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Abstract—Several issues related to Smart City development
require the knowledge of accurate human mobility models, such
as in the case of urban development planning or evacuation
strategy definition. Nevertheless, the exploitation of real data
about users’ mobility results in severe threats to their privacy,
since it allows to infer highly sensitive information. On the
contrary, the adoption of simulation tools to handle mobility
models allows to neglect privacy during the design of location-
based services. In this work, we propose a simulation tool capable
of generating synthetic datasets of human mobility traces; then,
we exploit them to evaluate the effectiveness of algorithms which
aim to detect Points of Interest visited by users of a Smart
Campus. Our simulator exploits an activity-based mobility model,
thus it is based on the assumption that mobility of campus users
is motivated by the activities they plan to perform. It is capable
of simulating the weekly repetitiveness of human behavior and
to model different mobility profiles for each day of the week
through a fifth-order Markov model.

Index Terms—Human Mobility Simulation, Smart Cities,
Smart Campus, Markov model

I. INTRODUCTION

Many Smart City applications require the knowledge of
human mobility models. In particular, location-aware services
aim to users’ location from raw trajectory data, in order to
provide users with personalized services. Despite the increas-
ing diffusion of personal devices it makes very easy to keep
track of users’ trajectories, the wide use of such data during the
design phase poses severe threats for users’ privacy. It has been
shown that even coarse spatio-temporal datasets, e.g., with 1
hour as temporal resolution, provide a poor level of anonymity
[1], therefore, the adoption of a simulation tool to generate
synthetic mobility data represents a good trade-off between
privacy protection and accurate performance evaluation during
the design phase.

Simulating human mobility is useful for addressing several
issues. Simulating crowd mobility is critical task for eval-
uating the suitability of evacuation strategies during natural
emergencies or artificial disasters [2]. Moreover, in the field
of transportation and civil engineering, models of site-specific
pedestrian mobility is useful in order to design walking facil-
ities, and large structures such as stadiums or shopping malls
[3]. Finally, mobility is one of the key elements influencing
the performance of ad hoc networks [4], as well as the spatial
diffusion of information [5].

In this paper, we propose a simulation tool for human
mobility in a Smart Campus. Despite the specific scenario
which drives its design, it can be easily applied to other
Smart City scenarios. A Smart Campus [6], [7] is a digitally
augmented campus where pervasive instrumented objects and
spaces are made responsive to the state of the environment and
its inhabitants. In a Smart Campus, in addition to the ubiquity
of users’ smartphones, several other sensory devices, such as
cameras, RFID readers, and bluetooth beacons, collect raw
measurements, that can be exploited by an intelligent system
in order to reason upon current context and supply advanced
services to users.

We propose an activity-based mobility simulator for Smart
Campus users, which generates synthetic GPS tracks of their
movements. Such tool allows to assess the performance of
users profiling techniques, as well as personalized location-
based services offered to users, before their real deployment.
The proposed tool exploits the intentional and recurrent nature
of human mobility [8], and models its weekly periodicity [9].
Since the main applications for which our simulator has been
developed concern the supply of context-aware services, the
simulator is focused on macro-mobility rather than micro-
mobility features, that is it considers where users go (their
destinations), and not the specific followed route nor the
movement speed.

As proof of concept, we used the proposed simulator to as-
sess the performance of some Point-of-Interest (PoI) detection
algorithms. An accurate evaluation of such algorithms is of the
utmost importance since they often represent the first building
block to design context-aware services, such as location-based
recommendations.

The remainder of the paper is organized as follows. Section
II reviews the literature about human mobility simulation.
Section III outlines the considered Smart Campus ICT archi-
tecture, by providing a high level description of its compo-
nents. Section IV describes the proposed activity-based human
mobility simulator. Section V describes some PoI detection
algorithms used as proof of concept. Section VI describes
the experimental evaluation enabled by our simulator. Finally,
Section VII states some conclusions and discuss the future
work.

II. RELATED WORK

This Section outlines previous studies on human mobility
models and simulation. Despite human mobility is extremely978-1-7281-2923-5/19/$31.00 ©2019 IEEE
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regular and repetitive [8], building a model which takes
into account all possible details is impractical. Consequently,
models and simulators presented in the literature focus only
on domain-dependant aspects of interest. Available tools adopt
different granularity to analyze movements [3]: at a high level
of abstraction, macro-mobility concerns users’ activities affect-
ing their movements; on the contrary, micro-mobility concerns
which specific paths people follow to reach their destinations,
as well as the walking speed and direction taken in order to
avoid collisions with obstacles and other pedestrians. Micro-
mobility models are particularly useful to simulate emergency
evacuations [2].

Models focused on micro-mobility aspects, pay little atten-
tion to specific destinations and to the waypoint visit order,
which are in general randomly chosen. LEGION simula-
tor [10] is a commercial solution for civil engineers, which
aims to assess the impact of different levels of pedestrian
demand on infrastructures. It is often used in urban planning
to capture speed-distance relations that emerge when pedes-
trians walk while avoiding obstacles and other pedestrians.
PEDSIM [11] is an open source library for micro-mobility
pedestrian crowd simulation, useful for indoor evacuation
simulations, or large scale outdoor simulations. Its simulation
model is based on the social force model, a differential
equation which takes into account the desired velocity, the
interaction between pedestrians, and the interaction with the
environment. Authors of [12] model human walks by means
of statistical features which are similar to Levy Walks model,
with power-law distributions of trip lengths between waypoints
and pause times in the waypoints. The authors propose to
use Least Action Trip Planning to generate trip sequences
between randomly selected waypoints, thus neglecting any
aspect related to people habits.

On the contrary, macro-mobility models take into account
user activities and generate user movements consequently.
Authors of [13] propose a Weighted Waypoint model, where
transition probabilities between waypoint pairs are represented
by means of a Markov chain. Similarly, authors of [14]
propose a user behavioral model composed of a time table
for specifying typical stay times for each waypoint, and a
Markov chain that represents transition probabilities between
places. They generate paths between waypoints by means of
Google Maps APIs, as well as a set of usual and opportunistic
waypoints using Google Places APIs for places of common
interest, e.g., shops or restaurants, and a random generation
algorithm for selecting private houses or workplaces.

Authors of [3] propose an activity-driven tool to simulate
the mobility of theme park visitors. They model the envi-
ronment spatial layout by means of walking areas, which
are sequences of walkable segments obtained through Open
Street Map, and activity areas, which are the theme park’s
attractions represented through polygons. At a micro-mobility
level, authors use the Dijkstra algorithm to calculate shortest
paths between activity areas. Moreover, guests are associated
to a field of view, and a collision avoidance algorithm triggers
a direction change whenever an obstruction of the field of

view is predicted. Instead, at a macro-mobility level, authors
identify three different activities a guest of the theme park
can do: walking through the park, visiting an activity area, or
waiting in a queue. User’s preferences for next activity area
are modeled by means of a Markov chain. Moreover, each
area has its own visit duration distribution which is sampled
at every visit.

In this work, we propose an activity-driven simulator for
human mobility, drawing inspiration from [14] and [13], and
which explicitly considers the repetitiveness of weekly user
routines. To the best of our knowledge, such feature is a
novelty with respect to other existing tools. Since, the main
goal of such simulator is enabling the assessment of context-
aware algorithms, which only rely on the sequence of Points
of Interest visited by users, it neglects micro-mobility features,
such as collision and congestion avoidance. It is worth noticing
that our simulation tool does not allow to model exploratory
users [15], i.e., random walkers which wander between a
larger number of different locations. However, modeling such
behavior is beyond the aim of our work.

III. SMART CAMPUS ARCHITECTURE

This Section briefly describes the Smart Campus architec-
ture for which the simulation tool proposed here has been
designed, preliminary described in [16]. Such description
allows to highlight which information are relevant for our
system, and thus are considered during the simulation, and
which aspects can be neglected.

For our purposes, a Point of Interest (PoI) is defined as a
place where the user usually goes and stops for a while. It
could be a place of interest for the whole community, such as
a shop or a bus stop, or it could be a place of interest for a
single user. Typical PoIs inside a campus include departments,
libraries, parks, research laboratories, auditoriums and lecture
halls.

The detection of PoIs visited by users during a day is a
crucial task in order to understand the nature of the movements
they carry out, and to recognize different user profiles. For
example, by considering also the main activities performed
in each PoIs, it is possible to detect that a specific user is a
student who regularly visits the library in the afternoons.

The considered Smart Campus system relies on a multi-
tier architecture that allows to extract relevant information
from raw data in order to provide context-aware services for
users. Such architecture is shown in Figure 1, with a detailed
focus on the role played by the PoI Detection subsystem. The
lowest layer of such architecture is responsible for detecting
relevant events and monitoring physical phenomena through
a pervasive sensory infrastructure [17]. Raw data gathered by
such infrastructure, after a light preprocessing phase, are then
exploited in order to perform the PoI detection.

The PoI Detection subsystem analyzes trajectory raw data
to detect a set of Stop Points, which can be defined as regions
where the user remains for a certain amount of time, and
then merges the identified Stop Points with high-level context
information in order to detect the actual visited PoIs. Such
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Fig. 1. Architecture of the considered Smart Campus system.

context information summarizes the relationship between each
user and the activities he performs in different PoIs, in terms of
frequency of visit, average stop time, and sequence of visited
PoIs.

The detected PoIs are sent as input to the Features Detection
module in order to extract a set of n-dimensional points
which summarize the mobility behavior of each user, such
as its predisposition to be sedentary or exploratory during the
workday.

The User Profiling module then aims at outlining different
classes of users according to the features previously extracted.
Besides behavioral characteristics inferred from the such
knowledge, user profiles also include information explicitly
provided by the users themselves, such as their role (e.g.,
“researcher” or “student”).

Finally, knowledge about user profiles and their current and
next position and activity can be exploited in order to provide
users a set of Context-Aware Services.

For instance, a location-based recommender system can
provide information relevant to the position of users, e.g., sug-
gesting the nearest free library seat. Moreover, the capability
of predicting next users location can be exploited to provide
recommendations related to the next place a user will visit,
e.g., enabling the suggestion of free parking space near the
next destination.

IV. MOBILITY TRACES SIMULATOR

In this work, we propose a simulation tool capable of
generating synthetic datasets of GPS traces of users in a Smart
Campus. The proposed tool, whose architecture is shown in
Figure 2, is based on the human mobility studies proposed
in [8], [18], [19] and it has been designed by following the
guidelines proposed in [13], [14].

Waypoint
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Fig. 2. Architecture of the simulation tool proposed to generate synthetic
GPS trajectories.

The simulation requires the explicit knowledge of Campus
PoIs. Since paths between pairs of PoIs inside the campus are
automatically retrieved through the Google Routes APIs, there
is no need to explicitly specify walking areas, thus making
the spatial representation of the campus lighter. Data obtained
from Google Routes are stored as JSON files in a dedicated
DB to avoid further unnecessary APIs calls.

PoIs are represented through areas whose vertexes are stored
in a specific DB, named Waypoint DB in Figure 2. Each PoI
is associated with a label that represents a class of PoIs, and
can be related to activities performed by users in that type of
places. The set of available labels and the association between
PoIs and label is modeled through an opportune ontology [20],
thus making our tool adaptable for different campus settings.
In our case, 8 classes are considered: faculty building, coffee
shop, recreational place (e.g., parks), administration building,
parking area, library, ceremonial hall, entrance.

The main features considered for simulations are the be-
havioral habits of users. Human movements are repetitive and
intentional, because users move from one place to another by
following a to-do list, and a place change generally corre-
sponds to an activity change. Moreover, in a Campus, user’s
habits are also related to the day of the week [8], since users
show a tendency to repeat some specific actions at specific
days and day times. Therefore, each class of users is modeled
through a set of parameters whose values depend on the day of
the week. These parameters include: label of the places where
users stay most of the time; typical arrival time and stay time at
the campus; transport mode used to reach the campus (a user
traveling by car looks for a parking area after entering the
campus); probability of leaving the campus before the usual
time; typical lunch time and preferred place’s label for lunch
break. By tuning parameters of such models, different classes
of users can be simulated. For instance, it is possible to model
a student which attends morning classes, arrives at the campus
around 8 AM and has lunch inside his faculty building on
odd-numbered days, whereas he attends afternoon classes and
arrives around 14 PM on even-numbered days. It is possible to
model students with a high campus drop rate, students which
respect scheduled plans, as well as students which go to library
on Friday and stay at home during exam sessions.
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Fig. 3. The fifth-order Markov chain which models the transition probability
from an activity to another.

Moreover, each user is associated to a probabilistic model
for his specific mobility patterns. Such behavior is composed
of two components: (i) a transition scheme, which is a fifth-
order Markov model representing the transition probability
from an activity to another, shown in Figure 3, and (ii) a
pause scheme which represents the probability distribution of
stop time for each waypoint. The reason behind the choice of
a fifth-order Markov model for the transition scheme is that,
on average, people inside a campus visit 4.5 places per day
[18].

On a monthly basis, parameters are subject to small pertur-
bations in order to simulate possible changes in user routine.
Moreover, in some specific months, the added noise is higher,
thus simulating a behavioral shift during some particular
campus-life periods such as exam sessions.

After the selection of the next activity to be performed, the
simulator selects the corresponding class of PoI to visit. Then,
for each user, in each day, the simulator generates a semantic
trajectory, i.e., a sequence of labels. An example of semantic
trajectory is the sequence <Faculty building → Coffee Shop
→ Library>.

Given the selected PoI class, the specific PoI to visit is
chosen through a gap-reducing approach according to which a
user visits the nearby destinations before visiting farther desti-
nations [19]. Moreover, in order to model a slight exploratory
behavior, for each selection there is a small probability to
select a random PoI. This random selection is performed
by associating each PoI to a probability which exponentially
decays with respect to its distance from the current Stop Point.

Finally, raw trajectories, i.e. sequences of
(latitude, longitude, timestamp) triples, are generated
from PoI sequences by exploiting Google Routes APIs. In
particular, for each pair of consecutive waypoints, a set
of position samples is generated, and then such data are
corrupted by adding random noise in order to simulate
the GPS errors. Noise features can be specified as input
parameters. The dataset described here has been generated
by adding Gaussian noise with mean value equal to 0 and
standard deviation equal to 0.00005, thus to obtain some
noisy readings far 10 mt from the true user’s position.

The experimental evaluation presented in this work has been
performed by generating a dataset of trajectories for different

users, covering an academic year with a sampling rate of 5
minutes, by considering several user behavioral models.

V. CASE STUDY

This Section describes the PoI detection algorithms used
as case study in order to validate the simulator suitability.
Such algorithms address the personalized automatic check-in
problem [21], which can be divided into two sub-problems:
the Stop Points discovery from data, and the Checked-in PoI
detection for each stop point.

For the sake of clarity, it is opportune to formally define
the concepts of Measurement Point, Stop Point and Checked-
in PoI.

• A Measurement Point is a triple (latitude, longitude,
timestamp) collected through a sensor (e.g., GPS sen-
sors, RFID readers, Wi-Fi access points) which indicates
the presence of the user in a given point at a certain time
instant.

• A Stop Point is a tempo-spatial cluster of Measurement
Points which represents a geographic region where the
user stopped for a while.

• A Checked-in PoI is a PoI, among those contained in the
system knowledge base, which has been actually visited
by the user.

The user’s Stop Points can be automatically extracted by
means of clustering [22], [23]. Nevertheless, mapping a user’s
position to a set of known PoIs is not a trivial task [21],
[24], [25], due to the intrinsic error in measurements (e.g.,
smartphones’ GPS have an average error of 10 meters [26])
and the presence of areas dense of meaningful places. The
user’s past behavior can be used to refine the estimation of
their location.

In the following, we present the strategies adopted by the
considered algorithms to address the Stop Points discovery
problem, and the Checked-in PoI detection problem.

A. Stop Points Discovery

Several approaches have been presented in the literature in
order to discover Stop Points from raw data. In particular,
approaches described in [22], [23] are characterized by a good
trade-off between accuracy and computational burden.

According to authors of [22], which propose the first algo-
rithm considered in our case study, a Stop Point is discovered
whenever there exist two Measurement Points, pa and pb, for
which the following constraints are satisfied:

• SpaceDistance(pa, pb) < δd,
• TimeDifference(pa, pb) > δt,
• TimeDifference(pk, pk+1) < ∆t, ∀k : a ≤ k ≤ b,

where δd is the maximum distance a user can cover to be
considered staying in the same Stop Point, δt is the minimum
visiting time necessary to discover a Stop Point, and ∆t is the
maximum temporal distance between two consecutive samples
to be considered as part of the same cluster of measurements.
The main weakness of this approach is that it is not capable
of dealing with possible signal losses, which can be frequent
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when only GPS measurements are used for detecting users
location.

Authors of [23] which propose the second algorithm con-
sidered in our case study, suggest to solve such issue by
relaxing the constraint about the maximum time threshold.
Measurement Points that violate such constraint are stored in
a temporary buffer to be compared with the next Stop Point.
Whenever a new Stop Point is discovered, its distance from
the previous one is evaluated; if such distance is under a given
threshold, these two points are merged, together with all the
Measurement Points stored in the buffer.

Even with this improvement, the method proposed in [23]
generates too many Stop Points, since it does not take into
account any information about the nature of some waypoints,
which often can be known a priori.

To overcome such limitation, we propose to compare the
discovered Stop Points with information stored in a database
of known waypoints, in order to merge consecutive Stop
Points which match the same waypoint. Such enhanced Stop
Point algorithm, represents the first step of our Context-aware
PoI Detection (CAPD) algorithm, which represents the third
algorithm considered as case study.

B. Checked-in PoI Detection

Our Context-aware PoI Detection (CAPD) algorithm ex-
ploits results of the Stop Points discovery phase in order to
identify the PoIs visited by the user, defined as checked-in
PoIs.

The easiest approach to detect a checked-in PoI is to select
the known PoI which is nearest to the centroid of the current
Stop Point. Such strategy, named nearest neighbor method, is
equivalent to apply a reverse geocoder to Stop Points [21],
[27]. Despite its simplicity, such an approach is negatively
affected by unavoidable errors of GPS sensors and by the
presence of areas with a high density of PoIs. The last problem,
in particular, can be particularly relevant in a Smart Campus.

To overcome such limits, some methods have been proposed
in the literature [21], [24], [25].

The CAPD algorithm adopts a Dynamic Bayesian Network
(DBN) [28] in order to include context awareness and the
knowledge about past history into the PoI detection algorithm,
and in order to deal with the unavoidable noise in sensory read-
ings and in the discovered Stop Points. In the CAPD algorithm,
Stop Points discovered through the enhanced method described
in Section V-A represent the observable manifestation of the
hidden user state, i.e., the real checked-in PoI. The DBN
allows to model the evolution of the hidden state over time,
and the probability dependency of the current state, from past
state and from context features.

CAPD uses context information which heavily depends on
the recurrent nature of human mobility [9], that can be often
modeled through a weekly routine. In particular, it takes
into account three different aspects related to the time relation
between the discovered Stop Point and the potential PoI: the
arrival time at the Stop Point, the duration of the visit and
the day of the week. Furthermore, it exploits the intentional
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Fig. 4. Block Diagram of the PoI Detection module.

nature of human mobility by considering the sequence of past
visited places during the day as further contextual feature.

Figure 4 sketches the overall structure of the PoI Detection
module, and highlights the adopted DBN and its interaction
with the Stop Points Discovery subsystem, which can be
considered as a virtual sensor which perceives noisy manifes-
tations of real (unknown) PoI. The main goal of this module is
to infer the i-th PoI visited during a day, which is represented
by the hidden variable xi. The belief about such variable
depends from the past history, the current sensory reading ei,
i.e. the discovered Stop Point, and a set of context information
ci = (C1

i . . . C
k
i ).

The characterization of the DBN requires the definition
of the sensor model and the state transition model. The
probability distribution P (et|xt) represents how Stop Points
are affected by the current visited PoI, it is named sensor
model, and it is inversely proportional to the distance between
the centroids of the discovered Stop Point and the hypothe-
sized PoI xi. The state transition model, i.e., p(xi|xi−1, ci),
represents the probability that the user visited a given PoI,
given the previously visited PoI xi−1 and the current context
information ci.

The context information are obtained through a set of
feature extractors, that for each user u, and for each PoIs’
class β, quantify their relationship in temporal and behavioral
terms. The considered features are the following: the frequency
of visits during a day, the typical arrival time, the average stop
time and the history of waypoints of the same class visited in
the past, expressed as frequency of n-grams of previously seen
PoIs.

Since such DBN is a first-order Markov model, the belief
about the PoI visited in the i-th slot, i.e. xi, can be defined
as:

belief(xi) = p(xi|e1:t, c1:t). (1)
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As described in [17], [29], the belief can be computed with
the following practical formulation:

belief(xi) = η · p(ei|xi) ·
∑
xi−1

p(xi|xi−1, ci) · belief(xi−1),

(2)
where η is a normalization constant.

VI. EXPERIMENTAL EVALUATION

This Section illustrates how the simulation tool can be used
to assess the performance of PoI detection algorithms in a
Smart Campus.

A. Simulation Parameters

Through the proposed tool, we simulated the traces of 100
users, in a University Campus which measures approxima-
tively 350’000 m2, during an academic year. The topography
of such Campus is shown in Fig. 5. The spatial distribution of
PoIs, whose centroids are represented by means of different
colors, shows the presence of some hubs with multiple near
PoIs closed in the same building: these are the zones with
the highest error rate. The campus area contains 54 Points
of Interest, belonging to 8 different labels. Traces have been
generated by using a sampling rate of 5 minutes, and by
considering several user behavioral models.

During the simulation, the GPS signal is considered absent
when a user moves inside buildings.

The generation of such dataset took 3 minutes on average,
by running the simulator on a PC with a Intel i5-3470 with
clock rate equal to 3.2GHz, equipped with a 8GB-sized RAM.
Since our simulator neglects micro-mobility features, i.e.,
collision and congestion avoidance, there is no correlation
between the trajectories of different users. Therefore, the

TABLE I
COMPARISON OF ACCURACY OF STOP POINT EXTRACTION ALGORITHM

Methods Accuracy

[22] 0.57

[23] 0.78

CAPD - blind 0.82

performances of our tool could highly benefit from distributed
or parallel simulations.

Such dataset has been exploited to compare the performance
the PoI detection algorithms considered as case study and
described in Section V. For these three algorithms, the Stop
Points extraction has been performed by setting the time
threshold δt to 9 minutes, and the spatial threshold δd to 45
meters.

B. Performance Metrics

The accuracy of PoI Detection algorithms can be evaluated
by comparing the ground truth with the sequence of inferred
PoIs, through the Damerau-Levenshtein distance [30]. Let
Φ(·, ·) be the Damerau-Levenshtein distance function between
two strings, PoIG be the ground-truth sequence of PoIs for
a specific user, PoID be the sequence of inferred PoIs, and
# {·} be the function which gives the numbers of elements in a
sequence, then the average accuracy for each user is computed
as:

accuracy =
∑

trajectories

1− Φ(PoIG,PoID)

max(# {PoIG} ,# {PoID})
. (3)

The division by the maximum value between the length of
the real itinerary and the detected one aims to penalize strings
with different lenghts, e.g., in the case of an excess of extracted
Stop Points.

C. Experimental Results

The first experiment aims to compare the performance of
the three Stop Points extraction methods described in Section
V-A.

In order to evaluate such methods we adopt the same
simple approach to associate a PoI to the inferred Stop Point.
In particular, we adopt the nearest neighbor method, which
selects the nearest PoI to the Stop Point’s centroid. The
best performance is obtained by the CAPD algorithm, which
exhibits an accuracy of 0.82%, thus increasing the accuracy
of method described in [22] by 25% and of method described
in [23] by 4%. Such results are summarized in table I.

The second experiment aims to compare the performance
of the blind nearest neighbor assignment method with the
probabilistic approach adopted by the CAPD algorithm. The
main goal of such experiment is the evaluation of relevance of
different contextual information. The training and validation
of the DBN adopted by the CAPD algorithm have been
performed by a 6-fold cross validation on the whole data set.
Table II shows results of such comparison, and proves that the
probabilistic inference, by means of different set of context
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TABLE II
COMPARISON OF ACCURACY, UNCERTAINTY AND EXECUTION TIME FOR
CONTEXT-AWARE POI DETECTION (CAPD) WITH DIFFERENT SUBSETS

OF FEATURES

AT ST DF PVP DW Accuracy Uncertainty Time

- - - - - 0.818 0 0.537×
3 7 7 7 7 0.871 0.113 0.819×
7 3 7 7 7 0.891 0.060 0.818×
7 7 3 7 7 0.864 0.146 0.880×
7 7 7 3 7 0.865 0.123 0.846×
7 7 7 7 3 0.891 0.123 0.815×
3 3 7 7 7 0.893 0.061 0.837×
3 7 3 7 7 0.873 0.158 0.893×
3 7 7 3 7 0.879 0.123 0.872×
3 7 7 7 3 0.872 0.129 0.847×
7 3 3 7 7 0.889 0.069 0.892×
7 3 7 3 7 0.895 0.060 0.864×
7 3 7 7 3 0.900 0.047 0.832×
7 7 3 3 7 0.856 0.162 0.916×
7 7 3 7 3 0.854 0.168 0.889×
7 7 7 3 3 0.852 0.133 0.872×
3 3 3 7 7 0.895 0.072 0.911×
3 3 7 3 7 0.900 0.062 0.897×
3 3 7 7 3 0.901 0.068 0.868×
3 7 3 3 7 0.801 0.173 0.940×
3 7 3 7 3 0.773 0.197 0.920×
3 7 7 3 3 0.803 0.151 0.906×
7 3 3 3 7 0.893 0.068 0.931×
7 3 3 7 3 0.899 0.065 0.905×
7 3 7 3 3 0.902 0.058 0.896×
7 7 3 3 3 0.713 0.187 0.940×
3 3 3 3 7 0.905 0.077 0.963×
3 3 3 7 3 0.901 0.080 0.942×
3 3 7 3 3 0.903 0.068 0.933×
3 7 3 3 3 0.696 0.160 0.981×
7 3 3 3 3 0.898 0.082 0.965×
3 3 3 3 3 0.883 0.088 1.000×

features, can be useful to identify visited PoIs. The features
considered for this experiments are: the Arrival Time (AT) of
the user at the stop point, the Stop Time duration (ST), the
Daily Frequency (DF) of visits of a particular semantic class,
the sequence of Past Visited Places (PVP), and the Day of the
Week (DW). In order to compute DF and NG features, we have
to make an approximation of the real itinerary by considering
the most probable waypoint as the actually visited one.

As results show, a good trade-off is achieved by considering
the day of the week (DW) and the duration of the stop
(ST), obtaining a 8% accuracy increase with respect to the
blind approach, and achieving also the minimum value for
uncertainty. Such results suggest that, even with a simplified
model of user behavior (a first-order Markov model against
the fifth-order Markov chain of the simulated model), few
context information allow to obtain a great increase in system
accuracy.

VII. CONCLUSIONS AND FUTURE WORK

This paper described a simulation tool which aims to
generate mobility traces of users in Smart Environments, and
in particular in Smart Campuses. The models adopted by the
proposed simulator reflect the regular and intentional nature
of human mobility. Output datasets can be used as testbed for
the evaluation of location-aware recommendation systems for
a Smart Campus.

The suitability of the proposed simulation tool have been
proved by using the obtained dataset to compare some algo-

rithms presented in the literature with a novel context-aware
PoI detection algorithm.

As future work, we will address the simulation of other
pervasive sensors which can be used to refine the detection of
activities performed by users [31], [32].

Moreover, we plan to engage users in labeling PoIs’ classes,
through a participatory sensing approach that relies on tech-
niques of reputation management [33] to discard information
provided by malicious users who intentionally send incorrect
data to create a disservice.
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