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Abstract—Although quite simple, existing protocols for the
IoT suffer from the inflexibility of centralized infrastructures
and require several configuration stages. The implementation
of these protocols is often prohibitive on resource-constrained
devices. In this work, we propose a distributed lightweight
implementation of network discovery for simple IoT devices.
Our approach is based on the exchange of symbolic executable
code among nodes. Based on this abstraction, we propose an
algorithm that makes even IoT resource-constrained nodes able
to construct the network topology graph incrementally and
without any a priori information about device positioning and
presence. The minimal set of executable symbols to be defined
on the devices is identified and simulation results for different
topologies are reported.

Index Terms—Symbolic processing, Executable code exchange,
Distributed processing, Resource-constrained devices, Topology
construction, Internet of Things

I. INTRODUCTION

The Internet of Things (IoT) paradigm opened up the possi-
bility that heterogeneous devices, such as sensor, actuators, and
appliances be integrated into applications by the users them-
selves, through programming models, protocols and software
platforms designed on the purpose [1]. Different protocols,
which have been proposed as standards for the IoT, offer ser-
vice discovery abilities [2] using both centralized or distributed
infrastructures. Most of centralized implementations are based
on request/response [3], [4] and publish/subscribe schemes [2],
[5]. Mainstream approaches for distributed algorithms are
often based on Distributed Hash Table (DHT) [6], [7]. To avoid
the overhead of implementing efficient routing, flooding-based
discovery is an alternative solution [8], [9].

However, these solutions are not easily implemented on
resource-constrained devices [10]–[13]. Device and protocol
heterogeneities hinder interoperability, especially when seam-
less integration between resource-rich devices, which support
TCP/IP, and more constrained ones is required. Resource-
rich devices, e.g. gateways, are often equipped with protocol
translation capabilities [14]. While even reprogrammability of
gateways has been addressed, horizontal integration with IoT
resource-constrained devices does not seem to be solvable in
the foreseeable future [2]. Efforts to embed IoT abilities in
resource-constrained IoT devices have also been done. Rather
than proposing novel algorithms, most of the approaches in the
literature adapt existing protocols for resource-rich devices, to

resource-constrained ones. This is the case of uBonjour [11]
which provides service discovery above the Contiki operating
system. Due to a thick software layer above the hardware
that makes little memory available, just a restricted set of
functionalities are implemented while optimization techniques
for memory management are adopted. However, as stated
by the authors, optimization generally increases code size
and memory consumption. A similar approach proposes the
implementation of traditional mDNS/DNS-SD protocols on
limited devices [10] maintaining the fixed structure of mes-
sages. Optimizations mainly focus on network traffic reduction
through the suppression of probing and advertising messages,
as well as of discovery responses. Additionally, message
compression techniques have also been considered [15]. The
implementation of the Message Queue Telemetry Transport
(MQTT) protocol without TCP/IP support, as in Zigbee-based
Wireless Sensor Networks (WSNs), was also proposed [16].
In this case, WSN nodes are clients that communicate with
a gateway acting as a server. The latter is connected to a
traditional MQTT broker. To discover a gateway node, the
client broadcasts a specific message and the gateway answers
broadcasting its address. If another client receives the message,
it can reply with the gateway address, if it holds such an
information and if any other node, i.e. client or gateway,
replied. As in our approach, plain text is used without any
intermediate encoding but only for transmitting topic names.
Gateway search, connection establishment and device registra-
tion, for instance, use messages with fixed structure. As most
of the protocol logic is handled by the broker and the gateway,
the client implementation is lightweight and requires limited
resources, such as those available in Tmote and MicaZ WSN
devices.

In this paper, interoperability in network discovery is ad-
dressed from a thing-centric perspective by adopting symbolic
processing on resource-constrained objects. Instead of opti-
mizing traditional protocols to work on limited devices, we
propose a novel symbolic algorithm that can be executed by
both resource-rich and resource-constrained IoT devices. The
symbolic code of the protocol is included as network packet
payload in the form of plain strings and is exchanged among
different devices. This abstraction allows packets be not rigidly
encoded, as symbols in the payload are efficiently executed
upon receipt even on limited devices [17].

Two main advantages arise from adopting symbolic process-



DRAFT

ing and executable code exchange on IoT resource-constrained
devices. The first is the possibility to reprogram nodes, even
deployed ones, through wireless links, at runtime. This in-
cludes partial changes involving parameter’s definitions or
updates–e.g. timings, goals, conditions, values–as well as
entire algorithms and system code. The second advantage is
that the high-level protocol implementation is the same on
different devices, while only the low-level coding of each
symbol is specific to the underlying hardware.

The paper is organized as follows. The methodology based
on symbolic programming and executable code exchange
is outlined in Section II. Section III details the distributed
algorithm for the construction of the network topology graph
and its implementation through executable code exchange.
Section IV describes the experimental setup and the simulation
results. Finally, conclusions and future work are reported in
Section V.

II. APPROACH

The proposed approach is based on a stack-based symbolic
computational paradigm running on resource-constrained IoT
nodes. Devices execute symbols that produce hardware and
stack effects. Executing a symbol may imply the invocation
of other symbols until terminal ones, which are defined in
terms of machine code, are reached. A device can send code,
in the form of a chain of symbols, which is executed as soon
as it is received by another device. The code is transmitted
as strings. The set of symbols that can be executed varies
from node to node and depends on the tasks to be performed.
With mainstream programming methodologies not enough
space is left for applications beyond environmental monitoring,
let alone symbolic processing or distributed computing, on
resource-constrained devices. Our approach, instead, allows
for effective high-level programming, ranging from hardware
specification and verification [19] to distributed application
development [17], even on tiny WSN nodes.

With no loss of generality, in the rest of the discussion it
is assumed that each device in the network is equipped with
a IEEE 802.15.4 radio. Indeed, the symbolic abstraction for
executable code exchange is so simple that it can be easily
adapted to other interconnections, the only requirement being
the existence of an unique ID for each node.

Executable code exchange is used with the following as-
sumptions:

• Symbolic code is embedded as payload in IEEE 802.15.4
data frames;

• MAC address is used as unique ID for nodes;
• During IEEE 802.15.4-compliant frame construction, spe-

cial symbols are used as placeholders for numeric values,
strings, fuzzy values, which are replaced at runtime;

• A new symbol can be defined to take place of a sequence
of symbols, similarly to procedure definitions in other
development models.

• The exchanged code can (i) modify the memory of one or
more receivers, either RAM or Flash memory, by adding
or removing the definition of symbols; (ii) modify the

stack and, more generally, the hardware configuration
of receivers; (iii) include the reply code in the sender
outgoing frame.

The basic mechanism of executable code exchange is the
execution of the tell: symbol. In case of radio transceiver-
based devices, it creates a frame that complies with the
802.15.4-2003 standard. The sequence of symbols following
the tell: are included as payload in the data frame. The
payload construction stops once the :tell symbol is en-
countered. At this point, in fact, the frame is transmitted.
For everything to work properly, the receiver’s MAC address
must precede the tell: symbol. Upon receipt, the node
executes the payload of the incoming frame. For comparison,
the ContikiOS implementation of the algorithm proposed in
Section III spans more than 200 lines of code and requires
to define in advance the packet structure that must be crafted,
along with specific serialization and deserialization code, to
encode the network graph.

Distributed algorithms can be implemented embedding reply
code in outbound frames. For example, a node requesting
a certain service from another, e.g. temperature value, can
send both the code that commands the node to make the
measurement along with the code to make it reply with the
required measurement:
A301 tell:

temperature reply tell: ˜ :tell

:tell

The symbolic code addressed to node A301 is between
the first tell: and the last :tell. The receiver executes
temperature, which leaves a temperature reading on the
stack. The inner tell: and :tell couple commands the
receiver to create a frame with the value that the placeholder
˜ pops from the stack, in this case the temperature reading that
will be replaced at runtime after the measurement. The symbol
reply is a self-reference that provides the sender address for
the outgoing frame by extracting it from the received frame.

III. NETWORK DISCOVERY

In the following, we show how devices cooperate to build
the network topology graph through executable code exchange.
The architecture proposed in this paper relies on a node which
acts as a bridge to the outside. Differently from centralized
implementation, however, the bridge neither requires more
resources nor holds a comprehensive view of the network
topology and available services. In fact, the main task of
the bridge is to provide Internet connectivity and to forward
queries to the other nodes. In the case of the network discovery
algorithm (Algorithm 1), the bridge act as the initiator after a
request coming from the outside for the distributed mechanism
that builds the topology tree (Figure 1). Each node executes
broadcast code that makes it add some information to the
packet payload, as shown in Figure 2. Whenever a leaf node
receives the broadcast code and executes the code contained
in it, the information held in the received packet, along with
the code to process is sent back to the querying node. At the
initialization, each device is marked as leaf (leaf flag set to 1).
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Fig. 1: Sample topology graph. Nodes broadcast in turn as shown in the
topology tree. Nodes 2 and 8 are not neighbors in the tree as node 1 triggers
node 8 by broadcasting the algorithm code before node 2 could do the same.
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 a:{ 1–2 } n:{ 1 2 }

inv: arc? if 

expired? not  running? not and if 

arc+ addr+ pkt>buffer same msg 

propagate

idmax timeout start

on-timeout retrieve-or-erase then

expired? leaf? and if

retrieve pkt buffer erase then 

else 0 leaf ! pkt buffer erase 

then :inv

 a:{ 1–2 2—3 } n:{ 1 2 3 }

inv: arc? if 

expired? not  running? not and if 

arc+ addr+ pkt>buffer same msg 

propagate

idmax timeout start

on-timeout retrieve-or-erase then

expired? leaf? and if

retrieve pkt buffer erase then 

else 0 leaf ! pkt buffer erase 

then :inv

 a:{ 1–2 2—3 3—4 4—5 5—10 } n:{ 1 2 3 4 5 10 } 

inv: arc? if 

expired? not  running? not and if 

arc+ addr+ pkt>buffer same msg propagate

idmax timeout start

on-timeout retrieve-or-erase then

expired? leaf? and if

retrieve pkt buffer erase then 

else 0 leaf ! pkt buffer erase then :inv

 a:{ } n:{ 1 } 

inv: arc? if 

expired? not  running? not and if 

arc+ addr+ pkt>buffer same msg 

propagate

idmax timeout start

on-timeout retrieve-or-erase then

expired? leaf? and if

retrieve pkt buffer erase then 

else 0 leaf ! pkt buffer erase 

then :inv

Fig. 2: Symbolic code broadcast samples. The invariant part of the code is
enclosed between the inv: and :inv executable symbols.

The node ID, interpreted as time interval measured in
milliseconds, is used as a time interval value to provide a
deterministic ordering to the discovery process and reduce the
risk of collisions in packet transmission. In the beginning (line
3), in fact, the code makes the node wait for a time interval
equal to its ID in milliseconds. Then, if there is no description
of an arc connecting itself to the sender in the packet and a
timeout has not expired or is not running, the receiver inserts
both the arc and the sender ID in the packet and stores the
packet payload in the incoming packet list. Then the node
starts a timer and broadcasts the old message augmented with
the new information. At this point, even the original sender
receives the message, possibly while its timer, which it has
previously fired, has not expired yet. Since the receiver replies
with the same message of the sender plus the information it
has added, when the message is received and executed by the
original sender the latter is made to check that the arc between
the two nodes is present in the packet and its ID is in the route
path. In this case the sender understands it is not a leaf, flushes
the incoming packet list and sets the leaf flag to 0. Instead,
when a node is a leaf, once it broadcasts the message, any node
responds and once the timeout expires, the leaf flag is still set
to 1. Therefore, it retrieves the packets using the reversed route
path.
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 a:{1–2 2—3 3—4 4—5 5—10} n:{ 1 2 3 4 5 } backpropagate

 a:{ 1–2 2—3 } n:{ 1 2 3 } backpropagate 

 a:{ 1–2 2—3 3-4 } n:{ 1 2 3 4 }backpropagate

 a:{ 1–2 } n:{ 1 2 } backpropagate

 a:{ 1–2 2—3 } n:{ 1 2 3 } backpropagate

a:{ 1–6 } n:{ 1 } backpropagate 

 a:{ 1–8 } n:{ 1 } backpropagate 

 a:{ 1–2 2—8 } n:{ 1 } backpropagate

Fig. 3: Code sent by leafs during retrieval. Each leaf sends the arc list along
with the route path to its predecessor. The message crosses the nodes in the
reverse route path. Each internal node inspects the packet, erases its own
address and backpropagates the same message. Once the message reaches the
root, it matches its own ID in the route path and the arc list is used to update
the tree with the discovered arcs (Figure 3).

The algorithm is coded as a sequence of symbols in the
packet payload. Symbols are executed one after another once
the packet is received. The bridge node broadcasts the follow-
ing symbolic code:
a:{ } n:{ }

inv: arc? if

expired? not running? not and if

arc+ addr+ pkt>buffer

same msg propagate

idmax timeout start

on-timeout retrieve-or-erase then

expired? leaf? and if

retrieve pkt buffer erase then

else

0 leaf ! pkt buffer erase then :inv

The arc list is enclosed between the a: , while the node list
between the n: symbols. The symbols inv: and :inv mark
the invariant part of the message. The symbol arc? leaves the
true value on the stack depending if the arc between the sender
and receiver is not present and the node is not already in the
path. If so, the symbols arc+ and addr+ add the arc and
the node ID respectively, in the list and leave the string with
the addresses on the stack. Then the execution of the symbol
pkt>buffer causes the temporary storage of the incoming
packet payload in a buffer. The symbol same leaves on the
stack the pointers to the invariant part of the message, while
msg copies the code in the outgoing message buffer. Then, the
symbol propagate uses the tell: :tell to build and
transmit the message. The symbol expired? leaves a true
value on the stack if the timeout has already expired, while the
symbol running? checks if the timer is currently active. The
symbol leaf? leaves a boolean value on the stack depending
on the fact the leaf flag is set to 1. Such a value is then
consumed by the symbol if during comparison. The idmax
symbol leaves on the stack the value of the maximum ID.
Considering a 16-bit ID, the maximum possible value is 65535
milliseconds. The symbol timeout sets registers for timeout
and start make the timer run. The symbol on-timeout
parses the next symbols and sets it as the ISR to be executed
on timeout expiration. In this case, retrieve-or-erase
checks the leaf flag. If it is already set to 1, then all the packets
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stored in the incoming packet list are sent to their original
senders along with the code to make them reach the node
that requested the network topology. This is possible because
packets hold the route path. Otherwise, just flushing is done.
The symbol ! assigns the value on top of the stack,– i.e. 0– to
the symbol leaf. The symbol erase resets the packet buffer
pointers thus restoring the initial situation. Another important
advantage of the proposed approach is the possibility to change
the algorithm at runtime by modifying the payload code. For
instance, a topology partition can be constructed by making
the node with even IDs to answer first leaving nodes with odd
IDs the role of mere forwarders. This behavior is obtained
with the code:
a:{ } n:{ }

my id even? if

inv: arc? if

expired? not

running? not and if

arc+ addr+ pkt>buffer

same msg propagate

idmax timeout start

on-timeout retrieve-or-erase then

expired? leaf? and if

retrieve pkt buffer erase then

else 0 leaf ! pkt buffer erase then

else same msg propagate

then :inv

However, as the frame size is 128 bytes, and the list of
nodes and arcs may be quite long, code can be compacted
by defining more abstracted symbols on nodes. For instance,
all the actions performed by a node can be executed by the
symbol topology. This way, the code sent by the bridge
node becomes:
a:{ } n:{ } topology

IV. EXPERIMENTAL SETUP

To evaluate the algorithm, we considered three different
topologies (Figure 4) and reported the number of messages
exchanged as the number of nodes increased. Results were
obtained using a simulator written in Prolog. The simulator
includes the formal description about device architectures,
network topologies, as well as the protocol functional specifi-
cation. The system automatically generates the desired topol-
ogy by positioning the nodes according to both its formal
specification and the device communication range. The first
topology, a linear arrangement, is a simple chain of nodes.
In this case, the first node in the chain starts the discovery
and the broadcast message is received by its sole neighbor.
From this point on, each node adds its information and
propagates the request to the following node. The last node,
which is a leaf, retrieves the messages until the first node is
reached. Complementarily, we considered a topology structure
in which each node is connected with all the others. Finally,
we considered a topology in which each node had at most
four neighbors. Experimental results show that in the latter,
the number of code exchanges is the highest. This is due to
the fact that the number of leafs is greater than in the other
topologies we considered. This implies that the number of

Algorithm 1 Network Discovery Algorithm
Before executing the procedure all nodes are initialized

as leaves (leaf  1)
1: procedure NETWORK DISCOVERY
2: Check the existence of an arc between sender and self

in the received packet
3: if arc is not present and not in the route path then
4: if timer not previously installed then
5: Store packet in the incoming packet list;
6: Add the arc between sender and receiver in the

outbound packet;
7: Add sender ID to the route path of the out-

bound packet;
8: Wait for ID ms
9: Broadcast packet;

10: Install timer with timeout idmax (65535) ms;
11: if timeout expired and leaf=1 then
12: Retrieve all stored packets through
13: the reverse route path;
14: Erase all retrieved packets from the incoming

packet list;
15: else
16: leaf  0;
17: Erase all stored packets from the incoming
18: packet list, if any.
19: end

message retrievals is substantial. This is shown in Figure 5.
However, the number of code exchanges is prominently due
to retrieval and node depth, as shown in Table I.
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Fig. 4: Linear, 4-connected, and all-connected test topologies examples for
networks of 10 nodes.

V. CONCLUSIONS

Centralized and distributed IoT protocols often require com-
plex and multi-layered infrastructures. The implementation
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Fig. 5: Number of messages exchanged by nodes for different network
topologies as the number of nodes increased.

TABLE I: Number of messages exchanged by nodes to propagate the request
and retrieve the result for network tree discovery.

Topology #Nodes #Broadcast Messages #Unicast Messages
Linear 10 10 9

100 100 99
200 200 199
400 400 399
800 800 799

1000 1000 999
All-connected 10 10 9

100 100 107
200 200 222
400 400 436
800 800 799

1000 1000 1047
4-connected 10 10 12

100 100 1275
200 200 5050
400 400 20100
800 800 80200

1000 1000 125250

of these protocols on resource-constrained devices is often
impracticable and simplified versions must be adopted instead.
In this paper, an alternative approach is adopted which is
based on the exchange of executable and symbolic code
among devices with limited resources [18]. We described
how network discovery can be undertaken even by resource-
constrained devices without the need of complex infrastruc-
tures and architectures. We proposed an algorithm for network
discovery and construction of the network graph on a remote
node in a cooperative way by making nodes exchange directly
executable symbolic code. Due to the symbolic approach, the
algorithm can even be changed at runtime. Simulation results
showed that unicast messages represents most of the network
traffic, while the number of broadcast messages for code
propagation equals node cardinality as each node transmits
at least once. However, optimization and modifications can be
sent at runtime. Future work will extend the applicability of
the proposed methodology to the IoT scenario focusing on
both communication and security aspects.
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