
Detection of Points of Interest in a Smart Campus

Article

Accepted version

A. De Paola, A. Giammanco, G. Lo Re, G. Anastasi

In Proceedings of the 5th International Forum on Research and
Technologies for Society and Industry (RTSI 2019) 

It is advisable to refer to the publisher’s version if you intend to
cite from the work.

Publisher: IEEE

NDS LAB - Networking and Distributed Systems
http://www.diid.unipa.it/networks/



DRAFT

Detection of Points of Interest in a Smart Campus
Alessandra De Paola, Andrea Giammanco and Giuseppe Lo Re

University of Palermo
Palermo, Italy

{alessandra.depaola, andrea.giammanco, giuseppe.lore}@unipa.it

Giuseppe Anastasi
University of Pisa

Pisa, Italy
giuseppe.anastasi@unipi.it

Abstract—Understanding users’ habits is a critical task in
order to develop advanced services, such as personalized rec-
ommendation and virtual assistance. In this work, we propose
a novel approach to detect Points of Interest visited by users
of a campus, by using mobility traces collected through users’
smartphones. Our method takes advantage of the intentional
and recurrent nature of human movements to build up mobility
profiles, and combines different machine learning methods to
merge sensory information with the past users’ behavior. The
proposed approach has been validated on a synthetic dataset
and the experimental results show its effectiveness.

Index Terms—Smart Campus, PoI Automatic Detection, Hu-
man Mobility Profiling

I. INTRODUCTION

As the diffusion of personal devices increases, it is be-
coming easier to keep track of users’ trajectories. In many
fields, such as pervasive computing and social sciences, user
profiling is a very valuable task, since it enables the creation
of models of their activities, seen as sequences of movements.
As proved in [1], human trajectories display a high degree of
temporal and spatial regularity, and each user is characterized
by a significant probability to return to a few highly frequented
locations. Therefore, an accurate location identification makes
location-aware applications more effective.

Context awareness is the key feature of Smart Environ-
ments [2], and in particular of a Smart Campus [3], [4], which
is a digitally augmented campus where pervasive instrumented
objects and spaces are made responsive to the state of the
environment and its inhabitants. Location-aware computing
aims at extracting information from raw trajectory data, in
order to supply personalized services. In a Smart Campus, in
addition to the ubiquity of users’ smartphones, several other
IoT sensory devices [5], such as cameras, RFID readers, and
bluetooth beacons, collect raw measurements, that can be ex-
ploited by an intelligent system in order to reason upon current
context and supply advanced services to users. A location-
based recommender system can provide information relevant
to users’ position, e.g. suggesting the nearest free library seat.
Moreover, the capability of predicting users location can be
exploited to provide recommendations related to the next place
a user will visit, e.g., enabling the suggestion of free parking
space near the next destination.

The work described here aims at inferring Points of Interest
(PoIs) visited by users, using georeferenced position data.
The regions where a user stops for a considerable amount
of time can be automatically extracted by means of clustering

[6], [7]. Nevertheless, mapping a user’s position to a set of
known PoIs is not a trivial task [8]–[10], due to the intrinsic
error in measurements and the presence of areas dense of
meaningful places. The user’s past behavior can be used
to refine the estimation of their location, but the cold-start
problem for new users has to be faced. We propose to face
these issues, by adopting a combination of unsupervised and
supervised machine learning methods, in order to be capable
of dealing with uncertain data and of merging sensory data
with knowledge about past user’s behavior.

The remainder of the paper is organized as follows. Sec. II
reviews the literature about automatic methods for detecting
PoIs. Sec. III outlines the architecture of the proposed system,
by providing a high level description of its components. Sec.
IV describes the algorithm proposed to identify visited PoIs.
Sec. V describes the experimental evaluation performed to
assess the performance of the proposed approach. Finally, Sec.
VI states some conclusions and discuss the future work.

II. RELATED WORK

Several methods have been described in the literature for
mining significant locations from georeferenced data, and they
can be grouped into two classes [6]: geometry-based and
fingerprint based methods. Geometry-based methods use clus-
tering techniques on raw position data, e.g., coming from GPS
sensors, to produce coordinates or polygonal shapes describing
users’ significant places. Fingerprint based methods exploit a
set of fingerprint waypoints, which are defined as “signatures”
of different places. Through such signatures, a user’s personal
device is able to detect when it returns to a place already
visited, without knowing its geographical location.

Moreover, the approaches described in the literature can be
analyzed with respect to their capability of performing indoor
or outdoor PoI identification, or with respect to the capability
of detecting PoIs in real time. An overview of some relevant
approaches is summarized in Table I, which also highlights
the clustering method used to identify the users’ Stop Points.

Authors of [11] group stop points using an enhanced version
of OPTICS clustering algorithm, which performs multiple
split-and-merge steps until any single cluster represent an
unique semantic location. Authors of [12] focus on the time
difference between consecutive GPS samples, detecting a stop
point whenever a given time interval occurs between them.
The key insight is that GPS signals can not be collected
inside buildings, thus an event of signal drop corresponds to
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TABLE I
OVERVIEW OF POI DETECTION METHODS

Qualitative categories: (a) Geometry-based or Fingerprint-based;
(b) Indoor/Outdoor relevant places, or Both;

(c) Online or Offline.

Approach Qualit. categories Clustering Method(a) (b) (c)

[11] G B Off OPTICS

[12] G I Off k-means

[13] G B On k-means / GMM

[14] G B Off spatio-temporal

[15] F I Off robust beacon infer.

a prolonged visit in a place. Gathered GPS readings are then
clustered through the k-means algorithm to extract meaningful
locations. Such an approach could lead to erroneous detection
of stop points in areas with discontinuous signals. The ap-
proach proposed in [13] exploits the periodical transmission of
Wi-Fi beacons performed by access points. Through received
beacons, users can detect their location by averaging the access
points’ locations. In order to deal with possible sensory errors,
relevant places are detected as clusters of locations, identified
through k-means clustering and Gaussian mixture models.
Authors of [15], instead, exploit Wi-Fi beacons to detect
entering and leaving to and from a place. Authors of [14]
introduce a combination of spatial and temporal constraints in
order to detect stop points; the proposed approach iteratively
analyzes the spatial regions where the user stops for a a given
time period, and detects a stop if a user spends more than 30
minutes within a range of 200 meters.

Despite plenty of work has been done to discover PoIs, there
are still open issues to be addressed, mainly in order to com-
bine raw measures with other high level information, so thus
to increase the detection accuracy [8]–[10]. Differently from
other previous works, our approach aims at detecting PoIs by
adopting a probabilistic and dynamic approach, in order to
merge sensory data, which can be noisy and inaccurate, with
context information related to users’ activities and habits.

III. SYSTEM ARCHITECTURE

Our Smart Campus system relies on a multi-tier architecture
that allows to extract relevant information from raw data
in order to provide context-aware services. Fig. 1 shows an
overview of such architecture, with a detailed focus on the
role played by the PoI Detection subsystem.

The lowest layer of our architecture detects relevant events
and monitors physical phenomena through a pervasive sensory
infrastructure [16]. The PoI Detection subsystem analyzes raw
sensory data to detect a set of Stop Points, which can be
defined as regions where the user remains for a certain amount
of time, and merges the identified Stop Points with high-
level context information in order to detect the actual visited
PoIs. Such context information summarizes the relationship
between users and the activities they perform in different
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Fig. 1. Architecture of the proposed Smart Campus.

PoIs, in terms of frequency of visit, average stop time, and
sequence of visited PoIs. The detected PoIs are sent to the
Features Detection module in order to extract a set of n-
dimensional points which summarize the mobility behavior of
each user, such as his leaning to be sedentary or exploratory
during the workday. The User Profiling module then aims
at outlining different classes of users according to previously
extracted features. Besides inferred behavioral characteristics,
user profiles also include information explicitly provided by
the users themselves, such as the their role (e.g., “researcher”
or “student”). Finally, knowledge about user profiles and their
current and next position and activity can be exploited in order
to provide users a set of Context-Aware Services.

IV. POI AUTOMATIC DETECTION

The main contribution of this paper is the PoI detection al-
gorithm, which merges sensory data with context information,
in order to solve possible ambiguities deriving from noisy or
discontinuous readings.

A PoI is defined as a place where the user usually goes and
stops for a while. It could be a place of interest for the whole
community, such as a shop or a bus stop, or for a single user.
Typical PoIs inside a campus include departments, libraries,
parks, research laboratories, auditoriums and lecture halls.

In this work, we address the personalized automatic check-
in problem [8]: given a PoI database and a set of georeferenced
user’s data, we want to recover the sequence of PoIs the user
visited. Such problem can be divided into two sub-problems:
the Stop Points discovery from data, and the Checked-in PoI
detection for each stop point. Therefore, it is necessary to
formally define the concepts of Measurement Point, Stop Point
and Checked-in PoI.

• A Measurement Point is a 3-ple (latitude, longitude,
timestamp) collected through a sensor which indicates
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the presence of the user in a given point at a certain time
instant.

• A Stop Point is a tempo-spatial cluster of Measurement
Points which represents a geographic region where the
user stopped for a while.

• A Checked-in PoI is a PoI, among those contained in the
system knowledge base, which has been actually visited
by the user.

It is worth noticing that unavoidable location errors and
the presence of high-density PoIs areas can make difficult the
detection of a Checked-in PoI, which is not always the nearest
PoI to the extracted Stop Point .

In the following, we present the strategies adopted to tackle
the Stop Points discovery problem, and the Checked-in PoI
detection problem.

A. Stop Points Discovery

Several approaches have been presented in the literature in
order to discover Stop Points from raw data. In particular,
approaches described in [6], [7] are characterized by a good
trade-off between accuracy and computational burden. Never-
theless, these approaches are characterized by some limitations
that can be overcome by means of our proposal.

According to authors of [6], a Stop Point is discovered
whenever there exist two Measurement Points, pa and pb, for
which the following constraints are satisfied:

• SpaceDistance(pa, pb) < δd,
• TimeDifference(pa, pb) > δt,
• TimeDifference(pk, pk+1) < ∆d, ∀k : a ≤ k ≤ b,

where δd is the maximum distance a user can cover to be
considered staying in the same Stop Point, δt is the minimum
visiting time necessary to discover a Stop Point, and ∆t is the
maximum temporal distance between two consecutive samples
to be considered as part of the same cluster of measurements.
The main weakness of this approach is that it is not capable
of dealing with possible signal losses, which can be frequent
with GPS measurements are used for detecting users location.

Authors of [7] propose to solve such issue by relaxing the
constraint about the maximum time threshold. Measurement
Points that violate such constraint are stored in a temporary
buffer to be compared with the next Stop Point. Whenever a
new Stop Point is discovered, its distance from the previous
one is evaluated; if such distance is under a given threshold,
these two points are merged, together with all the Measurement
Points stored in the buffer. Even with this improvement, the
method proposed in [7] generates too many Stop Points, since
it does not take into account any information about the nature
of some waypoints, which often can be known a priori.

We propose to overcome such limitation by comparing the
discovered Stop Points with information stored in a database
of known waypoints, in order to merge consecutive Stop Points
which match the same waypoint.

B. Checked-in PoI Detection

Results of the Stop Points discovery phase are used to
identify the PoIs visited by the user, defined as checked-in

PoIs. The easiest approach to detect a checked-in PoI is to
select the known PoI which is nearest to the centroid of the
current Stop Point. Such strategy, named nearest neighbor
method, is equivalent to apply a reverse geocoder to Stop
Points [8], [11]. Despite its simplicity, such an approach is
negatively affected by unavoidable errors of GPS sensors and
by the presence of areas with a high density of PoIs.

To overcome such limits, some methods have been proposed
in the literature. Authors of [10] propose a spatial search
system composed of two phases: a retrieval phase which
extracts a set of candidate PoIs, followed by a ranking phase
which produces the best raking of candidate PoIs. The retrieval
phase selects the most popular venues near to user’s position.
The ranking of this PoIs is obtained through a supervised
learning algorithm which is trained by collecting explicit
feedbacks from users. The learning algorithm also includes
some context information, such as the distance between Stop
Point and PoI, the time of the day and the number of people
currently checked-in at the PoI. A similar approach is proposed
in [9], where the set of candidate PoIs is obtained only by
verifying that their distance from the current Stop Point is
under a given threshold. Context information used to refine
the PoI ranking include PoI popularity, the number of reviews
on social media, personal preferences, time of the day and
weather conditions. Authors of [8] propose a generative model
to detect visited PoIs from unlabeled Stop Points, through a
Bayesian network that represents the probabilistic dependence
of different factors on visited PoIs, such as user preferences
for different PoI categories, duration and geographical location
of the visit, PoI popularity and typical stop time.

We propose to adopt a Dynamic Bayesian Network
(DBN) [17] in order to include context awareness and the
knowledge about past history into the PoI detection algorithm,
and in order to deal with the unavoidable noise in sensory
readings and in the discovered Stop Points. In our model, Stop
Points discovered through the enhanced method described in
Sec. IV-A represent the observable manifestation of the hidden
user state, i.e., the real checked-in PoI. The DBN allows to
model the evolution of the hidden state over time, and the
probability dependency of the current state, from past state and
from context features. Moreover, differently from approaches
described above, we propose to use a context information
set which is not dependent on global features of PoIs, i.e.
popularity or visibility on social media, but which heavily
depends on the recurrent nature of human mobility [18], that
can be often modeled through a weekly routine. According
to this choice, our model takes simultaneously and separately
into account three different aspects related to the time relation
between the discovered Stop Point and the potential PoI: the
arrival time at the Stop Point, the duration of the visit and
the day of the week. Furthermore, we exploit the intentional
nature of human mobility by considering the sequence of past
visited places during the day as further contextual feature.

Fig. 2 sketches the overall structure of the PoI Detection
module, and highlights the adopted DBN and its interaction
with the Stop Points Discovery subsystem, which can be
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Fig. 2. Block Diagram of the PoI Detection module.

considered as a virtual sensor which perceives noisy mani-
festations of real PoIs. The main goal of this module is to
infer the i-th PoI visited during a day, which is represented
by the hidden variable xi. The belief about such variable
depends from the past history, the current sensory reading ei,
i.e. the discovered Stop Point, and a set of context information
ci = (C1

i . . . C
k
i ).

The characterization of the DBN requires the definition
of the sensor model and the state transition model. The
probability distribution P (et|xt) represents how Stop Points
are affected by the current visited PoI, it is named sensor
model, and it is inversely proportional to the distance between
the centroids of the discovered Stop Point and the hypothe-
sized PoI xi. The state transition model, i.e., p(xi|xi−1, ci),
represents the probability that the user visited a given PoI,
given the previously visited PoI xi−1 and the current context
information ci.

The context information are obtained through a set of
feature extractors, that for each user, and for each PoI class,
quantify their relationship in temporal and behavioral terms.
We focus on the following features: the frequency of visits
during a day, the typical arrival time, the average stop time
and the history of waypoints of the same class visited in the
past, expressed as frequency of n-grams of past PoIs.

Since our DBN is a first-order Markov model, we define
the belief about the PoI visited in the i-th slot, i.e. xi as:

belief(xi) = p(xi|e1:t, c1:t). (1)

As described in [16], [19], the belief can be computed with
the following practical formulation:

belief(xi) = η · p(ei|xi) ·
∑
xi−1

p(xi|xi−1, ci) · belief(xi−1),

(2)
where η is a normalization constant.

Since the DBN structure is known, the learning phase only
aims at filling the conditional probability tables by computing
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Fig. 3. Architecture of the simulation tool adopted to generate synthetic GPS
trajectories.

the sample statistics for each node from the set of historical
geo-referenced data.

V. EXPERIMENTAL EVALUATION

A. Dataset

In order to evaluate the effectiveness of the proposed
approach, we design a simulation tool for building synthetic
datasets, according to guidelines proposed in the literature [20]
(see Fig. 3).

The simulation tool requires explicit knowledge of Cam-
pus PoIs, named waypoints, which are stored in a specific
DB. Each user is represented by a set of commonly visited
waypoints and a behavior, which is a probabilistic model for
his specific mobility patterns. Such behavior is composed of
two components: (i) a transition scheme, which is a Markov
chain representing the transition probability from a waypoint
to another, and (ii) a pause scheme which represents the
probability distribution of stop time for each waypoint.

For each simulated user, in each day, it is generated a
semantic trajectory, i.e., a sequence of class of waypoints. An
example of semantic trajectory is the sequence <Department
→ Coffee Shop → Library>. The adoption of semantic
trajectories to provide a high-level model of mobility behavior
of users is based on the idea that humans move in order to
fulfill a to-do list, which means that they move between places
to switch between different activities. In our example, referred
to a University Campus, after attending a lesson, a student
might want to take a coffe, then go to the library.

Raw trajectories, i.e. sequences of (lat, lng, timestamp)
triples, are generated from semantic trajectories by exploiting
Google Routes APIs. In particular, for each pair of consecutive
waypoints, a set of position samples is generated, and then
such data are corrupted by adding random noise in order to
simulate the GPS errors.

Noise features can be specified as input parameters of our
simulation tool. The dataset described here has been generated
by adding Gaussian noise with mean value equal to 0 and
standard deviation equal to 0.00005, thus to obtain some noisy
readings far 10 mt from the true user’s position.

The experimental evaluation presented in this work has been
performed by generating a dataset of trajectories for different



DRAFTFig. 4. Accuracy of the following Stop Points discovery algorithms, by varying δd (on the x-axis) and δt (grey patterns), as defined in Sec. IV-A: the approach
proposed by Montoliu et al. [6], the approach proposed by Fu et al. [7], and our approach.

users, covering an academic year with a sampling rate of 5
minutes, by considering several user behavioral models.

B. Performance Metrics

The experimental results compare the performance of three
different algorithms for Stop Points extraction, with different
values for the input parameters. The first one is the algorithm
proposed in [6], the second one is the technique described
in [7], and the last is our proposal described in Sec. IV-A.
In order to compare these approaches, the actually visited
PoIs are inferred from the discovered Stop Points by selecting,
at the end of the clustering phase, the nearest PoIs to Stop
Points’ centroid. As described in Sec. IV-B, the nearest
neighbor approach presents some pitfalls, but provides an
initial assessment of the techniques’ effectiveness.

The overall accuracy of the proposed system can be eval-
uated by comparing the ground truth with the sequence of
inferred PoIs, through the Damerau-Levenshtein distance [21].
Let Φ(·, ·) be the Damerau-Levenshtein distance function
between two strings, PoIG be the ground-truth sequence of
PoIs for a specific user, PoID be the sequence of PoIs detected
by the system, and # {·} be the function which gives the
numbers of elements in a sequence, then the average accuracy
for each user is computed as:

accuracy =
∑

trajectories

1− Φ(PoIG,PoID)

max(# {PoIG} ,# {PoID})
. (3)

The division by the maximum value between the length of
the real itinerary and the detected one aims to penalize strings
with different lenghts, e.g., in the case of an excess of extracted
Stop Points.

C. Experimental Results

In order to evaluate the effectiveness of our approach, we
carried out two different experimental evaluations.

The first experiment compares Stop Points extraction meth-
ods described in Sec. IV-A, with different values for the input
parameters. Fig. 4 shows the accuracy achieved by through
the nearest neighbor method, under the ideal hypothesis of
continuous GPS signal. This unrealistic constraint will be
relaxed in the second experiment. The best performance is
obtained by our approach (c), which exhibits an accuracy of
94.12%, thus increasing the accuracy of method (a) by 26.24%
and of method (b) by 4%.

In the second experiment, we relax the constraint about the
GPS signal continuity, which is now considered absent when a
user moves inside buildings. We compare the performances of
the blind nearest neighbor assignment method with the proba-
bilistic approach for PoI detection proposed here. The training
and validation of our DBN model have been performed by a
6-fold cross validation on the whole data set. Table II shows
results of such comparison, and proves that the probabilistic
inference, by means of different set of context features, can be
useful to identify visited PoIs. Nevertheless, obtained results
show that using too many context attributes can actually
be detrimental to the inference accuracy, and increases the
computational burden of the process. The execution times are
reported in the last column of Table II: each entry is expressed
as a ratio w.r.t. the highest value of execution time, i.e., the last
row of the table. The features considered for this experiments
are: the Arrival Time (AT) of the user at the stop point, the
Stop Time duration (ST), the Daily Frequency (DF) of visits of
a particular semantic class, the sequence of Past Visited Places
(PVP), and the Day of the Week (DW). In order to compute
DF and NG features, we have to make an approximation of
the real itinerary by considering the most probable waypoint
as the actually visited one.

As results show, optimal performances are achieved by
considering user’s arrival time (AT) and the duration of the
stop (ST), obtaining nearly 7% of accuracy increase.
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TABLE II
COMPARISON OF ACCURACY, UNCERTAINTY AND EXECUTION TIME FOR

PROBABILISTIC POI DETECTION WITH DIFFERENT SUBSETS OF FEATURES

VI. CONCLUSIONS AND FUTURE WORK

This paper described a system for detecting PoIs in a
Smart Campus, in order to build location-aware recommender
systems. Our system exploits a combination of unsupervised
and supervised methods which allow to merge sensory infor-
mation gathered by a pervasive sensory infrastructure, with
high-level context information, through a probabilistic model.
The experimental evaluation, performed on a synthetic dataset,
confirm that, by considering also context information beside to
sensory data, our approach has better performance than other
analogous approaches proposed in the literature.

As future work, we will address other modules of the
proposed context-aware recommendation system, also by in-
cluding the possibility of taking into account users’ activity
detected from pervasive sensors as further context feature [22],
[23]. Moreover, we plan to test the whole system in a real
Smart Campus scenario, by including also data voluntarily
shared by users. In such a scenario, we will include also
techniques of reputation management [24] in order to discard
feedback provided by users who intentionally send incorrect
data to create a disservice.
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