
NDS LAB - Networking and Distributed Systems
http://www.diid.unipa.it/~networks/ndslab/

Interoperable Real-Time Symbolic Programming for
Smart Environments

S. Gaglio, G. Lo Re, L. Giuliana, G. Martorella, D. Peri, A. Montalto

In Proceedings of IEEE International Conference on Smart Computing
(SMARTCOMP), Washington, DC, USA, 2019, pp. 309-316

Article

Accepted version

DRAFT

Interoperable Real-Time Symbolic Programming for
Smart Environments

Salvatore Gaglio⇤, Giuseppe Lo Re†, Leonardo Giuliana‡, Gloria Martorella§,
Antonio Montalto¶, Daniele Perik

University of Palermo, Department of Engineering, Viale delle Scienze, Ed. 6, Palermo, Italy
Email: ⇤salvatore.gaglio@unipa.it, †leonardo.giuliana@community.unipa.it, ‡giuseppe.lore@unipa.it,

§gloria.martorella@unipa.it, ¶antonio.montalto@community.unipa.it, kdaniele.peri@unipa.it

Abstract—Smart environments demand novel paradigms of-
fering easy configuration, programming and deployment of
pervasive applications. To this purpose, different solutions have
been proposed ranging from visual paradigms based on mashups
to formal languages. However, most of the paradigms proposed
in the literature require further external tools to turn appli-
cation description code into an executable program before the
deployment on target devices. Source code generation, runtime
upgrades and recovery, and online debugging and inspection are
often cumbersome in these programming environments.

In this work we describe a methodology for real-time and
on-line programming in smart environments that is compact
and efficient enough to run on resource-constrained devices.
The pillar of the proposed approach is real-time exchange
of executable symbolic code in heterogeneous networks. The
methodology is supported by an inference engine that is able to
generate symbolic code starting from knowledge about hardware
devices and their placement in the environment, and about the
application domain.

Interoperability with existing smart applications and Internet
of Things (IoT) deployments is reached through a symbolic
Transmission Control Protocol (TCP) client, and Message Queue
Telemetry Transport (MQTT) client.

Index Terms—Symbolic processing, Knowledge base, Exe-
cutable code exchange, Forth, MQTT, Resource-constrained de-
vices.

I. INTRODUCTION

Smart environments rely on many pervasive devices sup-
porting users at home [1], office [2], and in urban [3] contexts
by offering a wide range of services and possibilities that
include automation and reasoning [4].

But as provided services and smartness increase, so does the
complexity of the applications and the factors at stake during
all the development phases. For instance, in smart cities the
huge amount of real-time updates makes (re-)configuration
of a large number of devices at execution time particularly
laborious [5]. Significant efforts are demanded to modify
application logic running on several smart devices in real-
time–e.g. for upgrades or debugging–or to change the usage
scenario. Online reprogramming must be carried out without
physical wired access to smart devices. Indeed, Cloud-based
solutions have been adopted with the entire application running
outside the network on powerful servers [3]. Further issues
emerge whether resource-constrained devices must interoper-
ate with resource-rich elements that support a wide variety of
protocols [6].

In this context, several computing paradigms and frame-
works have been proposed to reduce the effort required for
configuration, implementation and reprogramming of smart
environments. Visual approaches offer fast configuration and
programming through basic composition of blocks that rep-
resent predefined functions [7], [8]. Effective and complete
customization is not possible at all as blocks are predefined,
difficult to extend, and possibly not particularly suitable
for novice users [9]. Web-based paradigms explore standard
technologies and protocols in semi-automatic and automatic
service mashups [10]. However, static mashups are not suitable
for highly dynamic scenarios such as smart environments [4].
On the contrary, the presence of inference engines for dynamic
mashup generation often involves different levels of translation
to obtain the code that actually runs on the devices [11].
Although trigger-action schemes offer intuitive design ap-
proaches through condition/action specifications [12], some
limitations occur for the implementation of more advanced
applications, e.g. those involving on-board reasoning. Formal
paradigms allow to configure and program smart environ-
ments correctly by providing methods for tracking errors
and correcting them in the early stages of development [13].
Nevertheless, programming expertise is needed to express
high-level applications through formal languages. Metamod-
els within the agent-oriented programming paradigm have
also been adopted [14] in all the application development
stages [15]. Abstractions provided by high-level metamodels
are progressively lost during their refinements as well as
the binding between descriptions and implementation code.
Most of the proposed programming paradigms target specific
application domains and interoperability is hindered by easily
arising incompatibility issues [5].

In this paper we address easy configuration, programming,
and updates of smart environments by exploiting a symbolic
programming paradigm. The main feature of the proposed
methodology lies on real-time exchange of symbolic code
among nodes. We present a framework which integrates an
inference engine that automatically generates symbolic code
to configure, query and program smart nodes in real-time.
We also propose a symbolic platform running on resource-
constrained smart devices that supports distributed applications
through executable code exchange. The implementation of
symbolic Transmission Control Protocol (TCP) and Message

DRAFT

Queue Telemetry Transport (MQTT) clients represents a fur-
ther step towards interoperability.

The paper is organized as follows. Most important
paradigms targeting smart environments are presented in Sec-
tion II, while the methodology based on the symbolic pro-
gramming model is outlined in Section III. Section IV details
the framework based on executable symbolic code exchange
among smart devices. The rule-based system and the symbolic
platform are presented in Section V and in Section VI,
respectively. The experimental evaluation of the symbolic
platform running on nodes is described in Section VII. Finally,
conclusions and future work are reported in Section VIII.

II. RELATED WORK

A large effort to make configuration, programming and
deployment of smart applications more accessible and in-
teroperable can be found in the literature. Indeed, several
frameworks and many computing models have been proposed.

Visual paradigms have been adopted to enable novice users
designing their own smart application without requiring any
expertise. For instance, a graphical programming paradigms
that consists of wiring a set of predefined blocks, each of
which represents a function was proposed [9]. An inference
engine is responsible of translating user-defined applications to
Python scripts. The code is then deployed to nodes at runtime.
A set of steps for code translations are not confined to source
code but also to communication protocols. In fact, a more
powerful device, i.e. a proxy server, converts HTTP requests
to CoAP, a Web protocol for resource constrained devices.
Visual interface tools present some limitations in terms of
both application and network customization. In fact, blocks
are defined in advance and their extension quite impracticable.
A process-oriented paradigm for smart buildings was also
proposed [16]. It is supported by a process-oriented Domain
Specific Language (DSL) that provides high-level abstractions
to orchestrate smart objects. A semi-automatic approach is
adopted as the programmer defines the control workflow,
while devices are discovered automatically through a central
unit. High-level specifications are defined through the use of
ontologies, whose porting and updating on board resource-
constrained devices appears a rather impracticable solution. A
Web-based framework embodying dynamic mashup generation
was presented for high dynamic scenarios, such as smart
environments [11]. Provided with a high-level user goal and a
set of available services, the framework infers user actions
in the form of API requests to be executed. A trigger-
action programming model targeting smart application was
also adopted [12]. Application development is done through a
condition/actions approach which is often supported by visual
editors.

Agent-oriented computing was exploited to model dis-
tributed software systems in terms of multiagent systems
(MASs) [15] . The methodology consists in the production of
different metamodels, one for each of the development phases
(analysis, design and implementation). Each metamodel is
refined in the successive phase. Finally, the implementation

metamodel is used to generate the implementation code target-
ing the Jade platform. However, transitions among metamodels
are not automatic.

A formal approach using ⇡-calculus was proposed to pro-
gram complex smart systems that prove correct [13]. Smart
environments are represented as ⇡-calculus statements and
then this representation traverses a set of transformation phases
to produce Java source code. Although verification is taken
into account, the support to configuration, reprogramming and
code deployment is still lacking.

III. SYMBOLIC PROGRAMMING PARADIGM

The symbolic programming paradigm we adopted is rooted
into the concept of word, a symbol that intrinsically represents
a computation and which is defined as a chain of other,
previously defined, words. This software abstraction exhibits
a tree structure as the execution of a word involves executing
all the words composing its definition, that in turn are defined
in terms of other words, and so forth, until a leaf symbol is
reached. As words are user-defined, no limits are imposed and
word names can be taken directly from the natural language
vocabulary so that a strict association with the domain under
consideration could emerge clearly. Indeed, this paradigm con-
cretely supports high-level concepts and abstractions, physical
world semantics, easy design and development of applications.

For instance the following phrase:

LAMP ON

is an application that actuates on the environment turning the
lamp on, while:

LAMP BLINK 3 TIMES

is an application that blinks a lamp three times.
Extending this concept, smart environments can be thus sup-

ported by defining words for sensing, actuating and reasoning.
Besides running on resource-rich devices that can support

thick software architectures, including a symbolic interpreter,
this paradigm runs also efficiently on the bare hardware, with
compact memory footprint [17]. This makes it suitable for
enabling symbolic processing on resource-constrained devices
and paves the way to make them interoperable with other het-
erogeneous and more powerful devices. The symbolic model
is concretely supported by Forth, a stack-based programming
language which provides both interactive and compiled exe-
cution modes.

IV. SYSTEM OVERVIEW

In the following, we describe the framework we imple-
mented that exploits the symbolic methodology introduced in
the previous section. The proposed system is composed of:

• A rule-based system that holds specifications about the
physical environment, hardware platforms and about the
high-level smart application. A backward chaining infer-
ence engine automatically generates symbolic code for
runtime configuration, programming or updating already
deployed devices.

DRAFT

• A software platform running on smart devices that makes
them able to process and exchange symbolic code. The
platform also includes (i) a symbolic TCP client for
the integration with existing Internet-based infrastructures
and (ii) an MQTT-based client enabling interoperability
with IoT-based applications.
The rule-based system is implemented in Prolog and
runs on a host while the smart devices are based on the
widespread low-cost Wi-Fi enabled ESP8266 system on
a chip.

V. AUTOMATIC CONFIGURATION AND PROGRAMMING
TOOL

The rule-based system is composed of two main blocks:
(i) a knowledge base provides a formal representation of all
of the aspects of a smart environment scenario, as a whole
(ii) an inference engine that automatically (re-)configures and
(re-)programs already deployed smart devices by sending them
symbolic code. Functionally, the knowledge base is organized
in four rule sets. The Physical World rule set models facts
and rules that are related to the physical environment, which
is formally specified through physical quantities and states.
This layer is independent of a specific use context and can
be exploited by multiple domains. The Application rule set
holds the environmental description that is strictly related to
high-level applications. Specifications include a set of objects,
their locations and states. Locations refer to generic or specific
object placements, while objects that are deployed in the
environment, and that can be managed by the system, are also
described. Each location can contain sub-locations, proceeding
from general to specific ones. A location thus exhibits a tree
structure, from a root node to leaf nodes. For instance, the root
location ”Home” is composed of other locations, e.g. ”Room”
and “Kitchen”. Finally, leaf nodes identify real-world object
positions, as shown in Figure 1.

Hardware platforms are modeled in the Hardware rule set
which provides descriptions from a low level point of view.
This component includes MCUs, their pins, peripherals, sen-
sors and actuators, as specified by the technical documentation
or data-sheets. Finally, the Network rule set models the channel
to manage the remote connection between each device and
the rule-based system for configuration and code transmission.
Concepts as host name, IP address, server port number are
also included. Provided with this body of facts and rules and
a high-level task given by the user, the rule-based system
acts as a Configurator inferring the symbolic code for device
configuration and for the actions required to match the user-
defined goal. The symbolic code is sent to smart devices as a
sequence of textual strings. In this work, configuration refers
both to the connection of devices with the system, i.e. the
device installation at bootstrap, and the interconnection of
sensors and actuators to a specific MCU, i.e. the best way
of connecting sensors and actuators considering the available
I/O pins on the devices.

To send the code, the configurator opens a TCP connection
to the TCP-REPL listen port of the receiver device. After the

Home

Living Kitchen

Lamp Sensor Table

Lamp

Lig
ht

Temperature
Light

Environment

Fig. 1: Tree structure of the physical environment as a set of locations and
objects.

connection has been established, the code is sent via TCP to
the remote node.

As an example, in the knowledge base an instance of the
ESP8266 12E board is defined as such:

mcu_name(myesp, esp8266_12e)

that associates the unique label myesp to the hardware
platform ESP8266 12E. Its IP address and TCP-REPL port
are specified as such:

mcu_net_address(myesp,
’myesp.local’, 1983).

Through the mcu send message procedure, the configurator
connects to the remote TCP-REPL server of myesp and sends
it the symbolic code to make the RLED LED be turned on
and then off with a 500 ms time interval:

mcu_send_message(myesp,
[’RLED ON 500 ms RLED OFF’]).

Considering realtime code generation, the execution of:

exec(home, lamp, on).

generates the code to turn all of the home lamps on, while
to read the unique luminosity sensor at home:

execr(home, light, check, A).

In this case the variable A stands for ’answer’ and holds the
luminosity sensor value. The generated symbolic code is:

LUMSENS READ .

The word . displays the answer. The organization of the
rule-based system and the code generation process is outlined
in Figure 2.

VI. SYMBOLIC PROGRAMMING ON
RESOURCE-CONSTRAINED DEVICES

The interpreter for symbolic code is the key component
of the operating environment we propose for smart resource-

DRAFT

Hardware Application Physical World Network

User-defined goal

Symbolic Code
 (configuration and actions)

Rule sets

Configurator

Fig. 2: Structure of the rule-based system and code generation process.

constrained devices. The interpreter executes words in real-
time on the target hardware so that a cross-compilation
toolchain is not needed. To enable the execution of symbolic
code by a remote device, the platform includes a TCP-REPL
server which waits for incoming symbolic code. The sym-
bolic platform we implemented is built atop PunyForth [18],
a simple Forth-based programming environment that imple-
ments the computing paradigm described in Section III. The
symbolic interpreter is an application running above the node
operating system. A wrapper exposes network and hardware
access functionalities, which are implemented in the operating
system SDK, through a high-level symbolic language. Further
functionalities are available in the form of modules that can
be loaded as needed.

A dictionary, which is extensible interactively, stores all the
executable symbols, i.e. words. This reflects on the fact that
device skills or their tasks, can be extended at runtime without
great efforts. For instance, to equip an already operating device
with a red LED, the generated symbolic code for configuration
looks like this:

: HIGH GPIO_HIGH gpio-write ;
: LOW GPIO_LOW gpio-write ;
: SET_MODE gpio-mode ;
: ON HIGH ;
: OFF LOW ;

12 CONSTANT RLED
RLED GPIO_OUT SET_MODE

store

The execution of the word : begins a word definition. It is
followed by the name of the new word and the chain of words
composing it. The word ; ends the definition. The configurator
generates all the required definitions as well as the suitable
hardware configuration, i.e. the red LED has to be connected to
the pin 12. Indeed, the symbol RLED is defined as a constant
whose value is the number 12. The word ON implies executing
the word HIGH, which is in turn defined as the set of words
to put the GPIO high. Finally, the word store writes the
configuration in the Flash memory of the node. Once the node

has been configured, the following code is generated and sent
for the runtime execution of the desired reactive behavior, i.e.
blinking the LED:

RLED ON 500 ms RLED OFF

On remote devices, the TCP-REPL server listens for client
connections. The server operation is split into two phases:
storage and interpretation. First, it reads the received characters
from the listening socket and stores them in a buffer. Once
the sequence CR LF is encountered, the word eval starts
the interpretation phase. The buffer is then released. Once
the word quit is received and interpreted, the connection
between sender and receiver is closed. Finally, the interpre-
tation of the word undo causes flashing the buffer even if
the terminator sequence has not been received yet. The code
exchange between the configurator and the device is depicted
in Figure 3.

Listing 1: Symbolic code for enabling a TCP client on smart devices.

1 0 init-variable: socket
2 0 task: netfetch-task
3 128 buffer: line
4
5 : tcp-receive
6 activate
7 println: "Start"
8 begin
9 socket @ 128 line netcon-readln

-1 <>
10 line "quit" =str invert and
11 while
12 line strlen if line eval then
13 repeat
14 drop socket @ netcon-dispose
15 0 socket ! println: "End"

deactivate ;
16
17 : tcp-send
18 socket @ if
19 socket @ swap netcon-writeln
20 then ;
21
22 : tcp-disconnect
23 "quit" tcp-send ;
24
25 : tcp-connect (port ip --)
26 multi
27 0 socket !
28 TCP netcon-connect socket !
29 netfetch-task tcp-receive ;
30
31 : tcp
32 [’] tcp-connect
33 [’] tcp-disconnect
34 [’] tcp-send ;
35 end

Our platform includes: (i) a symbolic TCP client that
enable executable code exchange among peer nodes to support
distributed smart applications (ii) a lightweight MQTT [19]
client for easy integration and interoperability with existing
IoT deployments.

DRAFT
TCP REPL Server

e
v
al

Configurator
RLED ON 500 ms RLED OFF

RLED ON 500 ms RLED OFF

Rule-base System

 l

Rule-based System

Fig. 3: Interaction between the configurator and a deployed node. The symbolic code sent by the configurator to the TCP REPL server to make the LED
blink is reported above the horizontal arrow.

TABLE I: Summary table of low-level words used to implement the TCP
client

Word Description
tcp-connect Open a TCP connection to the specified client

and the respective socket. The task responsible
of listening for incoming characters is started.

tcp-send Send the code via TCP
tcp-receive Read incoming chars from the listen socket and

execute the word eval to start the interpreta-
tion.

tcp-disconnect Close the TCP connection between two nodes.
tcp Puts on the stack the addresses of all the words

described above, except for tcp-receive.

Multitasking is also supported. A client MQTT and a server
REPL are, in fact, simultaneously active.

The overall architecture of the proposed platform is depicted
in Figure 5.

A. Executable Code Exchange among Smart Devices

Unidirectional symbolic code exchange, from the config-
urator to target devices, is not the unique operating mode
supported by our platform. Indeed, we implemented a sym-
bolic TCP client on target devices in a few code lines. This
way, each node is able to receive and execute symbolic code
through the TCP-REPL server and to send it to other devices
through the TCP client. Such an interaction scheme among
smart devices is illustrated in Figure 4. In our environment, a
complete TCP client is quite compact as the implementation
requires the definition of just four words, as reported in
Listing 1. A summary of defined words along with their
descriptions are provided in Table I.

For instance, to make a device with address 192.169.4.4
connect to the device with address 192.169.4.2 , the symbolic
code to start a TCP connection on port 1983, which is the
TCP-REPL server listen port, is:

1983 "192.168.4.2" tcp connect
"CONF load\r\n" tcp send
"RLED ON\r\n" tcp send
tcp disconnect

The word tcp acts as a protocol specifier. Therefore,
more generic high-level words have been also included
in the dictionary to operate with different protocols. For

TCP REPL ServerSymbolic Code

Symbolic Environment

Real-time execution of
the interpreted code

Symbolic Environment

Symbolic Code

tcp-connect

tcp-receive
eval

Device 1 Device 2

tcp-disconnect

tcp-send

Fig. 4: Interaction scheme between two smart devices. Device 1 sends
symbolic code via TCP to Device 2 that listens on the TCP-REPL port, then
the Device 2 can close the TCP connection.

instance, the word connect, discards the addresses of
tcp-send, tcp-disconnect left by the word tcp and
executes the word tcp-connect. A similar behavior is
performed by the word send that sends the opportune con-
figuration and the symbolic code to make the RLED on via
TCP. Finally, the word disconnect sends the string ”quit”
that closes the TCP connection between the nodes.

Enabling executable code exchange of symbolic code
among smart devices really makes smart devices independent
from any central entity, including the configurator and opens
up news possibilities. In fact, a node can extend the dictio-
nary of a remote node, query another device placed in the
environment, send the code to start a collaborative behavior
or to reprogram it and so on. The proposed mechanism thus
provides concrete support for the design, implementation and
deployment of distributed smart applications.

B. Support to Interoperability in Smart Environments

Smart environments are integrated within IoT scenarios
using high-level application protocols that enable cooperation
of devices and technologies. Among these, MQTT [19] is a
de facto standard for interoperability among heterogeneous de-
vices through a publish/subscribe interaction scheme. Certain
devices act as topic publishers while others as subscribers
to a certain topic. The entire operation is managed by the
broker, a central entity that dispatches messages between
publishers and subscribers. To make our platform interoperable
with existing IoT applications, the platform supports symbolic
code exchange over MQTT. Different MQTT implementations
are available as C libraries (ESP-RTOS-MQTT) that result

DRAFT

Symbolic Environment

High-level Language Interpreter

Wrapper Assembly

OS SDK – Other C Libraries

 Symbolic Code Configuration and Actions

MCU ShellTCP Client MQTT Client

MCU Hardware

TCP REPL

Fig. 5: Architecture of the proposed platform.

particularly structured and their compilation quite involved for
the target hardware platform we adopted.

Instead, we developed a symbolic MQTT client in a few
lines of code that does not require compilation and reflashing,
as the code is interpreted interactively. Although, the imple-
mentation is not complete, it works as expected. According
to the protocol specification, the environmental description
and device placement follow a hierarchical structure, as that
adopted by the configurator and described in Section V. For
instance, a possible topic is:

home/kitchen/table/lamp/1

The main advantage of a symbolic implementation is pri-
marily code compactness and incremental development. In-
deed, compilation and reflashing of the whole binary node
image are completely avoided as the code is executed inter-
actively. The list of words and their descriptions are provided
in Table II

A possible scenario consists in two ESP8266 devices,
named esp1 and esp2, provided with a red LED and a
green LED respectively. An Intel x86-64 server running Fedora
Linux OS named vls1 with IP address 192.168.0.19 runs the
open-source MQTT broker mosquitto. The server also runs
the mosquitto pub MQTT publisher application. The user
can interact with deployed devices through a simple telnet
terminal. For instance, the user can connect to the esp1 TCP-
REPL server and send it the symbolic code to make it register
to a specified topic on the broker in realtime:

1883 "192.168.0.19" mqtt connect
"home/kitchen/table/led/red" mqtt send

A similar code can be sent to esp2, as follows:

1883 "192.168.0.19" mqtt connect
"home/kitchen/table/led/green" mqtt send

To switch on all the LEDs that are placed on the table,
the publisher sends the code LED ON over MQTT to all
subscribers as follows:

TABLE II: Summary table of low-level words used to implement the TCP
client

Word Description
mqtt-connect Connect to a broker using IP e PORT already

on the stack by sending a CONNECT message.
mqtt-publish Given a certain message and a topic, build a

PUBLISH message and send it to the broker.
mqtt-subscribe Read incoming chars from the listen socket and

execute the word eval to start the interpreta-
tion.

mqtt-disconnect Send a DISCONNECT message to the broker
and close the socket.

mqtt-ping Build and send a PINGREQ message to the
broker.

textttmqtt-ping-worker Execute the word mqtt-ping every 30 sec-
onds.

mqttread Read message sent by the broker and store it
in a buffer.

mqttread-worker Read message sent by the broker and store it in
a buffer and perform the display on the output
stream.

mqtt Puts on the stack the addresses of all the words
described above, except for mqttread.

mosquitto_pub -h 192.168.0.19 -p 1883 -t
"home/kitchen/table/led/#" -m "LED ON"

This interaction scheme described above is depicted in Figure
6.

VII. EXPERIMENTAL EVALUATION

In the following, we describe the experimental tests we
carried on to evaluate our framework in terms of memory
footprint and code compactness. The target platform used
for the experimental evaluation is the ESP8266-12E, which
includes a 32-bit RISC processor, a 4 MB external Flash, 50
KB of available RAM, and integrates a WI-Fi interface and a
complete TCP-IP stack. The ROM is not programmable while
the user program is stored in the external Flash. The board has
22 pin that expose several interfaces, such as I2C, SPI, UART
and GPIO. Considering the complete platform implementation,
which include both the TCP and MQTT clients, binary files
and symbolic code files were loaded into the Flash memory.
Their respective occupation is reported in Table III. Finally,
the Flash footprint amounts to 388096 B.

The RAM occupation has been measured through the words
osfreemem, usedmem e freemem which were already
available in Punyforth. These words display the available
memory for the operating system, the memory occupied in the
heap and the available memory in the heap, which is reserved
to Punyforth. A RAM description from a quantitative point of
view if found in Table IV. As shown, the available RAM for
new definitions amounts to 6204 B.

We also evaluated the footprint of the binary image as well
as occupation of source files (Figure 7).

As a first step, the binary image of the operating system
and SDK has been measured. To the purpose, an application
consisting in a void loop has been compiled and the binary

DRAFT

Wireless Network

mosquitto
(Broker)

mosquitto_pub
(Publisher)

esp1
(Subscriber)

esp2
(Subscriber)

LE
D
ON

LED ON

"home/kitchen/table/led/#" -m
"LED ON"

Fig. 6: Symbolic code exchange among smart devices over MQTT

Punyforth 67952 B

SDK 252912 B

MQTT
2498 B

TCPCLI
638 B

TCPREPL
2131 B

Utils
1952 B

Main
185 B

Core
11041 B

Flash
1527 B

GPIO
799 B

Mailbox
337 B

Netcon

4351 B

Ringbuf
1390 B

Tasks
3257 B

Wifi
1441 B

Punyforth
Modules
24143 B

Developed
Modules
7404 B

OS &
Interpreter
320864 B

Fig. 7: Architecture of the proposed platform and memory occupation of each
component.

TABLE III: Flash occupation of binary and symbolic code files loaded into
the Flash memory.

Source Flash Address Footprint [B]
rboot.bin 0x00 4096
blank_config.bin 0x1000 2048
punyforth.bin 0x2000 321536
main.forth 0x52000 1024
modules.foth 0x53000 59392

TABLE IV: Quantitative RAM description

RAM area Footprint [B]
Available RAM for OS 14204
Occupied RAM within the heap 28980
Available RAM within the heap 6204

image size has been measured. The difference between the ob-
tained result and the image of the SDK, previously computed,
provides the actual image size of PunyForth.

Considering the symbolic MQTT client, we
compared it to the a C-based MQTT implementation
(https://github.com/vaibhav93/ESP-RTOS-MQTT) assessing
code compactness in terms of lines of code and number
of chars. Such a metric provides an estimate about the
complexity of source code development, as well as about
debug effort since the number of possible errors and bugs
rises as the lines of code increase. Results reported in Table V
show that the symbolic version is more compact than the
correspondent C implementation.

We also assessed the turnaround time required for symbolic

TABLE V: Comparison between C-based MQTT and symbolic MQTT

MQTT Implementation LOC Number of chars
C-based 3220 97006
Symbolic 132 2420

TABLE VI: Turnaround time for symbolic code transfer over TCP

Transferred byte Minimum
Time
[s]

Maximum Time [s] Average
Time
[s]

352 0.0057 0.1938 0.5226
697 0.0775 0.2229 0,5325
1387 0.1043 0.1982 0.5557
2767 0.1503 0.1903 0.5862

code transfer from a TCP client to a TCP-REPL server. Both
the TCP client and the receiver has been connected to the
same Access Point via Wi-Fi. The test has been carried out
by sending the same symbolic code 100 times. The number
of bytes sent has been progressively doubled so that 4 test
sessions were completed for a total of 400 code transfers.
Finally, minimum, maximum and average time are reported
as the number of bytes increases in Table VI.

VIII. CONCLUSIONS

This paper presented symbolic programming as an effective
paradigm for easy (re-)configuration and (re-)programming
of smart applications. The methodology is exploited by a
framework that is composed by: (i) an inference engine for
runtime automatic symbolic code generation and sending and
(ii) a symbolic platform that allows node to execute incoming
code at runtime. Symbolic code exchange is also enabled
between deployed smart devices, no matter the presence of
the inference engine. To support interoperable code exchange,
symbolic TCP and MQTT clients were developed. Three main
advantages arise from adopting symbolic programming and
its exchange: (i) high-level processing is enabled even on
resource constrained- devices. This reveals an interoperable
solution allowing the application logic be located in the
network as resource-constrained devices and more powerful
nodes can process and exchange symbolic code; (ii) high-
level code can be directly executed on target hardware without
any intermediate translation phase. The high-level application

DRAFT

code is the same on different devices, while only the low-
level coding of each symbol is specific to the underlying
hardware; (iii) symbolic code exchange can include code
involving partial changes, hardware inspection, extension of
node skills, configuration, fuzzy rules [20] and so on. Exper-
imental results confirm the feasibility of the approach. Future
work will include the implementation of a symbolic broker,
the possibility of storing new word definition on the Flash,
and a garbage collector to free up and use RAM areas.

REFERENCES

[1] M. Alaa, A. Zaidan, B. Zaidan, M. Talal, and M. Kiah, “A review
of smart home applications based on internet of things,” Journal
of Network and Computer Applications, vol. 97, pp. 48 – 65,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1084804517302801

[2] A. Fernandez-Montes, J. Ortega, J. Sanchez-Venzala!’, and L. Gonzalez-
Abril, “Software reference architecture for smart environments:
Perception,” Computer Standards & Interfaces, vol. 36, no. 6, pp. 928
– 940, 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0920548914000300

[3] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Ki-
tazawa, “Fogflow: Easy programming of iot services over cloud and
edges for smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 696–707, April 2018.

[4] S. Mayer, N. Inhelder, R. Verborgh, R. V. de Walle, and F. Mattern,
“Configuration of smart environments made simple: Combining visual
modeling with semantic metadata and reasoning,” in 2014 International
Conference on the Internet of Things (IOT), Oct 2014, pp. 61–66.

[5] E. F. Z. Santana, A. P. Chaves, M. A. Gerosa, F. Kon, and
D. S. Milojicic, “Software Platforms for Smart Cities: Concepts,
Requirements, Challenges, and a Unified Reference Architecture,” ACM
Comput. Surv., vol. 50, no. 6, pp. 78:1–78:37, Nov. 2017. [Online].
Available: http://doi.acm.org/10.1145/3124391

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[7] M. Seraj, S. Autexier, and J. Janssen, “Beesm, a block-based educational
programming tool for end users,” in Proceedings of the 10th Nordic
Conference on Human-Computer Interaction, ser. NordiCHI ’18. New
York, NY, USA: ACM, 2018, pp. 886–891. [Online]. Available:
http://doi.acm.org/10.1145/3240167.3240239

[8] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, From
the Internet of Things to the Web of Things: Resource-
oriented Architecture and Best Practices. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 97–129. [Online]. Available:
https://doi.org/10.1007/978-3-642-19157-2 5

[9] M. A. Serna, C. J. Sreenan, and S. Fedor, “A Visual Programming
Framework for Wireless Sensor Networks in Smart Home Applications,”
in 2015 IEEE Tenth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), April 2015, pp.
1–6.

[10] R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C. Doukas,
“Glue.things: A mashup platform for wiring the internet of things
with the internet of services,” in Proceedings of the 5th International
Workshop on Web of Things, ser. WoT ’14. New York, NY, USA:
ACM, 2014, pp. 16–21. [Online]. Available: http://doi.acm.org/10.1145/
2684432.2684436

[11] S. Mayer, R. Verborgh, M. Kovatsch, and F. Mattern, “Smart Configura-
tion of Smart Environments,” IEEE Transactions on Automation Science
and Engineering, vol. 13, no. 3, pp. 1247–1255, July 2016.

[12] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical
Trigger-action Programming in the Smart Home,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’14. New York, NY, USA: ACM, 2014, pp. 803–812. [Online].
Available: http://doi.acm.org/10.1145/2556288.2557420

[13] V. G. Lekshmy and J. Bhaskar, “Programming smart environments
using p-calculus,” Procedia Computer Science, vol. 46, pp. 884 – 891,
2015, proceedings of the International Conference on Information and
Communication Technologies, ICICT 2014, 3-5 December 2014 at

Bolgatty Palace and Island Resort, Kochi, India. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915002227

[14] F. Cicirelli, G. Fortino, A. Guerrieri, G. Spezzano, and
A. Vinci, “Metamodeling of smart environments: from
design to implementation,” Advanced Engineering Informatics,
vol. 33, pp. 274 – 284, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474034616302063

[15] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-
Oriented Cooperative Smart Objects: From IoT System Design to
Implementation,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 11, pp. 1939–1956, Nov 2018.

[16] A. Albreshne and J. Pasquier, “A domain specific language for
high-level process control programming in smart buildings,” Procedia
Computer Science, vol. 63, pp. 65 – 73, 2015, the 6th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2015)/ The 5th International Conference on Current and
Future Trends of Information and Communication Technologies in
Healthcare (ICTH-2015)/ Affiliated Workshops. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915024412

[17] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “DC4CD: A
Platform for Distributed Computing on Constrained Devices,” ACM
Trans. Embedded Comput. Syst., vol. 17, no. 1, pp. 27:1–27:25, 2018.
[Online]. Available: http://doi.acm.org/10.1145/3105923

[18] “PunyForth: Forth inspired Programming Language for the ESP8266,”
https://github.com/zeroflag/punyforth, online; accessed: 2019-01-25.

[19] O. Standard, “Message Queue Telemetry Transport Documentation,”
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf, 2014,
online; accessed 06 June 2018.

[20] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “High-level Program-
ming and Symbolic Reasoning on IoT Resource Constrained Devices,”
EAI Endorsed Transactions on Cognitive Communications, vol. 15,
no. 2, 5 2015.

