or in a factory, the activities can be
recognised by means of wrist-worn devices (one per user), whilst some PCs (e.g., one per
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Fig. 2. Human Activity Recognition through users’ personal devices. Wrist-worn devices are responsible for
capturing sensory data and summarising relevant information. The extracted features are transmi�ed to the
user’s smartphone (1), where data are analysed to detect sequences of relevant micro-activities and recognise
the complex activity performed by the user (2). Data are temporarily stored in smartphone, and then sent to
the cloud (3), where the system parameters and models are updated and sent back to the devices (4).

environment) can be used at the fog layer. The detection of unexpected behaviours could
be immediately noti�ed to other fog devices, without any cloud intervention, enabling a
prompt response of the security sta�. From an architectural point of view, this can be easily
implemented by providing the fog devices responsible for HAR with an additional software
module speci�cally designed to handle the alerting procedures.

• Distributed and continuous tracking: the HAR technique we propose aims at recognising
complex activities of di�erent duration, that can be performed in di�erent places. Some of
the activities we considered are made of dynamic (e.g., walking, running), and static (working
at PC) phases. In such a composite scenario, we can imagine a fog layer made of wearable
mobile devices (e.g., smartphones) to perform activity recognition during the dynamic phase,
and stationary devices (e.g., personal computers) to continue the recognition once the user
reaches a static place (e.g., the o�ce). To this aim, fog devices must be able to share with each
other information about the micro-activities performed at a given time, so as to build the
overall sequence which describes the complex activity. From an architectural point of view,
this can be obtained by providing fog devices with the capability of discovering themselves
and pairing to each other automatically.

• Health promotion: in a collaborative scenario, devices at the fog layer can interact to
motivate the users to achieve a certain result. For instance, if we consider a community of
people doing sports in the same place (a gym, a rehabilitation centre, and so on) several fog
devices could recognise the activities performed by one or more users, and share related
information (e.g, elapsed time, speed, calorie consumption, heart rate) with the community
in order to stimulate the users in achieving their goals.

In order to validate the e�ectiveness of our solution, we focused on a straightforward case study
in which users may wear smart devices while performing some activities. A reasonable assumption
in such a scenario could be to exploit smartwatches to track the users’ movements, passing heavy
data processing to more powerful fog devices, e.g., the users’ smartphones (see Fig. 2).

To this aim, we designed a novel HAR technique that guarantees complex activities, of di�erent
lengths, to be processed timely. The recognition scheme based on K-means, SVMs, and HMMs
allows to easily extend the recognition capability of the system (e.g., by including a larger number
activities), without the need for redesigning the other components of the system.
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Fig. 3. Information exchanged between the smart devices and the cloud.

As regards the type of activities to recognise, we considered a set of complex activities that can
be reasonably decomposed in simple, atomic, micro-activities. For instance, for a given user, the
everyday activity go to work may consist of a sequence of walking for a while, driving or being in a
vehicle for a certain amount of time, then walking again, going up the stairs, and �nally arriving at
the o�ce staying still. All these phases can be traced by the sensors on edge of the network, e.g.,
those embedded in the smartwatches. In order to recognise a set of known micro-activities, each
sensing device collects data from accelerometer and gyroscope sensors, extracts a feature vector
for each time window, and sends the set of feature vectors to the fog devices.
The fog devices of our case study, i.e., the users’ smartphones, recognise the performed micro-

activity (e.g., walking) producing the corresponding word of the vocabulary. Fog devices also act as
bu�ers for temporarily storing feature vectors, users’ feedbacks, and any other data which need to
be transferred to the cloud. The Cloud Data Centre consists of a server that analyses the di�erent
models coming from the smartphones in order to maintain a unique set of known activities, and
re�nes the local models at the fog layer.

The entire data �ow through the layers of the proposed architecture, from the sensing devices to
the smartphones, to the cloud, and back is summarised in Fig.3.
During the �rst phase, i.e., the activity recognition, the wrist-worn device creates a message

M1 containing the extracted feature vector, and sends it to the smartphone through a Bluetooth
connection. Message M1 is received and parsed by the smartphone that associates a particular
word of the dictionary to each feature vector by means of SVMs. This process continues until the
smartphone has enough words to build a sequence. Once the sequence of words is completed, the
HMMs classi�cation is performed and the recognised activity is provided as output. This information,
contained in the message M2 is received by the user on its wrist-worn device. According to the
quality of the recognition, the user can give a positive or negative feedback through the message
M3. Data collected so far, i.e., feature sets and user feedbacks, are stored in the smartphone ready
to be sent to the cloud when requested.

During the second phase, the cloud server sends a messageM4 to check if new data are available.
If yes, the smartphone sends the messageM5 containing all data bu�ered during the previous phase,
deleting them from local memory. At this point, the server processes the incoming information so
as to evaluate if it is necessary to update the dictionary and the HMM parameters. Once that the
models have been updated, a messageM6 is sent to the smartphones to synchronise them.
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Fig. 4. Three-axes acceleration (top row) and angular velocity (bo�om row) for still (a), walking (b), running
(c), and in-a-vehicle (d) behaviours.

4 ACTIVITY RECOGNITION MODULES
In the following of this section an in-depth description of the algorithms behind the activity
recognition modules is provided.

4.1 Feature Extraction
This �rst processing phase focuses on collecting and extracting relevant information (feature
vectors) about user’s activities. In particular, while user performs a particular activity, the wrist-
worn device collects raw data from embedded accelerometer and gyroscope sensors and sends
them to the smartphone for elaboration purpose.
Each activity is roughly characterised by di�erent accelerometer and gyroscope data patterns.

Fig. 4 shows the values of three-axes acceleration (top row) and angular velocity (bottom row)
captured while performing four simple micro-activities such as still, walking, running, and in-a-
vehicle. If we focus on the acceleration values, it is possible to notice how still and in a vehicle
activities share a similar pattern, whilst walking and running are characterised by high noise being
intrinsically associated with a signi�cant user’s movement. Vice-versa, angular velocity values show
that still and in-a-vehicle exhibit distinct patterns, whilst other activities are generally characterised
by oscillations of di�erent width and frequency. In order to capture all these characteristics, we
decided to combine data from the two sensors.

To ensure real-time activity recognition, the collected input data are processed into �xed-length
time windows in order to extract the features that will be used in the next classi�cation stage.
Feature vectors are built similarly to [7], that is by considering [max, min, mean, standard deviation,
root mean square] values over the three accelerometer and gyroscope axes. Therefore, each feature
vector f contains 30 elements, i.e., 15 values of acceleration and 15 values of angular velocity (see
Fig.5).
The size of the processing window also impacts on the performance of the whole system since

short windows may improve system performance in terms of execution time and CPU load, but
may not contain enough information to properly capture the characteristics of the activity. Vice
versa, long windows may alter the system performances since information about multiple activities
performed in sequence might be analysed within a single window. Preliminary experiments were
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Fig. 5. Feature extraction mechanism. Accelerometer and gyroscope data are processed within the n-th
fixed-length time windowWn in order to obtain the corresponding feature vector fn .

performed considering windows of di�erent length. Results showed that �xed-width windows of 3
seconds are the most proper solution [11].

4.2 Vocabulary Construction
The main idea behind the HAR method we propose here is that each feature vector should be able
to capture the characteristics of a certain micro-activityma. Thus, a complex activity CA could be
seen as a speci�c sequence of micro-activities {ma1,ma2, ...,man}, each performed within one of
the n time windowsWn .

Unfortunately, this representationwouldmake di�cult to recognise complex activities of di�erent
lengths, and ine�cient to recognise long-lasting activities. For this reason, it would be reasonable
to �nd a unique set of � relevant micro-activities {ma1,ma2, ...,ma�}, with � << n, which can
properly describe every CA. We refer to these � elements as words of a vocabulary.

Under these assumptions, the HAR problem can be modelled as a data association process where
observations (feature vectors) are mapped into vocabulary words.
We solve this problem by combining K-means [19] clustering and SVM classi�ers [44] to �nd

the set of � representative words, and to associate observations with words. These words are then
used to trainm Hidden Markov Models, wherem is the number of complex activities the system
can recognise. This approach, also known as KM-SVM, or CSVM, allows to speed-up both the
training and the prediction of SVM classi�ers on large scale datasets, and its e�ectiveness have
been discussed in literature, e.g., [46, 48].

Given a set of feature vectors (f1, f2, . . . , fn), K-Means partitions the n observations into � sets,
C = (C1,C2, . . . ,C�), while minimising the intra-cluster error. These clusters are used to create a
new training set NT , upon which the SVM model will be trained:

NT = {(C1,T1), (C2,T2), . . . , (C�,T�)}, (1)
where the i-th pair (Ci ,Ti ), with 1 < i < �, represents cluster and cluster label respectively.

SVM is a supervised learning technique that aims to �nd the best separating hyperplane between
two classes according to labeled training samples. Generally, given a training setX = {x1,x2, . . . ,xs }
and the corresponding label set Y = {�1,�2, . . . ,�s }, a sample can be expressed as:

{xi ,�i }, xi 2 Rd , �i 2 {�1,+1}, i 2 {1, 2, . . . , s}, (2)
where d is the dimension of the input space, and s is the number of samples. In addition, if we de�ne
a and b as the weight vector and the bias of optimal hyperplane respectively, then the separating
function can be expressed as:
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ax + b = 0. (3)

According to this de�nition, all points belonging to the positive class must satisfy the constraint:

axi + b � +1, �i = +1, (4)

whilst the others:

axi + b  �1, �i = �1. (5)

Even though SVMs allow to classify samples belonging to two classes, real-world applications
usually require to distinguish between a greater number of classes. Multi-class SVMs overcome
this limitation by facing the problem through a series of binary SVMs combined according to some
strategies (one-versus-all, one-versus-one, and Direct Acyclic Graph), in most cases one-versus-
one approach is preferable [15, 21]. Assuming that there are exactly � classes, one-versus-one
multi-class SVMs train a separate classi�er for each di�erent pair of classes creating L SVMs, where
L = �(� � 1)/2. After all classi�ers are trained, the classi�cation is done according to a max-win
voting approach.
The output of the process above described is a set of words {ma1,ma2, ...,ma�} that combined

with each other can be used to model a complex activity. The vocabulary construction is performed
on the cloud and is repeated whenever the overall activity models need to be updated. After the
new models have been computed, that is when the vocabulary has been modi�ed, data are sent to
all the devices situated in the fog in order to keep them updated.

4.3 Activity Recognition
The recognition of a new, unknown, activity is performed according to a two-step classi�cation
procedure. First, pre-trained SVMs are used to associate each feature vector with the corresponding
micro-activity (word) contained in the vocabulary. The second step is based on Hidden Markov
Models (HMM) to model the transitions from one micro-activity to the other.
HMMs [40] are an extension of the Markov chains that aims to �nd the most probable hidden

states according to a sequence of events that can be observed. Unfortunately, in real scenarios, the
events are not directly observable and HMMs overcome this limitation introducing hidden events
that can be considered as causal factors in the probabilistic model.
Formally, an HMM is totally described by the following quintuple (N ,M,A,B,�), where N is

the number of states in the model, M is the number of distinct observation symbols per state, A
is the transition probability matrix {a1,1,a1,2, . . . ,a1,N , . . . ,aN ,N }, B is the emission probabilities
matrix {b1,1,b1,2, . . . ,b1,M , . . . ,bN ,M }, and � is the initial probability distribution {�1,�2, . . . ,�N },
where the generic � is:

�i = P[S1 = i], 1  i  N . (6)

Finally, being V = {�1,�2, . . . ,�M } the individual symbols, and qt the generic state at time t , the
transition probability matrix A and observation probability B can be written as:

ai, j = P[SN = j | SN�1 = i], 1  i, j  N , (7)

bj (k) = P[�k at t | S j = qt ], 1  j  N , 1  k  M . (8)
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Fig. 6. The activity recognition process during training (a) and recognition (b) phases.

Generally, when HMMs are used to recognise simple activities, the hidden states are the activities
themselves and the observations correspond to sensor data [25]. Given a set of micro-activities �,
our problem can be modelled as �nding the most likely activityw in a setW :

ar�maxw 2W P(w,�). (9)
By applying the Bayes’ Rule, we can rewrite the above relation as:

ar�maxw 2W P(w,�) = ar�maxw 2W
P(� |w)P(w)

P(�) . (10)

Then, the classi�cation of a new, unknown, sequence of micro-activities is performed by testing it
against all the HMMs, and selecting the class associated with the largest posterior probability.

Fig. 6 describes the steps of the proposed HAR algorithm, which can be summarized as follows:

– Training
(1) Collect a set SCA containing p repetitions of them complex activities the HAR system should

recognise (note that SCA consists of the feature vectors extracted from raw data);
(2) Apply K-means on SCA to �nd� representative groups of themicro-activitiesma1,ma2, ...,ma� ;
(3) Use data from each group (cluster) to train L SVMs that classify the corresponding micro-

activity;
(4) Test each feature vector from the original set SCA against the L SVMs to associate each vector

to a word, and represent each CA as a sequence of words;
(5) Use these sequences to trainm Hidden Markov Models.

– Recognition
(1) Capture a certain unknown complex activity CAunk performed by the user, and represent it

as a sequence of feature vectors;
(2) Use the L SVMs to classify each feature vector, translating it to the corresponding word;
(3) Classify the CA, represented as a sequence of words, by means ofm Hidden Markov Models.

5 EXPERIMENTAL EVALUATION
In order to evaluate the e�ectiveness of the proposed architecture and HAR technique, three
di�erent set of experiments were performed. The �rst aimed to �nd the best values (C,N ) in terms
of system accuracy, and F-score metric. The second was focused on understanding how the number
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Table 1. Smart devices used in the proposed case study.

Smartwatches Smartphones

Brand LG Samsung Huawei Samsung Samsung Samsung
Model W110 G Watch R Gear S2 Watch 2 Galaxy S2 Galaxy S4 Galaxy S5 Neo

CPU (GHz) 1.2 1.0 1.1 1.2 1.9 1.6
# core 4 2 4 2 4 8

RAM (MB) 512 768 512 1024 2048 2048

(a) (b) (c) (d)

Fig. 7. Smartwatch and smartphone Android applications. (a) The overall activity recognition process starts
by pressing the start bu�on on the wrist-worn interface. (b) Data are processed by the smartphone and the
user is asked about the correctness of the classification. Detailed information about the recognition results
(c), and data transmission statistics (d) can be examined trough the smartphone-side app.

of observed samples a�ects the performance of the activity recognition technique. Finally, we
investigated the impact of data exchange between the several entities involved in the HAR on the
overall e�ciency of the system.

5.1 Experimental Setup
The experiments were carried out using three di�erent models of Android-based smartphones, and
three smartwatches equipped with built-in accelerometer and gyroscope sensors (on the left side
of Table 1). Two Android applications (one per device type) were developed to perform activity
recognition, as described in Section 4, and some supporting tasks, such as data management,
compression, and secure transmission. The smartphone application can be installed on any Android
device with Ice Cream Sandwich OS or higher, whilst the smartwatches require at least Jelly Bean
OS.

Fig. 7 shows four di�erent screens of the Android application. The two leftmost images represent
the smartwatch-side of the app allowing users to start/stop the activity recognition process, monitor
the activity duration (Fig. 7a), and give a feedback about the recognition correctness (Fig. 7b). The
other two images show the smartphone-side of the app which permits the user to have in-depth
information about the accuracy of the recognition process (Fig. 7c), and the transmission of collected
data (Fig. 7d).
Note that data processed by the smartphone are temporarily stored in its memory, and sent to

the CDC when requested. This feature makes the system to be totally independent of a centralised
coordinator, allowing fog devices to perform the various processing tasks in complete autonomy.
Data between smartwatches and smartphones are exchanged through short-range Bluetooth

technology, so as to make the proposed architecture compatible with a number of smart devices

12



Table 2. Complex activities analysed during the activity recognition process.

ID Activity Name Reference scenario

CA1 Go To Work 1 The user goes to work by walking for a while.
CA2 Shopping The user alternates still and walking phases.
CA3 Relax The user is sitting for a long time.
CA4 Eating The user is sitting and moves the hands up and down

while eating.
CA5 Working at PC The user is sitting and types on the PC keyboard or uses

the mouse.
CA6 Cooking The user is cooking brie�y moving in the kitchen.
CA7 Jogging The user alternates running and walking phases.
CA8 Go To Supermar-

ket
The user goes to the supermarket alternating vehicle, walk-
ing and still micro-activities.

CA9 Go To Work 2 The user goes to work alternating walking and vehicle
micro-activities.

CA10 Driving The user stays in a vehicle for a long time.

which do not provide other wireless communication interfaces, e.g., 802.15.6, ultra-low power
Wi-Fi, and so on.

The dataset used in the experiments has been collected, by means of wrist-worn devices, asking
20 volunteers to perform 10 complex activities (CA) in a period of three weeks. In order to collect
data in a natural manner we did not provide the users with instructions on how to perform the
activities, while we simply informed the users about the activities we wanted to track and their
meanings. The set of CAs we considered is described in Table 2.

5.2 Activity Recognition Results
The �rst group of experiments aimed at �nding the best set of parameters for the activity recognition
procedure, that is the best pair (�,N ), where � is the number of clusters/words in the dictionary,
and N represents the number of hidden states in HMMs.
To this purpose, a grid-search approach [4] was applied to measure the system performance

in terms of accuracy, precision, recall, and F-Score values [14, 39]. Generally, grid-search is run
with a cross validation technique, e.g., K-fold (KFCV) [42], or leave-one-out (LOOCV) [1] cross
validation. The basic idea of K-Fold cross validation is to partition a dataset into K folds in order to
obtain a more realistic assessment of the considered model. Each time, one of the K subsets is used
for testing, and the other (K � 1) for training. The average error across all iterations provides an
estimation of the overall system performance. LOOCV is a special case of K-fold cross validation in
which the number of folds is equal to the number of points in the dataset.

In this work, we adopted a grid-search on � and N guided by a KFCV to �nd the pair which
provides the best accuracy and F-score values. The number of folds has been set to 10 so as to
minimise the bias, i.e., the di�erence between estimated and actual accuracy [42].

Fig. 8 shows the results obtained for di�erent iterations of the grid-search algorithm on a training
set S1. Since considering accuracy values only (Fig. 8-a) can cause misleading evaluations, F-Score
was also computed. Fig. 8-b shows that best value of F-Score is obtained for � = 19 and N = 14;
which represent the optimal number of words and hidden state to use during the recognition phase.
Detailed results of the KFCV for the considered set of complex activities CA are summarised in
Table 3.

Once the best pair (�,N ) has been found, the next set of experiments aimed to evaluate the
capability of the system to recognise an activity from an unseen test set S2, made of di�erent
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Fig. 8. K-fold Cross Validation. Accuracy (a) and F-Score (b) varying the number of clusters � 2 [2, 20], and
the number of hidden states N 2 [2, 20].

Table 3. K-Fold Cross Validation confusion matrix (accuracy) for �=19 and N=14.

C
A
1

C
A
2

C
A
3

C
A
4

C
A
5

C
A
6

C
A
7

C
A
8

C
A
9

C
A
10

CA1 1 0 0 0 0 0 0 0 0 0
CA2 0 .6 0 0 0 0 0 0 0 .4
CA3 0 0 1 0 0 0 0 0 0 0
CA4 0 0 0 1 0 0 0 0 0 0
CA5 0 0 0 0 1 0 0 0 0 0
CA6 0 0 0 0 0 1 0 0 0 0
CA7 0 0 0 0 0 0 1 0 0 0
CA8 0 .2 0 0 0 0 0 .8 0 0
CA9 0 0 0 0 0 0 0 0 .8 .2
CA10 0 0 0 0 0 0 0 0 0 1

Table 4. 10-Fold Cross Validation confusion matrix (accuracy) for testing phase.

C
A
1

C
A
2

C
A
3

C
A
4

C
A
5

C
A
6

C
A
7

C
A
8

C
A
9

C
A
10

CA1 .92 0 0 0 0 0 0 0 .08 0
CA2 0 .8 0 0 0 0 0 .06 0 .14
CA3 0 0 .86 0 .14 0 0 0 0 0
CA4 0 0 0 .78 0 .1 .12 0 0 0
CA5 0 0 0 0 .94 .6 0 0 0 0
CA6 0 0 0 .12 0 .76 .12 0 0 0
CA7 0 0 0 .04 0 .22 .74 0 0 0
CA8 0 .22 0 0 0 0 0 .64 0 .14
CA9 .14 0 0 0 0 0 0 .04 .66 .16
CA10 0 .04 0 0 0 0 .08 .18 0 .7

repetitions of the complex activities listed in Table 2. Firstly, 10-Fold Cross Validation on the new
test set was performed, and the relative confusion matrix is showed in Table 4. Results show an
average accuracy of 78% and F-score value of 0.72. The confusion matrix also highlights that most
of the recognition errors depend on the complex activities CA8, CA9, and CA10.
A further set of experiments has been performed to measure the system performances while

considering di�erent training sets obtained by randomly choosing samples from the set S2. In
particular: in experiment A we selected 1/3 of the samples to train the system, and the remaining
2/3 for testing; in experiment B, 2/3 of the samples were chosen to train the system, and remaining
1/3 for testing; and in experiment C half of the samples were used for training, and half for testing.
Confusion matrices for each experiment are presented in Table 5, 6, and 7 respectively. The worst
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Table 5. Confusion matrix: accuracy for experiment A (1/3 training set, and 2/3 test set).

C
A
1

C
A
2

C
A
3

C
A
4

C
A
5

C
A
6

C
A
7

C
A
8

C
A
9

C
A
10

CA1 .79 0 0 0 0 0 0 0 .12 .09
CA2 0 .58 0 0 0 0 0 .18 0 .24
CA3 0 0 .88 0 .12 0 0 0 0 0
CA4 0 0 0 .74 0 .03 .24 0 0 0
CA5 0 0 0 0 .97 0 .03 0 0 0
CA6 0 0 0 0 0 .88 .12 0 0 0
CA7 0 0 0 0 0 .24 .76 0 0 0
CA8 0 .09 0 0 0 0 0 .48 0 .42
CA9 .09 0 0 0 0 0 0 .09 .55 .27
CA10 0 .24 0 0 0 0 .09 .21 0 .45

Table 6. Confusion matrix: accuracy for experiment B (2/3 training set, and 1/3 test set).

C
A
1

C
A
2

C
A
3

C
A
4

C
A
5

C
A
6

C
A
7

C
A
8

C
A
9

C
A
10

CA1 .88 0 0 0 0 0 0 .06 0 .06
CA2 0 .82 0 0 0 0 0 .18 0 0
CA3 0 0 1 0 0 0 0 0 0 0
CA4 0 0 0 .94 0 .06 0 0 0 0
CA5 0 0 0 .06 .94 0 0 0 0 0
CA6 0 0 0 0 0 .88 .12 0 0 0
CA7 0 0 0 0 0 0 1 0 0 0
CA8 0 .12 0 0 0 0 0 .76 0 .12
CA9 0 0 0 0 0 0 0 0 .83 .17
CA10 0 0 0 0 0 0 0 .18 0 .82

Table 7. Confusion matrix: accuracy for experiment C (1/2 training set, and 1/2 test set).

C
A
1

C
A
2

C
A
3

C
A
4

C
A
5

C
A
6

C
A
7

C
A
8

C
A
9

C
A
10

CA1 .88 0 0 0 0 0 0 0 0 .12
CA2 0 .72 0 0 0 0 0 .2 0 .8
CA3 0 0 .92 0 .08 0 0 0 0 0
CA4 0 0 0 .76 0 .08 0.16 0 0 0
CA5 0 0 0 0 .96 0 0 0 .04 0
CA6 0 .04 0 0 0 .96 0 0 0 0
CA7 0 0 0 0 0 .08 .92 0 0 0
CA8 0 .12 0 0 0 .08 0 .64 0 .16
CA9 0 0 0 0 0 0 0 0 .76 .24
CA10 0 .2 0 0 0 0 0 .12 0 .68

performances are obtained for the experiment A, in which the mean accuracy is equal to 71% and
F-score to 0.69. Better results can be obtained by increasing the number of training samples as
showed in experiment B, and experiment C. In particular, we can notice that when the considered
training set is 2/3 of the original set (Table 6), the mean accuracy and F-score are comparable
to the values obtained when considering the whole set, i.e., 88%, and 0.9 respectively. Similar
considerations can be made for experiment C, in which accuracy is equal to 82% (Table 7) and
F-score to 0.79 .

This set of experiments revealed that the system performances get worse when S2 is reduced by
a factor of three, whilst the HAR algorithm still provides a good recognition rate when the original
dataset is reduced by 2/3 or 1/2. These last two results underline that the proposed system is able
to capture a general model of the activity set.

5.3 Data Transmission
The devices operating within the proposed framework can transmit to each other information of
di�erent kind (e.g., sensor measurements, messages, activity models), and size. In this Section we
discuss how data processing and transmission impact on the performance of the entire infrastructure,
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Fig. 9. (a) Average transmission time forM5 andM6. (b) Size of theM5 while varying the data collection time.

given that as the amount of data to be managed increases, the smartphone’s battery life generally
reduces [22].

The most widely adopted formats for data exchange in web applications are XML and JSON. In
our system, data are JSON-formatted to reduce memory occupancy and speed-up the transmission
as compared to XML [34].
As discussed in Section 3, and shown in Fig. 3, six di�erent types of messages are exchanged

between the Android clients and the Cloud. Some preliminary tests to evaluate the wrist-worn to
smartphone data transmission were performed during the design of the system. Results showed
that the impact of such a transmission on the overall performances is negligible. In particular,
accelerometer and gyroscope data can be sent to the smartphone over a Bluetooth connection, with
a transfer rate of 25 Mbps (approximately 3.125 MB/s). Given that tracking an activity produces
less than 100 Kb per minute, and data are transferred from wrist-worn to smartphone devices every
10 minutes, we can conclude that the transmission of the �rst four messages can be performed
timely without a signi�cative impact on the battery life. On the other hand, the transmission of
M5, which contains a set of sensory data and user feedbacks collected after a particular activity is
recognised, and M6, created when the dictionary and the parameters of the HMMs are updated,
could a�ect the performance of the system.
Fig. 9a shows the average time needed to transmit the messages M5 and M6 using a Wi-Fi

connection. Results indicate that the e�ort to update the activity models (M6) is quite low, whilst
the transmission of sensory data and user feedbacks require a noteworthy amount of time. In
order to better investigate this aspect, other experiments were performed so as to determine the
relationship between the duration of the data collection process and the size ofM5. Fig. 9b shows
that as the collection time increases, the size of the data transmitted from the clients to the cloud
grows very rapidly. This is mainly due to the JSON formatted messages, which include auxiliary
text to generate and parse every pair attribute/value.
In order to deal with this aspect, the adoption of two lossless compression techniques, i.e.,

Compressed JSON (CJSON) and GZIP [3], has been considered. The idea behind CJSON is to
exploit some redundant information from the original JSON message to obtain a certain level
of compression. GZIP algorithm is a variation of the LZ77 data compression algorithm which
includes Hu�man coding. Lossless compression allows to signi�cantly reduce the size of the data
to be transferred from the fog to the cloud without losing any information that may a�ect the
performance of the HAR system.
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Experiments aimed at comparing the e�ectiveness of the two algorithms in terms of saving
percentage (SP ) and compression ratio (CR) [26]. Moreover, in order to evaluate their suitability to
the scenario we addressed here, compression and decompression time have also been computed.
Assuming that SM is the original size of the message, and Sm the size after compression, then the
saving percentage, SP , and the compression ratio, CR, can be computed as:

SP(%) = SM � Sm
SM

, CR =
Sm
SM
. (11)

Tests were run on smartphone devices compressing several messages of various sizes (from 500
Kb up to 4 Mb), and results are summarised in Fig. 10. We can observe that GZIP outperforms
CJSON both in terms of saving percentage (Fig. 10a) and compression rate (Fig. 10b). Moreover,
Fig. 10c shows that GZIP compression/decompression time measured while increasing the input
size (from A to G) are quite lower than those achieved by CJSON. Thus, in order to contrast the
behaviour observed in Fig. 9b, GZIP compression of sensory data is performed to reduce bandwidth
usage and enable faster communication between the smartphones and the cloud.

6 CONCLUSION
In this paper, we presented a framework for recognizing human activities through users’ smart
devices. The recognition process exploits a fog-based architecture where devices operating at three
di�erent logic levels are responsible for collecting sensory data, performing HAR, and maintaining
the activity models within the community. Each of these tasks is subject to errors that may impact
on the overall performance of the system.
Data collection, for instance, is directly controlled by the user through the smart device, by

switching on/o� the Android application. As a consequence, it frequently happens that initial and
�nal acquisition windows contain noisy data due to the physical interaction between the user and
the device. More generally, data within any window could be altered by unintentional movements,
so leading to the creation of vocabulary words that are not representative of any micro-activity. In
order to deal with this issue, a noise detection algorithm could be introduced to discard “unreliable”
windows before the recognition is performed.

As regards the HAR process, the combined use of KM-SVM and HMMs allows to obtain a
compact representation of sequences of any length, and to dynamically change the set of complex
activities to be recognized. One limitation of this schema is that sequences not matching one of
the trained HMMs will be associated to the unknown class. Thus, the system is not currently able
to automatically recognize, i.e., to correctly name, new activities that may naturally emerge from
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the community. A future work could focus on the analysis of the unknown set in order to detect
frequent patterns that can be used to train new HMMs on-the-�y.
One of the crucial matters of mobile crowdsensing is still the user’s reliability. Since the whole

activity recognition is based on data provided by the users, and users’ feedbacks are exploited to
drive the models re�nement, as future work we want to extend the framework proposed here to
incentivise users’ active and reliable participation. To this aim, a trust management module could
be included to estimate the user’s trustworthy and discourage malicious behaviours.
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