

NDS LAB - Networking and Distributed Systems

http://www.diid.unipa.it/networks/

Assisted Labeling for Spam Account Detection on
Twitter

F. Concone, G. Lo Re, M. Morana, C. Ruocco

In Proceedings of the 2019 IEEE International Conference on Smart
Computing (SMARTCOMP)

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: IEEE

Assisted Labeling for
Spam Account Detection on Twitter

Federico Concone, Giuseppe Lo Re, Marco Morana, and Claudio Ruocco
{federico.concone, giuseppe.lore, marco.morana, claudio.ruocco}@unipa.it

Università degli Studi di Palermo
Viale delle Scienze, ed.6, 90128, Palermo, Italy

Abstract—Online Social Networks (OSNs) have become in-

creasingly popular both because of their ease of use and their

availability through almost any smart device. Unfortunately,

these characteristics make OSNs also target of users interested

in performing malicious activities, such as spreading malware

and performing phishing attacks. In this paper we address the

problem of spam detection on Twitter providing a novel method

to support the creation of large-scale annotated datasets. More

specifically, URL inspection and tweet clustering are performed

in order to detect some common behaviors of spammers and

legitimate users. Finally, the manual annotation effort is further

reduced by grouping similar users according to some character-

istics. Experimental results show the effectiveness of the proposed

approach.

Index Terms—spam detection, social network, computer secu-

rity

I. INTRODUCTION

The popularity of Online Social Networks (OSNs) has
rapidly grown up in the last few years, making social media
part of everyone’s life. Alongside with the most famous
platforms, such as Facebook and Twitter, new OSNs were born
providing different functionalities, such as instant messaging
(e.g., WhatsApp and Telegram), or content sharing services,
(e.g., Youtube and Instagram).

This popularity increase is mainly due to two factors: OSNs
are very easy-to-use, and they are available ubiquitously, on
every smartphone. Thus, people are encouraged to use OSNs
very frequently to share personal information and communi-
cate with other people they don’t know in real life, overcoming
communication barriers.

Thanks both to its APIs and developer policies, one of
the most famous and investigated social network is Twitter.
Moreover, tweets usually have high information content, being
strictly related to popular events which involve many people
in different parts of the world [8], [9].

Among the different research topics concerning Twitter
analysis, spam accounts detection is one of the most inves-
tigated and relevant one. In general terms, the spammers
are entities, real users or automated bots, whose aim is to
repeatedly share messages that include unwanted content for
commercial or offensive purposes [13], e.g., links to malicious
sites that aim at spreading malware [17], phishing attacks, and
other malicious activities.

In order to discourage these behaviors, social networks are
continuously transforming and, together with them, spammers

have also evolved adopting more sophisticated techniques that
make it easy to evade security mechanisms [23].

The design and assessment of new spam detection tech-
niques requires large datasets, whose collection and manual
annotation are time consuming tasks. Moreover, being the
lifetime of spammers very short, the datasets in the literature
quickly become obsolete and almost useless.

In this paper, we present a system to support the annotation
of large scale Twitter datasets by modeling the most rele-
vant characteristics of spammers as compared to legitimate
Twitter’s users. In particular, after a first phase that deeply
inspects URLs shared by users, a second step aims to find
common patterns in users’ timelines. Finally, similar users
are grouped according to relevant features in order to reduce
manual labeling efforts.

The remainder of the paper is organized as follows: Related
work is outlined in Section II. The system for assisted labeling
of spam account is described in Section III. Experimental
results are presented in Section IV. Conclusions will follow
in Section V.

II. RELATED WORKS

Spam detection on Twitter is one of the main topics in social
media research and it has been investigated in many works.
A comprehensive analysis of spam and compromised social
network accounts is presented in [13].

Generally, a spam campaign is created by exploiting a
number of fake, compromised, and sibyl accounts that operate
in conjunction with social bots. For each of these threats,
various detection techniques have been proposed [22]. The
general idea is very simple and consists in attracting and
deceiving possible attackers by means of an isolated and
monitored environment. To this aim, some works propose the
use of honeypots to analyze spamming activities. In [14],
for instance, the authors present a social honeypot to collect
spam profiles from social networking communities, such as
MySpace and Twitter. Every time an attacker attempts to
interact with the honeypot, an automated bot is used to retrieve
some observable features, e.g., number of friends of the
malicious users. Then, this set is analyzed to create a profile
of spammers and train the corresponding classifiers.

A similar dynamic analysis is also performed in [19], where
about 1.000 honeypots were used to accept friend requests
and monitor friends activities in different OSNs (Facebook,
MySpace and Twitter) for about 1 year. Results show that

1

DR
AF
T

four classes of spammers can be identified: braggers, posting
malicious messages to their profiles; displayers, displaying
spam content in their profiles; posters, sending messages
to their victims through public posts on their walls; and
whisperers, sending private messages to their victims.

Despite the advantages of performing a dynamic analysis on
a controlled environment, the effort of creating a honeypot for
each element to be analyzed is usually too high. For this rea-
son, most works focus on static machine learning approaches
capable of capturing some relevant features about the users and
their interactions with their followers. In [7], three classifiers,
i.e. Random Forest, Decision Tree, and Bayesian Networks,
are used to learn nineteen features that reflect the spammers’
behaviors.

In [2], authors describe Twitter Sybils Detector, a browser
plug-in capable of classifying Twitter users according to a
set of features. This system gets good results when asked to
distinguish human from sybil, while the performances become
lower when it is asked to deal with hybrid profiles.

This limitation is common to several works, suggesting that
statistical features alone are not sufficient to correctly distin-
guish multiple classes of users. The reason is that spammers
change their behavior over time to bypass security measures.

Since link sharing in one of the most common spam
activities, many spam detection systems are based on URLs
inspection [4].

Monarch [21], for instance, contains three different modules
in order to capture URLs shared by web services, extract some
features, and label every URL as spam or non-spam. Moreover,
additional analyses are executed on other data, such as IP
addresses and routing information.

The design of any spam detection technique requires two
preliminary phases: collecting a great number of tweets, and
labeling each element of the set as “spam” or “non-spam”.

One of the first long-term data collection work is [15].
The dataset, captured by means of a honeypot, contains a
total of 5.5 million tweets associated with both legitimate and
malicious users.

HSpam14 [18] is a dataset of about 14 million tweets,
collected by searching for trending topics and spammy words,
i.e., words which are more likely to appear in spam tweets.
According to the Twitter’s policies, HSpam14 consists of a set
of users’ and tweets’ IDs that should be used to fetch complete
data through the Twitter APIs. Nevertheless, we observed that
most of the requests fail because of different errors, e.g., user
account suspended, tweet ID not found, and account protected,
making HSpam14 quite unusable. This happens despite the
dataset being only 3 years old, which highlights even more
the early obsolescence of available collections.

The dataset provided in [3] consists of 600 millions public
tweets, 6.5 millions of which are labeled as spam, and 6 mil-
lions as non-spam. The labeling has been performed according
to the output of the Trend Micro’s Web Reputation Service,
that checks if an URL is malicious or not according to a
reputation value given by users. Differently from HSpam14,
this dataset contains the tweets and a fixed set of 12 features,

but does not report the tweets’ IDs that could be used to access
other relevant information.

III. TWITTER DATASET LABELING

The proposed assisted labeling approach is based on some
intuitions that allow to distinguish between spammers and
trustworthy users. Although all the strategies adopted by spam-
mers to share unwanted contents are difficult to determine,
academia and industry researchers agree on some behaviors
and actions that are the basis of spamming.

One of the objectives of a spammer is to reach as many
users as possible with a single message. For this reason, the
first element that may probably identify a spam activity is the
sharing of multiple messages containing same, or similar, in-
formation. This strategy is often complemented by connecting
spam contents to a set of topics that are highly interesting to
the user community, i.e., trending topics.

Another spamming strategy is the publication of malicious
URLs that redirect legitimate users to sites containing mali-
cious elements, e.g., malware and phishing sites [6]. Links are
the most adopted way to disseminate malicious contents [7];
moreover, thanks to obfuscation strategies, spammer can easily
hide the target URL in order to deceive the legitimate user.

Currently, both because of the tweets’ character limit and
the diffusion of URL blacklist services, a popular approach
for spreading malicious links is the usage of URL shortening
techniques. Twitter, for instance, provides an automatic service
(t.co) that allows users to share long URLs in a tweet while
maintaining the maximum number of characters allowed.
However, since all shortened URLs look the same, the user
is not aware of the actual destination address.

According to these characteristics, the labeling schema we
propose is based on three phases: URL analysis, similar tweets
analysis, and similar users analysis.

The whole process, summarized in Fig.1, aims at capturing
the modus operandi of the users by analyzing their recent
histories. Thus, each tweet in the timelines of the users (e.g.,
the latest 200 tweets) is analyzed. If enough malicious URLs
are found within the timeline, then the corresponding user
is labeled as spammer; otherwise, it is labeled as genuine.
During the next phase, every timeline is checked in order to
find similar tweets.

If results from URL and timeline analysis are consistent, i.e.,
both agree in considering the user as spammer or genuine, then
the account is labeled consequently [5]. Otherwise, manual
annotation is required. To minimize human effort in manual
labeling, the remaining users are grouped together according
to a set of features. The idea behind this final step is to create
consistent groups of similar users, perform manual annotation
of just a few samples per group, and then extend the label to
the whole set.

A. URL Analysis
The simplest way to analyze a URL is by using blacklisting

services, such as Google Safe Browsing (GSB), that are able
to alert whether a URL is malicious or not depending on the

DR
AF
T

URL
ANALYSIS

SIMILAR TWEETS
ANALYSIS

spam

genuine

SPAM
ACCOUNT

GENUINE
ACCOUNT

spam

genuine

SIMILAR TWEETS
ANALYSIS

spam

genuine

MANUAL
ANNOTATION

SIMILAR USERS
ANALYSIS

sample
annotation

SPAM
ACCOUNT

GENUINE
ACCOUNT

Fig. 1: The proposed labeling schema.

reports it has collected. Whereas such approach is the most
common in the literature, its effectiveness is quite limited be-
cause blacklisting is not timely. In particular, some studies [11]
highlighted that about four days are needed for a new website
to be added to the blacklist, while most of the accesses on
a tweet occur within two days from its publication. Even the
URL shortening and safe-browsing services integrated with
Twitter present similar limitations; for instance, it is not able
to detect a malicious link that has been shortened twice (or
more).

Moreover, blacklisting is able to capture unsafe URLs only;
thus, a different kind of spammer, that continuously share safe
links would never be detected.

As a consequence, our system not only relies on GSB
as a tool to identify malicious URLs, but it also considers
the amount of URLs within the users’ timelines. To this
aim, for each user, the total number of URLs, T , and the
ratio RUT between unique URLs, U , and T are computed.
Preliminary experiments, carried out on a manually-labeled
dataset, showed that good performances can be achieved by
labeling as spammers those users who have shared at least one
malicious URL, or whose spam index (RUT) is less than 0.25.

B. Finding Similar Tweets

Another characteristic of spammers we want to capture is
the sharing of similar contents over time. Thus, in order to
correctly label those users that do not share malicious URLs,
but keep posting same contents all over the timeline, the
second phase consists in the identification of near duplicates
tweets.

The core of the timeline analysis module exploits a cluster-
ing approach, known as near duplicates clustering, intended
for grouping items, i.e., tweets, that are not identical copies
but slightly differ from each other, e.g., by a few characters.

Correctly identifying near duplicates tweets requires the use
of two different algorithms, namely MinHash and Locality-
Sensitive Hashing (LSH) [10]. Nevertheless, before applying
these algorithms, some tweet pre-processing is required.

In particular, every tweet is firstly represented as a set of
tokens; then each token is analyzed in order to remove all

those elements which do not contribute to the semantic, such
as mentions, common symbols, punctuation marks and stop-
words. Moreover, URL expansion and stemming are applied to
obtain the actual URL and to group similar words respectively.
As an example, supposing that google.it has been shortened
through bit.ly, the following tweet:
@helloworld I’m writing this #tweet. Trying

tokenization. bit.ly/1hxXbR7

would be transformed into:
write this tweet try token google.it.

The last step involves the choice of K, i.e., the number of
consecutive elements to be considered as a single token. This
choice deeply impacts on the system performances since the
higher is K, the lower is the number of documents that will
share the same word [16] and vice versa. For short documents,
common values for K are in the range [1, 3], while when
dealing with longer texts, K � 4 is recommended. Since
tweets are very short documents, we chose K = 1. Conversely,
in HSpam14 [18] MinHash is applied in a slightly different
way and other values of K are considered.

Having represented every tweet as a set of tokens, we
need a distance function that allows to measure similarity
between tweets. One of the most adopted metric is the Jaccard
distance, which is computed as the ratio between the size of
the intersection of the two documents and the size of their
union. Such a distance, however, has a significant drawback
since it can only be applied to two objects at a time. Thus, in
order to create clusters of similar items, it would be required to
analyze every possible pair of tweets, which is computationally
expensive when dealing with large collections.

Another issue, which cannot be ignored, is that the number
of tokens depends both on the amount of tweets to be analyzed
and their size. This can deeply impact the memory required
by the system. MinHash permits to overcome this limitation
by providing a fast approximation of the Jaccard similarity
using hash functions. In particular, the idea is to summarize
the large sets of tokens into smaller groups, i.e., signatures, so
that two tweets T1 and T2 can be considered similar if their
signatures Hash(T1), and Hash(T2) are similar.

DR
AF
T

Input: Set of tokens S

N independent hash functions
Output: < Hm(1),Hm(2), . . . ,Hm(N) >
for i = 1 : N do

Hm(i) 1;
end

forall token 2 S do

for i = 1 : N do

if Hashi(token) < Hm(i) then

Hm(i) Hashi(token);
end

end

end

Algorithm 1: MinHash signature.

Algorithm 1 describes the MinHash signature generation
when using N hash functions. For every hash function hi and
for every token tj a value is computed as hi(tj). Then, the
i� th element of the signature is:

si = min
j

hi(tj). (1)

Using Minhash we can solve the problem of comparing
large datasets by compressing every tweet into a signature.
However, we still need to perform pairwise comparisons in
efficient way. LSH - Locality-Sensitive Hashing - is the algo-
rithm which best resolves this problem by using a hash table
to group similar elements into buckets. The hash functions it
uses are purposely made to maximize the probability of similar
tweets to be hashed into the same bucket.

Essentially, LSH groups all the MinHash signatures into a
matrix, then splits it into B bands, each composed of R rows,
and a hash value for each band is computed. If two tweets
fall into the same bucket for at least one band, then they are
considered as potential near-duplicates and they can be further
inspected through real or approximate Jaccard similarity.

The combination of MinHash and LSH allows to group the
tweets contained in the users’ timelines into set of clusters.
Then, a user can be labeled as spammer or genuine according
to the characteristics of these clusters. In Section IV, we
present the experiments carried out in order to identify and
validate the set of features that best discriminate between
spammers and genuine users.

C. Finding Similar Users

The very last phase of the proposed annotation schema
involves the use of another clustering algorithm, namely
Quality Threshold Clustering (QTC) [12], which is aimed
at reducing the manual annotation effort when the previous
stages provide incongruous results. Thus, Quality Threshold
Clustering is applied only on the set of users that were not
labeled as genuine or spam during the previous phases. The
idea behind this phase is to group very similar users so as to
perform manual annotation of just a few samples per group,
and then extend the label to the whole set.

Input: Set of points P , MinClusterSize m,
MaxClusterDiam d

Output: Set of generated clusters Sc

Sc ;
if |P | 1 then

Sc P

else

while |P | � 1 do

foreach i 2 P do

flag true

Ci {i}
while (flag = true) ^ (Ci 6= P) do

foreach j 2 (P � Ci) do

if distance(i, j) > d
2 then

flag false

else

Ci Ci [{j}
end

end

end

end

SA {C1,C2, . . . C|P |}
k argmaxCi2SA |Ci|
if |Ck| � m then

Sc Sc [{Ck}
P P � Ck

else

foreach i 2 P do

Sc Sc [{{i}}
P P � {i}

end

end

end

end

Algorithm 2: Quality Threshold Clustering (QTC).

Unlike other clustering techniques, QTC does not require
the a priori specification of the number of clusters to be found.
Instead, elements are progressively grouped while maintaining
the quality of each cluster above a certain threshold. To this
aim, two parameters must be defined, i.e., the maximum
cluster diameter (d), and the minimum number of elements
(m) a cluster has to contain. QTC works as follows: for every
iteration, for every data point, it finds the closest candidate
to be added (the one which causes the minimum increase in
diameter) to the cluster. This is repeated until no points can
be added without exceeding the value of d. At the end of each
iteration, if the largest cluster has more elements than m, then
it is closed and its points are not considered in the following
steps. Conversely, if the largest cluster’s size is lower than m,
the algorithm ends and the remaining points are considered as
clusters containing a single element.

In its early implementation, QTC is computationally inten-
sive and time consuming, which is the reason behind the great
presence of efficient variations of the algorithm. In this work
we adopted an improved version of QTC (see Algorithm 2)

DR
AF
T

that considers as candidates only those points within half of
the maximum distance from the centre.

Since the output clusters differ in size and quality, we only
considered the first cluster Cbest, which is the biggest and
most reliable one. Thus, only the users in Cbest are labeled,
while the remaining users will be evaluated through the manual
annotation procedure.

IV. EXPERIMENTAL ANALYSIS

Experimental analysis has been focused on the tuning and
evaluation of the algorithms discussed so far.

The first set of experiments aimed at finding the best set
of parameters for the similar tweets analysis module, i.e.,
the quadruple (N ,K,B, J) for MinHash and LSH, where
N is the number of hash functions, K is the number of
consecutive tokens, B is the number of bands, and J is the
minimum Jaccard distance to consider two tweets similar.
Whereas N has been set to 200 as suggested in the literature,
the other parameters have been selected varying their values
as following: K = {1, 2, 3}, B = {5, 10, 20, 40, 50}, and
J = {0.5, 0.6, 0.7, 0.8}. Values for K and J have been chosen
amongst the most used in the literature, whereas those for B

have been selected according to [18].
In order to evaluate the results achieved by each quadruple,

a reference dataset was used. In particular, we exploited the
dataset in [20], which is composed by pairs of tweets manually
labeled with a similarity score that varies from 1 (dissimilar) to
5 (equal). A pairwise similarity criterion was used to transform
these labels into a ground-truth about clusters of tweets. For
instance, if a tweet t1 is considered similar to t2, and t2 is
also similar to t3, then t1 and t3 are similar and the three
tweets belong to the same cluster. Furthermore, to ensure
a high degree of similarity among tweets belonging to the
same cluster, we considered only those pairs whose similarity
score is at least 3, i.e., those labeled by [20] as “strong near
duplicates”.

The performance of MinHash and LSH were compared in
terms of f-score, as reported in Table I. According to these
experiments, the best values are K = 1, B = 50, and J = 0.5,
which allow to achieve a f-score of 0.69.

Once the parameters have been set, the next experiments
were intended to select the most suitable set of features for
distinguishing spammers from genuine users. For instance,
given a timeline of P tweets, it is reasonable to assume that
tweets shared by a genuine user would be very different from
each other, while spammers are likely to share similar contents.
Thus, MinHash and LSH would produce about P clusters on
the timeline of a genuine user, and Q clusters, with Q ⌧ P ,
in the case of a spammer.

In order to obtain a more accurate representation of spam
and genuine classes, the output of MinHash and LSH needs
to be further summarized. To this aim, different features were
considered, such as the size of the largest cluster (f1), mean
size of clusters (f2), number of clustered tweets (f3), size of
the smallest cluster (f4), and number of generated cluster (f5).

J
K B 0.5 0.6 0.7 0.8

5 0.249 0.248 0.248 0.247
10 0.297 0.296 0.297 0.290
20 0.477 0.467 0.436 0.371
40 0.675 0.587 0.468 0.376

1

50 0.688 0.589 0.468 0.376
5 0.242 0.242 0.242 0.242

10 0.250 0.250 0.250 0.249
20 0.287 0.283 0.271 0.260
40 0.389 0.328 0.276 0.261

2

50 0.403 0.330 0.276 0.261
5 0.241 0.241 0.241 0.241

10 0.247 0.247 0.247 0.246
20 0.265 0.263 0.257 0.253
40 0.310 0.285 0.259 0.254

3

50 0.315 0.285 0.259 0.254

TABLE I: F-score obtained by calibration phase for MinHash
and LSH algorithms.

ratio S1 S2 S3 S4 S5 S6 S7

0.3 0.790 0.793 0.794 0.794 0.787 0.794 0.791
0.768 0.772 0.772 0.773 0.765 0.773 0.769

0.4 0.784 0.792 0.803 0.788 0.782 0.799 0.791
0.760 0.771 0.784 0.764 0.759 0.778 0.767

0.5 0.787 0.797 0.800 0.785 0.779 0.799 0.790
0.763 0.777 0.781 0.761 0.755 0.779 0.765

0.6 0.790 0.796 0.807 0.786 0.778 0.800 0.793
0.767 0.776 0.789 0.762 0.755 0.778 0.768

0.7 0.780 0.794 0.811 0.779 0.770 0.797 0.789
0.752 0.774 0.792 0.757 0.746 0.775 0.762

0.8 0.786 0.794 0.812 0.785 0.775 0.793 0.788
0.760 0.774 0.794 0.764 0.752 0.769 0.760

TABLE II: Accuracy (gray rows) and f-score achieved while
varying the ratio of spammers and genuine users in the range
[0.3,0.8]. For each experiment, the following set of features
were considered: S1 = {f1, f2}, S2 = {f1, f2, f3}, S3 =
{f1, f2, f5}, S4 = {f1, f2, f4, f5}, S5 = {f1, f2, f3, f5},
S6 = {f1, f2, f3, f4}, and S7 = {f1, f2, f3, f4, f5}.

Then, the effectiveness of different subsets of features was
evaluated. For these experiments we relied on a subset of
the data in HSpam14 [18], which contains 14 million labeled
tweets. However, since our aim is to label users, we sampled
some of the tweets in HSpam14, retrieved information about
the authors, and then labeled them according to the original
tweet’s label. Tests were run while varying the ratio between
genuine users and spammers (e.g., a ratio of 0.3 indicates that
the dataset is composed of 30% spammers and 70% genuine
users), and using 7 subsets of features (see Table II). Although
all the subsets Si provide similar performances, we have
selected the set S3 because of its compactness. In particular,
by considering the features in S3, i.e., the maximum size and
average size of clusters (f1, f2), and the number of clusters
(f5), the system achieved an accuracy of 0.79 and a f-score
of 0.77.

The last set of experiments focused on the assessment of
QTC. In this case, we would need to define the values of
the minimum cluster size (m), and the maximum distance (d)
between elements that belong to the same cluster. However,
given that we want to analyze only users belonging to the

DR
AF
T

(a)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)
0

2

4

6

8

10

12

14

(c)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)
0

0.2

0.4

0.6

0.8

1

1.2

(e)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2: Features computed on spammers (black bars) and genuine users (white bars): timeline fullness (a), corresponding to the
number of tweets divided by 200; average number of tweets per day (b); average number of URLs (c), hashtags (d), mentions
(e), and spamwords (f) per tweet.

biggest cluster computed by QTC, the value of m can be
neglected.

Since this phase aims at comparing users according to
their timelines, we identified characteristics that would capture
significant differences between spammers and genuines. In
particular, we considered as candidate features the timeline
fullness (number of tweets in a timeline, divided by 200), the
daily frequency of tweets, and the average number of URLs,
hashtags, mentions, and spamwords per tweet. Fig. 2 shows
the average values of such features computed for spammers
(black bars) and genuine users (white bars) on a training set
of labeled data. According to these results, we selected URLs,
hashtags, and mentions frequencies.

The best value of d was found by evaluating the perfor-
mance of QTC in terms of the number of elements within the
first cluster, and the error computed as the ratio of the number
of elements of minority class within the cluster and the cluster
size.

Results obtained varying d in the range [0.4, 2.0] are sum-
marized in Fig. 3 and Fig. 4. For each experiment, different
amounts of spammer and genuine users were considered. By
focusing on the ratio 10/90%, that is close to the actual
distribution of spammers on Twitter, the two plots suggest that
a good trade-off between large clusters, which are desired to
reduce the manual annotation phase, and low error is obtained
with d = 1. As shown in Fig. 4, this value allows to label
about the 45% of users with a margin of error of 4%.

Finally, in order to assess the overall performances of the
automatic labeling procedure, a dataset was collected using
the Twitter APIs. Tweet collection was performed at regular
intervals by exploiting a set of keywords that include both
trending topics and “spammy” words, such as money gain
and adult contents [18]. For each tweet, the author and the
list of followers have been extracted, together with standard
tweet-related data, such as the tweet identifier, creation date,
and so on. Extending the search to the followers of potential
spammers allowed us to increase the probability of finding
spammers. The complete list of authors and followers has then

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
diameter

0

5

10

15

20

25

30

35

40

45

e
rr

o
r

(%
)

10/90%
25/75%

50/50%
75/25%

Fig. 3: Error within the first cluster while varying the param-
eter d.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
diameter

0

10

20

30

40

50

60

70

80

90

si
ze

 (
%

)

10/90%
25/75%

50/50%
75/25%

Fig. 4: Percentage of elements grouped in the first cluster while
varying the parameter d.

been processed to obtain also the latest 200 tweets contained
in each timeline. As a result of this procedure we collected
almost 8 million tweets and 40 thousands users.

The dataset has been analyzed by applying the proposed
procedure and the outcomes of the labeling process are shown

DR
AF
T

Number of users collected 40.823
Automatically labeled as genuine 20.007
Automatically labeled as spammers 2.190
Grouped in the first QT cluster 6.780
Needing further manual inspection 11.846

Number of tweets collected 8.010.147
Containing URLs 2.330.558
Containing hashtags 1.640.521
Containing user mentions 4.334.056

TABLE III: Output of the detection/labeling process on the
dataset collected.

in Table III. In particular, the URL analysis and timeline anal-
ysis steps allowed to automatically detect 20.000 legitimate
users and about 2.000 spammers. These results were compared
with a ground-truth obtained by manually labeling the users
we collected, showing an average accuracy of about 80%.
In particular, we measured that the accuracy of the assisted
labeling system reaches the maximum value of 95% when
detecting true genuine users, while this percentage is lower
when dealing with spammers (about 70%). These values are
not surprising and reflect the fact that activities carried out by
genuine users are quite predictable, while spammers frequently
vary their modus operandi in order to elude spam detection
systems.

The users that were not automatically labeled after the
application of MinHash and LSH have been analyzed by
means of QT clustering. The biggest cluster produced by
QT, consisting of almost 7.000 users, i.e., about 35% of the
remaining users, was confidently labeled as genuine. All the
other users, about 11.000, would need to be further manually
inspected to have a label assigned. Thus, about 75% of the
users can be labeled in a semi-automatic way, leading to a
significant reduction in manual efforts needed to inspect the
whole dataset.

V. CONCLUSION

Since the design of novel spammer detection methods re-
quires a first phase of data collection and data labeling, in this
paper we presented a system to support the annotation of large-
scale Twitter datasets by modeling the most common behaviors
of Twitter spammers, i.e. URLs sharing and presence of
patterns in tweets.

Although malicious URLs can be detected by relying on
third-party blacklisting services, we noticed that these systems
alone are not sufficient to detect any form of link-based spam
contents. Thus, a URL analyzer taking into account a greater
number of features has been described. As regards the analysis
of recurring topics and near-duplicate contents, a combination
of MinHash and Local-Sensitive Hashing algorithms has been
presented.

Such a system aims to provide researchers with a tool to
speed-up the automatic annotation of large-scale datasets. In
particular when the presence of malicious URLs or frequent
patterns is not so evident, the proposed labeling approach
exploits a Quality Threshold clustering algorithm to group user

with similar characteristics in order to drastically reduce the
manual annotation efforts.

At first, experimental evaluation has been focused on the
tuning of parameters for the adopted techniques, and on
selecting the best set of features which permits to distinguish
between spammer and genuine users.

Moreover, in order to validate the effectiveness of the pro-
posed method, a dataset was collected and analyzed. Results
showed that almost 75% of the accounts contained in the
dataset can be labeled by means of the technique we propose
with an average accuracy of about 80%.

As future works we plan to extend our analysis to non-
english tweets, using different pre-processing algorithms and
identifying both spam-words and stop-words for every lan-
guage. Moreover, a continuous analysis of the user’s behavior
could allow to estimate the reputation of each user. These
values, similarly to those assigned to agents cooperating in
distributed systems [1], could represent another feature to be
analyzed by the spam/genuine classification algorithm.

Finally, given the Twitter’s privacy policies, we are not able
to release the dataset we collected, but we want to release a
public version of our labeling system. Given the huge amount
of data to be processed, the software will exploit different
threads to perform parallel analysis on multiple data at the
same time.

REFERENCES

[1] Vincenzo Agate, Alessandra De Paola, Giuseppe Lo Re, and Marco
Morana. A Simulation Framework for Evaluating Distributed Reputation
Management Systems, pages 247–254. Springer International Publishing,
Cham, 2016.

[2] M. Alsaleh, A. Alarifi, A. M. Al-Salman, M. Alfayez, and A. Al-
muhaysin. Tsd: Detecting sybil accounts in twitter. In 2014 13th
International Conference on Machine Learning and Applications, pages
463–469, Dec 2014.

[3] C. Chen, J. Zhang, X. Chen, Y. Xiang, and W. Zhou. 6 million spam
tweets: A large ground truth for timely twitter spam detection. In 2015
IEEE International Conference on Communications (ICC), pages 7065–
7070, June 2015.

[4] Chao Chen, Sheng Wen, Jun Zhang, Yang Xiang, Jonathan Oliver,
Abdulhameed Alelaiwi, and Mohammad Mehedi Hassan. Investigating
the deceptive information in twitter spam. Future Gener. Comput. Syst.,
72(C):319–326, July 2017.

[5] F. Concone, G. Lo Re, M. Morana, and C. Ruocco. Twitter spam
account detection by effective labeling. In Proceedings of the Third
Italian Conference on Cyber Security, volume 2315, 2019.

[6] Federico Concone, Alessandra De Paola, Giuseppe Lo Re, and Marco
Morana. Twitter analysis for real-time malware discovery. In 2017 AEIT
International Annual Conference (2017 AEIT), Cagliari, Italy, sep 2017.

[7] M. Fazil and M. Abulaish. A hybrid approach for detecting automated
spammers in twitter. IEEE Transactions on Information Forensics and
Security, pages 1–1, 2018.

[8] S. Gaglio, G. Lo Re, and M. Morana. Real-time detection of twitter
social events from the user’s perspective. In IEEE International
Conference on Communications (ICC2015), 2015, pages 2810–2815,
2015.

[9] Salvatore Gaglio, Giuseppe Lo Re, and Marco Morana. A framework
for real-time twitter data analysis. Computer Communications, 73, Part
B:236 – 242, 2016. Online Social Networks.

[10] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in
high dimensions via hashing. In Proceedings of the 25th International
Conference on Very Large Data Bases, VLDB ’99, pages 518–529, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

DR
AF
T

[11] Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. @ spam:
the underground on 140 characters or less. In Proceedings of the 17th
ACM conference on Computer and communications security, pages 27–
37. ACM, 2010.

[12] L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring Expression
Data: Identification and Analysis of Coexpressed Genes. Genome Res.,
9(11):1106–1115, 1999.

[13] Ravneet Kaur, Sarbjeet Singh, and Harish Kumar. Rise of spam and
compromised accounts in online social networks: A state-of-the-art
review of different combating approaches. Journal of Network and
Computer Applications, 112:53 – 88, 2018.

[14] Kyumin Lee, James Caverlee, and Steve Webb. The social honeypot
project: Protecting online communities from spammers. In Proceedings
of the 19th International Conference on World Wide Web, WWW ’10,
pages 1139–1140, New York, NY, USA, 2010. ACM.

[15] Kyumin Lee, Brian David Eoff, and James Caverlee. Seven months with
the devils: A long-term study of content polluters on twitter. In ICWSM,
pages 185–192, 2011.

[16] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining
of massive datasets. Cambridge university press, 2014.

[17] A. De Paola, S. Gaglio, G. Lo Re, and M. Morana. A hybrid system
for malware detection on big data. In IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 45–50, April 2018.

[18] Surendra Sedhai and Aixin Sun. Hspam14: A collection of 14 million
tweets for hashtag-oriented spam research. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’15, pages 223–232, New York, NY, USA,
2015. ACM.

[19] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Detect-
ing spammers on social networks. In Proceedings of the 26th annual
computer security applications conference, pages 1–9. ACM, 2010.

[20] Ke Tao, Fabian Abel, Claudia Hauff, Geert-Jan Houben, and Ujwal
Gadiraju. Groundhog day: near-duplicate detection on twitter. In
Proceedings of the 22nd international conference on World Wide Web,
pages 1273–1284. ACM, 2013.

[21] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song.
Design and evaluation of a real-time url spam filtering service. In
Security and Privacy (SP), 2011 IEEE Symposium on, pages 447–462.
IEEE, 2011.

[22] Tingmin Wu, Sheng Wen, Yang Xiang, and Wanlei Zhou. Twitter spam
detection: Survey of new approaches and comparative study. Computers
& Security, 2017.

[23] C. Yang, R. Harkreader, and G. Gu. Empirical evaluation and new
design for fighting evolving twitter spammers. IEEE Transactions on
Information Forensics and Security, 8(8):1280–1293, Aug 2013.

DR
AF
T

