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Abstract—The Smart city ecosystem is composed of several
networked devices that provide services to citizens and improve
their quality of life. Basic services, which must be exposed by the
underlying software infrastructure, require efficient networking
and communication protocols to coordinate and manage all the
system components. In particular, Vehicular Sensor Networks
(VSNs) are envisioned as key components of smart cities. Verifi-
cation is crucial in such a highly dynamic scenario to ensure
operation correctness and to reduce the development cost of
smart applications. However, the rigidity of existing middlewares
makes development, reconfiguration, and testing rather difficult.

In this work, we propose a middleware that supports devel-
opment and testing of distributed applications in VSNs. The
middleware is based on symbolic processing. Interactive testing as
well as incremental development are enabled by the exchange of
executable symbolic code among vehicles. The symbolic approach
also fosters rapid prototyping and construction of testbeds.

I. INTRODUCTION

Providing advanced services to citizens is the main objective
of smart cities. To this purpose, enriching vehicles with
advanced technologies is nowadays a focus of paramount im-
portance for the automotive industry [1]. Vehicular Sensor Net-
works (VSNs) enable a great variety of applications including
traffic management [2], fire alarm [3], disaster detection [4],
air pollution control [5], and urban planning [6]. Vehicles are
thus destined to become smart entities cooperating with other
vehicles or the physical environment. To achieve this purpose,
both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication schemes require basic functionalities
providing information sharing, a data representation and ex-
change [7].

Embracing all of these domains is not possible at all without
an underlying software infrastructure exposing basic services
to the application level. As the number of services increase,
so do the basic taskse.g. neighbor vehicle discovery and data
aggregation are required to work as expected to ensure high
quality of service. Vehicle mobility, heterogeneity of devices
and sensors involved, and the great number of networked
nodes are some of the key issues that make application
development and, even more, testing particularly difficult.

A middleware software platform including verification at
development and deployment stages is thus highly desirable
to construct complex Smart Cities applications [8].

Existing middlewares have been proposed to ease appli-
cation development. However, testing is not supported at all
due to their rigid infrastructures providing scarce interoper-
ability. This also reflects in the lack of opportune testbeds
to experiment smart cities solutions [9]. Although simulators
represent a low-cost tool [10] they eschew testing on real
hardware. Moreover, simulators cannot reproduce the high
dynamics of the physical environment at all. As a consequence,
malfunctioning and bugs can be only identified at a late stage,
after development and deployment.

For these reasons, we introduce a middleware supporting
interactive testing. The proposed platform adopts a symbolic
programming paradigm to ensure interoperability among sev-
eral vehicles and sensors possibly from different vendors.
High-level symbols, which are directly executable in our
system, represent common knowledge, rules, data and code
in a single way on heterogeneous nodes. The middleware also
permits vehicles to exchange symbols that are executed on
receipt. Such a feature enables incremental programming and
interactive testing as the code for a certain task is delivered to
devices and tested simultaneously.

II. RELATED WORK

Middleware requirements, which are demanded by high-
level applications, have been considered by several research
works. In particular, a reference middleware architecture has
to support dynamic behavior and on-line verification [1]. In
fact, middleware platforms have to incorporate a fast verifier
module to ensure that protocols and services work as expected,
thus ensuring resource-saving and cost-saving operations [11].
Service-oriented approaches were proposed in the literature for
networks of vehicles. This is the case of middleware solutions
especially devoted to service discovery [12]. The middleware
is based on the OSGi (VsdOSGi) technology. Testing is
supported through simulation. The OneM2M IoT standardiza-
tion proposals include devices cooperation through semantic
technologies and a basic test environment to check device
interoperability and compliance to the proposed paradigm [13].
Recent works proposed the combination of service-oriented978-8-8872-3743-6 ©2019 AEIT
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Fig. 1. Middleware structure overview and interaction among components

architectures with Cloud-based technologies [1]. Application
development requires resorting to web services and wrapper
implementations [14]. VSN operation does not rely on in-
network processing but is delegated to the Cloude.g. services,
data mining, simulation, data filtering, and fusion [15].
Although, this could permit lightweight implementations on
devices, a hard decoupling exists between software and the
underlying platforms in vehicles. Although in some cases this
is a desirable feature, performing verification on real hardware
during development is quite arduous. Rather, validation tests
are carried on in simulation. Some other works present mid-
dleware solutions for Smart Cities environments.A proposed
solution consists in software objects as a high-level abstrac-
tion for service development [16]. The middleware structure
includes reasoning facilities, service interface, and publish-
subscribe communication patterns. Different languages, which
are rigidly integrated, are adopted to describe interfaces and
running applications. However, testing is not mentioned at all.

Real testbeds exacerbate the demand of verification and
testing facilities for moving vehicles. For instance, in the auto-
motive context, the use of ontologies in middleware has been
proposed to support multi-vendor and cross-industry interop-
erability among platforms, either sensors or vehicles [17]. The
abstract semantics of ontologies need to be transformed into a
model API. However, this process is transparent to developers,
who cannot access underlying layers impacting device and
protocol verification. Another real testbed in South Corea [18]
is based on a middleware platform that provides isolated
programming of VSN applications, while service addition
require ad-hoc customization by vendors. Several architectural
strategies have been thus proposed to expose homogeneous
interfaces and verification tools, including an operation man-
agement layer which monitors system components and devices
through periodic real-time analysis. However, this module is
fixed and any detail concerning its real implementation was
not reported by the authors.

III. MIDDLEWARE KEY FEATURES

In this section, design principles of the proposed middleware
platform are described.

• Symbolic processing is the adopted programming ab-
straction, which is rooted in the concept of symbol.
A symbol can be a meaningful word, e.g. taken from
common speaking, or even a word without a semantic
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art Cities 

Facilities

Fig. 2. Layered architecture of the middleware API word set

correspondence. Due to this tie, from this point on the
terms word and symbol are used interchangeably. Each
word is associated to a particular execution task. As a
consequence, running a word implies performing the task
it is mapped to. Word executions can affect the hardware
internal state of devices. Smart application code is pre-
sented as a succession of words that are processed one
after another in a typical concatenative way. For instance,
acquiring and storing a sample of carbon monoxide (CO)
can be codified as follows:

CO sample store

With some more detail, a possible interpretation of the
code above sees the execution of the word CO drive
the hardware to read the sensor value, while the word
sample defines the memory location the sample has
to be stored to. Finally, the task associated to the word
store stores the sensed carbon monoxide reading to
the specified memory address. Other concatenative im-
plementations are though possible for each symbol that
lead to the same effect for the stated code phrase.

• Incremental development avoids cross-compilation and
rebooting of the entire application when software changes
are needed. The middleware API is composed of words,
which are already implemented and stored in a dictionary.
The system word set is not fixed and new symbols
are easily added. While built-in words generally bind
to assembly code, user-defined ones are implemented in
terms of words known to the system, i.e. already found
in the system word set. For instance, provided that the
dictionary includes the words used above, the new word
CO! that samples and stores the CO value is added as
follows:

: CO! CO sample store ;

The word : enters the word definition while the word
; ends it. What is enclosed between these two words
is the word name followed by the succession of words
that compose its execution task. In this case, the word
CO! runs the sequence of words performing the sensing
and storage of a CO sample. This definition ends up in
a real compilation of the new code that is effective on
resource-constrained devices [19]. As new words are built
above the others, incremental development of applications
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is thus a viable option.
• Support to distributed computing and on-the-fly

(re)programming is a powerful mechanism that is piv-
otal in the implementation of our middleware. The simple
but effective mechanism we devised is the exchange of
executable code among networked entities [19]. An entity
can send symbolic code to another one or broadcast it to
the network through the following construct:

tell: <List of word to be sent> :tell

which has to be preceded by the destination node address.
Words are sent as textual strings in the payload of IEEE
802.15.4 MAC frames. The code exchange is entirely
based on high-level symbols and is performed without
any encoding or compression techniques, as well as
without any further translation steps. Nested usage of this
symbolic construct allows to deliver symbolic code from
a source to a destination node. Intermediate nodes are
just forwarders to other nodes to reach destination. If an
entity wants a neighbor to read and store another CO
sample, it executes:

tell: CO! :tell

or equally:
tell: CO sample store :tell

The injected code can also modify the device word
set and application, e.g. for system recovery or update.
Configuration options and parameters, such as pollution
thresholds or service priority, can be sent on-the-fly either
to sensors, fixed stations, or vehicles.

• Low footprint is a key design principle to make soft-
ware platform run on heterogeneous hardware platforms.
The middleware stack we implemented is particularly
lightweight. This allows the proposed middleware to
be installed even on resource-constrained devices, e.g.
Wireless Sensor Network nodes.

• Support to interoperability is high desirable as net-
worked vehicles and sensors are certainly integrated
within IoT applications through a set of service proto-
cols that enable interaction schemes between different
technologies and components. The proposed middleware
provides symbolic TCP and MQTT implementations as
basic protocols for interoperability among heterogeneous
devices [20].

• High-level reasoning permits to implement smart be-
haviors that goes beyond simple data acquisition. To
incorporate new abstractions for intelligent applications,
our middleware includes a Fuzzy Logic extension [21].
Symbolic rules can also be exchanged among nodes.

• High-level knowledge representation is fundamental to
inject common sense to the platform. While ontologies
can be particularly large and need to be aligned on
different devices, abstract models often require several
translation steps to obtain the source code. Instead, in our
middleware, semantics is natively supported as high-level
domain concepts, models, and even informal specifica-
tions can be effectively mapped to executable code [22].

IV. MIDDLEWARE ARCHITECTURE

The main components of the system and its architecture
derive from the design principles described previously. Con-
sidering the middleware structure, the core element is the
Symbolic Evaluator. The evaluator processes a sequence of
symbols looking for each of them in the dictionary and
executing the respective definition, all this interactively. This
environment is implemented as a text interpreter running on
the bare hardware. The Evaluator uses a stack for parame-
ter passing among words and consequently expressions are
usually evaluated according to the postfix notation. The Word
Set Repository is a memory area implemented as a linked list
that holds the word dictionary. An Event Handler listens and
manages hardware and data events through a sequence of high-
level symbols. The Communication Manager implements the
executable code exchange mechanism through the device com-
munication interface–e.g. IEEE 802.15.4, Bluetooth, WiFi–
with the chosen communication protocol. Finally, a High-level
Reasoner handles on-board smart behaviors based on reason-
ing and possibly learning. The development of VSN protocols
and services usually involves all the components. An overview
of the middleware architecture is provided in Figure 1. The
middleware API exposes services that range from hardware
abstraction, sensing, and actuation to networking and high-
level reasoning tasks. Due to the incremental development
feature, the middleware symbolic API presents a layered
structure, as depicted in Figure 2. The system infrastructure
can be implemented either on resource-constrained devices,
e.g. Wireless Sensor Network nodes, in less than 20 KB [19]
and on Wi-fi enabled objects, such as ESP8266 chips, in less
than 40 KB [20].

V. MIDDLEWARE SUPPORT TO VSN TESTING

Verification of large-scale VSNs at deployment time is a
challenging experience and testing using simulations cannot be
exhaustive. However, in a real deployment, testing may imply
collecting hardware state information, environmental changes,
and, possibly, faults affecting both hardware and software.

The proposed system natively supports interactive testing.
Due to its symbolic nature, two testing modes are supported:
local and remote testing. Local testing operation is carried
on during development and execution of a word. Indeed, the
inclusion of a new symbol in the system word set allows
to execute and test it simultaneously. If the symbol works
as expected, no change is made to its definition. Otherwise,
it is possible to redefine an existing symbol overwriting the
task to which the symbol is bound. Recovery point words are
also covered, therefore the middleware API can be reported
to the previous configuration without rebooting the entire
system. Most frequently, the execution of a single word is
not exhaustive, as the result of verification cannot be evident.
For instance, this is the case of hardware state changes or
distributed protocols. In these situations, the runtime veri-
fication strategy is to make symbolic verification code fol-
low the operational code, so that test code can explicitly
expose the result of the verification process, as desired by the
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Fig. 3. Scenario I: a fixed station injects operational and verification code
for the carbon monoxide sample acquisition task

developers. The middleware also provides remote testing to
verify deployed VSN devices. Indeed, the approach described
above naturally extends to real scenarios by sending both
operational and symbolic verification code to VSN devices
through executable code exchange. Such a testing tool is avail-
able without adding further abstraction layers or components
to the middleware system. Runtime on-board verification is
performed at hardware, API, and application levels, equally.
However, the proposed approach does not prevent simulation
from being carried out when desired. For instance, the task
associated to the symbol CO can be such that either (i) en-
ables the opportune sensor device and performing real sample
acquisition or (ii) computes a synthetic test sample according
to a given trend function. Different verification code must
then be crafted for the two cases. In the former the hardware
state changes must be compared to the expected ones. In the
latter the computed value must be checked for correctness with
respect to the values synthesized by the given trend function.
In the following we describe how local and remote testing is
applicable to different VSN scenarios.

A. Scenario I: Testing on-board vehicle sensors
The first scenario considers local testing of sensing equip-

ment on-board each vehicle. In this use case scenario we
consider testing the acquisition of a carbon monoxide sample.
Let us suppose that the carbon monoxide sensor is connected
through the ADC interface and that the word performing the
sensor reading is CO. Testing that the word CO works properly
requires executing the symbols: (i) +adc to enable the ADC,
(ii) adc@ to read the ADC register value, and (iii) -adc to
disable the ADC. Finally, the comparison to the value stored
in the ADC register to those acquired is done by executing
CO as follows:

CO +adc adc@ -adc =

The result of verification is thus exposed to the programmer
on the real device in terms of a boolean value computed by
the comparison operator (=). Test code for checking on-board
sensor operation can also be sent by fixed nodes that connect
vehicles to the VSN infrastructure, as shown in the Figure 3.

B. Scenario II: Testing Reactive behaviors
A monitoring station can send symbolic verification code to

mobile entities. A possible testing code can be the sequence of

CO sample threshold > [if] 

      alarm [then]  

Fixed station

Vehicles
Operation code

Verification code

Fig. 4. Scenario I: a fixed station injects the operational and verification code
for acquiring a carbon monoxide sample. Testing consists in sending back an
alarm when the sensed value exceeds a threshold

symbols that make a device send back an alarm when the level
of a certain pollutant overcomes a specified threshold. As an
example, a station tells a vehicle to acquire a sample of carbon
monoxide. The testing code can process the acquired value
for instance to trigger the alarm if the CO sample exceeds a
predefined threshold as depicted in Figure 4. A simple rule
implementing this behavior would be:

CO sample threshold > [if] alarm [then]

Therefore, reactive rules can be easily implemented and tested.

C. Scenario III: Collaborative testing of on-board sensors

Another possible scenario includes vehicles stopped at traf-
fic lights (see Figure 5). Due to the fact that vehicles are
spatially close to each other, it is plausible that they can
measure the same values up to a small tolerance. Therefore,
the symbolic code for testing on-board sensors can request
neighbor vehicles to provide their sensor value. Then the
requesting node compares them to the on-board sensor reading.
For instance, the following protocol code:

bcst tell:
random ms
CO
reply tell:
˜ CO - tolerance < if

correct
else

wrong
then
1 + !
:tell :tell

hlbroadcasts the code to wait a random millisecond (ms)
time, make a receiving node sample CO, reply and tell the
reading as well as the code to perform the measurement on the
requesting node (Figure 6). Then the difference is computed
and compared to a tolerance value. A few counters are
updated to consider statistics eventually, i.e. correct and
wrong results. The symbol is a placeholder that is replaced
by the computed CO value at runtime.
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Fig. 5. Scenario III: executable code broadcast by a requesting vehicle to
check the CO sensor
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Fig. 6. Scenario III: example of executable code sent by neighbor vehicles
to a requesting node to check its CO sensor

D. Scenario IV: Average protocol verification
Similarly to the previous scenario, neighbor entities can

perform collaborative tasks, such as aggregation and data
fusion. In this case, a fixed station, which can be placed
close to the traffic lights, broadcasts the aggregation protocol
code when the traffic light is red. For instance, consider a
protocol for aggregation of temperature data [23]. Each node
waits a time proportional to its ID–e.g. vehicle plate–performs
sensing, updates the current aggregate value and number of
nodes and exchange them with its neighbors along with the
symbolic code for their update. At the end of the protocol
execution, each node should have the same aggregate and
number of node, that is, the same average value. As reported
in our previous work [23] and in Figure 7, the code to start
the protocol execution is:

bcst tell: 0 0 update :tell

where the first value is the current temperature aggregate–a
simple sum–, while the second is the current count of nodes.
The fixed station is itself an active node that contributes to
the calculation. Therefore, at the end of protocol execution,
it holds the two values needed to compute the average, the
final sum and count of nodes. The final step of protocol code
exchange is reported in Figure 8

A possible verification thus implies that the fixed station
waits a given time and broadcast again the code to make each
node signal an error if its own reading deviates from the shared
average value, as reported in Figure 9. This way, each vehicle
performs on-board verification of the protocol.

VI. DISCUSSION

A review of the literature highlighted that existing middle-
ware solutions do not provide adequate support for on-board
testing in real VSN scenarios. Instead, code is tested using
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Fig. 7. Scenario IV: executable code sent by a fixed station to start distributed
temperature aggregation protocol
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Fig. 9. Scenario IV: Symbolic verification code sent by the fixed station. Code
is delivered at the end of protocol execution and consists in the sequence of
symbols to report an alarm if the average differs from the value computed by
the fixed station.

simulation, sometimes rather complicated, and then released.
If a successful test done in simulation does not succeed also
in the real scenario, the whole development process must
be repeated. Moreover, realistic simulation would require a
broad range of scenarios to be considered. The proposed
middleware environment, which is based on interactive de-
velopment, avoids cross-compilation and proves time-saving
since code development and test collapse into a single phase.
The strict coupling of the middleware to the hardware allows
testing to be performed at all levels, from low-level hardware-
bound software layers to application code, seamlessly. We
showed how verification of both hardware driving and protocol
symbolic code can be written and tested one definition at a
time on the target hardware. On-line verification of distributed
protocols can be done through executable code exchange, a
feature that the other systems lack, in the absence of thick
software layers, which often require code translation stages.
For instance, the behavior of the alarm application described in
previous section can be changed dynamically on VSN entities
simply by sending them a new symbolic rule and test code. Our
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results support the idea that interactive testing is particularly
advantageous for creating VSN testbeds rapidly, as code can
be tested on the real hardware and environment. However,
the proposed middleware does not exclude the possibility of
running simulations. Indeed, the same high level test code can
run on simulated hardware. The same considerations apply
to the Cloud, on which our symbolic middleware could run
and periodically send symbolic test code to both vehicles and
fixed stations. Finally, the flexibility of the middleware we
developed can be considered inconvenient when compared
to architectures offering ready-to-use functionalities tough
difficult to modify. On the other hand, easy extension and
upgrades of the middleware itself provides a generic solution
which does not target any specific application while allowing
software reuse.

VII. CONCLUSIONS

In this paper we presented a symbolic middleware providing
entities in Vehicular Sensor Networks with advanced skills
including on-board verification of code. On-board verification
is a giant challenge in such a dynamic context and previously
proposed middlewares only partially support testing VSN
applications. The main feature of the proposed approach is the
possibility exposed by the middleware to undertake verification
of both hardware driving and protocol code on real scenarios
and platforms. Application development and testing take place
in terms of exchanged symbols among entities, e.g. vehicles,
fixed stations, and other networked devices. Symbolic test
programs are executed once received. An interpreter-based
environment running on VSN entities makes the middleware
able to be incrementally extended by defining new words based
on previously defined words. The middleware infrastructure is
not rigid and new implementations of protocols and commu-
nication functionalities can be easily added. Furthermore, its
symbolic nature makes the middleware able to run on networks
composed of heterogeneous devices.
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