
NDS LAB - Networking and Distributed Systems

http://www.diid.unipa.it/~networks/ndslab/

Smart Auctions for Autonomic Ambient Intelligence
Systems

A. Bordonaro, A. De Paola, G. Lo Re, M. Morana

In Proceedings of IEEE International Conference on Smart Computing
(SMARTCOMP), Bologna, Emilia-Romagna, Italy, 2020, pp. 180-187

Article

Accepted version

Smart Auctions for Autonomic
Ambient Intelligence Systems

Antonio Bordonaro, Alessandra De Paola, Giuseppe Lo Re, Marco Morana
Department of Engineering, University of Palermo, Italy

Email: antonio.bordonaro@unipa.it, alessandra.depaola@unipa.it, giuseppe.lore@unipa.it, marco.morana@unipa.it

Abstract—The main goal of Ambient Intelligence (AmI) is
to support users in their daily activities by satisfying and
anticipating their needs. To achieve such goal, AmI systems
rely on physical infrastructures made of heterogenous sensing
devices which interact in order to exchange information and
perform monitoring tasks. In such a scenario, a full achievement
of AmI vision would also require the capability of the system to
autonomously check the status of the infrastructure and supervise
its maintenance. To this aim, in this paper, we extend some
previous works in order to allow the self-management of AmI de-
vices enabling them to directly interact with maintenance service
providers. In particular, the combination of smart contracts and
blockchains enables AmI systems to autonomously communicate
with untrusted entities and complete secure transactions without
the brokering of a trusted third party. The proposed approach
has been validated in the sample case of an AmI application
responsible for managing requests from faulty devices in a Smart
home.

I. INTRODUCTION

One of the main requirements of Ambient Intelligence
(AmI) [1] is to support users in their daily activities, while
guaranteeing a low level of intrusiveness, and minimizing the
need for manual intervention in management tasks [2], [3]. The
achievement of these goals would requires the AmI system to
include also sophisticated mechanisms for self diagnosis and
maintenance.

The sensing and actuating devices of an AmI systems, as
well as the appliances of a smart home, for instance, may
exhibit some faults that (i) need to be detected and (ii) fixed by
a technical intervention. Whereas the automatic management
of such a situation can be easily performed inside a trusted
realm, transactions that involve external entities pose several
challenges because of the presence of untrusted entities.

In particular, current AmI systems are not able to automat-
ically negotiate with untrusted third parties the execution of
specific tasks, such as service providing or money transfer [4]–
[6].

In this paper, we address such a challenge by creating and
managing smart auctions through smart contracts and block-
chain technology. The solution we propose allows the AmI
system both to place public requests for devices maintenance
and select the most convenient offer, according to a certain
evaluation policy.

A Smart Contract (SC) [7], [8] is a program deployed
over a distributed ledger, that enables unknown parties to
automatically agree on the transfer of digital assets under given

conditions. In the scenario addressed here, the adoption of SCs
guarantees that the agreement between service provider and
consumer is honored. Several blockchain technologies have
been proposed in order to enable the creation of a secure
distributed ledger and to support the creation of SCs [9],
[10]. Among them, Ethereum is one of the most used, due
to the availability of a Turing-complete language which al-
lows for the creation of complex customized contracts [11].
Furthermore, such a specific feature of Ethereum enables the
development of SCs whose automatic execution is conditioned
by the fulfillment of some trigger conditions.

Smart auctions implemented through Ethereum SCs allow
the participation of unknown and untrusted entities, while
guaranteeing a high level of security and also binding the
parties to the agreed terms. Moreover, differently from other
distributed paradigms, such as Service Oriented Architectures,
this solution does not require the involvement of a third-party
centralized and trusted entity. For this reason, SCs have been
successfully adopted in many fields, such as legal processes,
crowdfunding agreements and financial derivatives [12].

According to the proposed approach, the AmI system is
able to react to events reported by the physical infrastructure,
and to interact with external service providers responsible for
its maintenance. More specifically, when a faulty device is
detected, a self-reasoning mechanism is started in order to
evaluate the severity of the fault and its consequences for
the whole system functioning. Then, through a probabilistic
approach, the AmI system plans the best recovery strategy;
if an external maintenance intervention is required, a smart
auction is started by creating a SC aimed to select the best
bid among different providers.

The remainder of this paper is organized as follows. Sec-
tion II reviews the literature about process automation in smart
homes, and the adoption of blockchains and smart contracts in
other application fields. Section III provides a brief description
of the blockchain technology, and shows how smart contracts
allow to enable automated and secure interactions between
autonomous systems. Section IV describes the architecture of
the proposed system and its main features. Section V details
the features of the proposed smart auction. Finally, Section VI
draws our conclusions and proposes directions for future work.

D
R
A
FT

1

II. RELATED WORK

A blockchain is a distributed data structure shared among
entities/nodes of a distributed system, which guarantees the
integrity of stored data. Originally introduced to solve the
double-spending problem for the Bitcoin cryptocurrency [10],
blockchains enable decentralized and secure management of
transactions [13].

In traditional distributed systems, this task requires the
brokering of a trusted entity, whose presence implies some
transaction fees and poses a variety of security issues due
to the presence of a single point of failure. On the contrary,
secure transactions validation between untrusted participants
is achieved by blockchains without the involvement of a third
trusted entity. Moreover, blockchains ensure the pseudonymity
of users, by identifying them by an address that has no rela-
tionship with their real identity, and guarantee the persistency
of the data, i.e., when a transaction is successfully validated
and added to the blockchain, it becomes immutable and can
not be modified or removed.

Different types of blockchain have been proposed and
developed and today they can be classified into public, private,
and consortium blockchains. The main difference between
them is the level of access granted to participants. Public
blockchains (e.g. Bitcoin, Ethereum) are fully open and anyone
is free to join them, execute new transactions or validate
existing ones. In this scenario, users are incentivized to freely
contribute to the maintenance of the infrastructure through
reward mechanisms. A public blockchain is also defined
permissionless, since every node can perform transactions,
read the blockchain, and participate to the consensus algorithm
without performing any preliminary authentication phase.

On the contrary, private and consortium blockchains are
defined permissioned since only a group of selected nodes
can contribute to the consensus algorithm. In particular, private
blockchains allow users belonging to the same organization to
access the blockchain through an authenticated and verified
invitation. In this case, the organization that maintains the
network infrastructure has complete control of the blockchain
and can arbitrarily add, modify or delete data. Consortium
blockchains have a similar setting, but they involve a con-
sortium of different organizations; thus, the blockchain can
be considered partially distributed among them. Access to
permissioned blockchains is allowed after an authentication
phase; each user is enabled to perform only specific activities
and the infrastructure owner has complete control over the
operations performed by each user. In this case, pseudonymity
of users and decentralization are not guaranteed and a trusted
entity, or a consortium of trusted entities, is required.

Permissioned blockchains can process much higher trans-
actions per second (TPS) than public ones, since the small
number of authorized entities results in significantly lower
time to acquire distributed consensus. Nevertheless, they do
not exhibit the main advantages of their public alternative,
i.e., a decentralized architecture and the pseudonymity of
users. Thus, they can be just seen as secure distributed

databases which rely on a centralized trusted authority. As
a consequence, public blockchains are usually preferable and
are particularly suitable for many application scenarios, such
as Ambient Intelligence.

Besides allowing decentralized transactions of cryptocurren-
cies, blockchains are the enabling technology to support the
creation of smart contracts, i.e., distributed software that is au-
tomatically executed under certain conditions. Smart contracts
were firstly defined in [8] as machine-readable transaction
protocols which create a contract with predetermined terms.
This technology allows two untrusted parties to make an
agreement without the need for a trusted third party. Moreover,
once the contract has been validated, it can not be modified
or removed, that is it can not be retreated.

Blockchain technology and smart contracts have been re-
cently applied to many fields, such as healthcare, finance, and
e-government, in order to provide interaction security, user
anonymity and data integrity, through a fully distributed ap-
proach. The authors of [14], for instance propose the adoption
of smart contracts to develop a fully decentralized electronic
voting system. Authors state that their system allows to
maximize users privacy, also avoiding the necessity of a trusted
authority that coordinates the voting process and computes
election results. The authors of [15] propose a distributed
system based on the Ethereum blockchain which aims to
validate experimental evaluations of new healthcare solutions,
by guaranteeing soundness and integrity of obtained results.
In [16], a business model for trading electricity through smart
contracts is proposed. Such a model is particularly relevant
since it allows the distribution of resources in a competitive
domain in which sales price transparency and the need for
trust between prosumers are required.

Conversely, blockchains and smart contracts have not been
yet fully exploited in Internet of Things and Ambient In-
telligence scenarios. Only few works, indeed, propose the
adoption of such technologies to guarantee secure interactions
among IoT devices and AmI systems [17], [18]. Recently, the
authors of [19] proposed a completely decentralized system
for secure communication among IoT devices, by defining
secure virtual zones (bubbles of trust). Communications are
considered secure only if they occur between devices in the
same zone. Thus, a bubble of trust is a group of devices that
can trust each other. Bubbles of trust are obtained by exploiting
smart contracts in order to write secure code to be executed by
IoT devices, while blockchain transactions allow to perform
secure exchanges of information.

III. BLOCKCHAINS AND SMART CONTRACTS

From a technical point of view, a blockchain can be seen as
a sequence of linked blocks, each containing a content, i.e., a
list of transactions and some metadata, and a reference to the
predecessor, as identified by its hash value. Each node in the
blockchain network is characterized by a pair of public/private
keys that are required to sign each transaction started by the
key owner and verify the authenticity of the signed transactions
respectively. The validation process, which allows to add new

D
R
A
FT

1

USER
INTERFACE

DEVICE MANAGER

Perception Subsystem

Planning Subsystem
notify decision

queries

Devices

SC HANDLER

SC Creator

SOLC CompilerSmart
ContractEthereum Client

Ethereum
Network

SC deploy

auction request

SC templates

Devices
Ontology

Auction Manager
SC calls

device status

feedbackauthorization

status info req

queries

Figure 1: System Architecture. The Device Manager provides the smart home with the core AmI functionalities; the
SmartContract (SC) Handler is responsible for evaluating the requests coming from the planner and managing all the phases
of the smart auctions.

blocks to the blockchain, is performed by special nodes, named
miners, after solving a specific mathematical problem. In the
case of bitcoin, for instance, such a challenge is named proof of
work (PoW) and is a way to implement distributed consensus.

Several blockchain technologies have been proposed to
support smart contracts development. Among them, Ethereum
[9] is an account-based blockchain platform that is widely used
since it enables the creation of complex smart contracts.

Ethereum smart contracts are not considered as something
to be fulfilled but rather as autonomous entities, always in
execution, living in the Ethereum network. When a contract
account receives a message, its code is activated, allowing it to
access its internal memory, to send other messages, to perform
transactions, or to create new contracts.

The contract code in Ethereum is written in a low-level,
stack-based bytecode language, referred to as Ethereum virtual
machine code or EVM code. The most common approach to
write smart contracts is to adopt an high-level language (e.g.
Solidity) and then compile smart contracts into EVM code.
The deployment of a smart contract is performed through a
transaction in which the data field contains EVM code of the
smart contract. After the deployment, the smart contract is
univocally identified in the Ethereum network by its address,
and other network nodes can interact with it by calling its
methods, which are available through its ABI (Application
Binary Interface).

IV. SYSTEM ARCHITECTURE

In AmI systems, many networked devices, pervasively de-
ployed in the environment, interact in order to gather infor-
mation and perform complex tasks [20], [21]. IP cameras,
indoor and outdoor environmental sensors, thermostats, HVAC
systems, lighting systems, household appliances, electrical

sockets, and intelligent security systems are just a few ex-
amples of devices used in such contexts. Data coming from
the physical infrastructure are exploited by AmI systems to
define actions aimed to satisfy and anticipate the users’ needs.
In order to achieve such goal, however, it is necessary that
AmI systems be able to autonomously check the status of the
devices and supervise their maintenance. Taking inspiration
from the Autonomic Computing paradigm [22], we propose a
novel approach to allow an AmI system to self-manage its
own physical infrastructure by means of ad-hoc smart auctions.

The core components of our architecture are shown in
Fig. 1. The user can interact with the AmI system through
a user interface which allows to perform some common
tasks, such as monitoring the status of the devices or sending
commands to them. Devices are controlled by the device
manager, which includes the AI algorithms at the core of
the AmI system and consists of three different components,
namely the ontology of the devices, the perception and the
planning subsystems.

The ontology allows the AmI system to own an explicit
model of itself, of the surrounding environment, and of
the different ways it can interact with users. In particular,
ontologies make it easy to represent such knowledge in an
efficient and machine-computable way, by formally defining
the relationships among set of terms belonging to a specific
domain. The ontology we adopted provides a representation of
the structural organization of devices, as extensively described
in [23], [24]. It also describes how data flows within the
system, highlighting the relationships between devices and the
monitored (or controlled) environmental properties. Further-
more, it models the task concept, i.e., each action that the
AmI system can execute.

Tasks are implicitly associated with the devices involved

D
R
A
FT

1

D1

D2

D4 D3

D5 D6

T1

Figure 2: Example of device dependencies graph for a given
task.

in their execution; thus, dependency graphs such the one
shown in Fig. 2 can be built. Each task tj can be also
characterized by a relevance value wt(Tj) ∈ [0, 1], that
weights the importance of the task as rated by the administrator
of the AmI system. Higher scores, for instance, are assigned
to tasks that implement critical functionality (e.g. surveillance
system), while lower values are given to secondary functions
(e.g. lighting management).

Information modeled by the ontology is exploited by the
perception subsystem, whose aim is to process data provided
by physical devices and represent them at a higher level of
abstraction in order to describe both the status of the envi-
ronment and of the system itself. The perception subsystem
plays a crucial role in implementing the monitor-analyze-
plan-execute cycle at the basis of the autonomic behavior of
our system. It adopts a rule-based approach to analyze the
state of the physical infrastructure according to a parameter
set, including, for instance, the degree of accuracy of the
monitored information, the state of the devices, the relevance
and redundancy of devices, their energy consumption, and the
residual lifetime of the battery-powered devices.

Each device Di involved in the execution of a task Tj is
associated with an impact value I(Di, Tj) ∈ [0, 1], that rep-
resents the contribution of Di to the achievement of Tj . This
value strictly depends on the redundancy of the dependency
graph of the task Tj . In particular, if Nj is the number of
parallel paths in the dependency graph of Tj , and N i

j is the
number of these paths that includes Di, the impact value can
be calculated as follows:

I(Di, Tj) =
N i

j

Nj
. (1)

For example, the dependency graph in Fig. 2 shows the
existence of three distinct paths to achieve the task T1, then
we can compute N1 = 3. The device D2 is part of one of these
paths, and its impact value is I(D2, T1) = 1/3. That means
that the fault of D2 is not critical, since there are two other
ways to complete the task. On the contrary, the device D1 is
highly critical, since it is involved in all the possible paths to
achieve T1; consequently, D1 is marked with the maximum
impact value, i.e., I(D1, T1) = 1.

According to the relevance wt(Tj) of each task j, and to
the impact I(Di, Tj) of a given device i on that task, the

perception subsystem evaluates the overall relevance of each
device to the functioning of the whole AmI system as:

wd(Di) = max
Tj

{I(Ti, Tj) · wt(Tj)}. (2)

Such a knowledge is used in a self-reasoning mechanism
in order to detect critical faults. To this aim, we adopted a
rule-based inference engine based on Jess (Java Expert System
Shell) [25], which allows to express logical rules with a LISP-
like syntax, and uses a pattern-matching algorithm to query
the knowledge base. Each fact of the knowledge base is a true
proposition about the state of the system, and according to the
following specific templates:

• static knowledge templates, used for information gathered
during the setup of the system and expressed through
the ontology, such as the relevance of the tasks, the
impact value of each device on each task, and the overall
relevance of each device;

• dynamic knowledge templates, used for information that
is continuously updated at runtime, e.g., that received
from the devices;

• alert templates, used for information sent to the planning
subsystem in order to trigger the planning of a possible
maintenance intervention.

Rules used by the perception subsystem follow a “if
<conditions> then <action>” form; thus, a rule is activated
only if all its conditions are satisfied. Rules are evaluated once
for a given set of facts, and their evaluation is repeated only
after the addition of new facts to the knowledge base. Through
these rules, static and dynamic knowledge are exploited by
the perception subsystem to infer the state of physical devices.
This is represented through a property named device-condition,
whose values correspond to specific levels of alert. A stress
condition, for instance, causes a critical alert that must be
promptly addressed by the planner subsystem, an attentive
condition corresponds to a medium alert that can be fixed by a
non-urgent intervention, while a normal condition represents
the best scenario in which no intervention is required. The
adopted rules trigger the transition between the possible states
of the device-condition property. It is worth noting that dif-
ferent finite-state automata model the evolution of the device-
condition property for different classes of devices.

Battery-powered devices, for instance, have to be monitored
with respect to their residual amount of energy. Then, a stress
condition could occur when a low battery value is registered
for a device with a high relevance, i.e., a device that is crucial
to at least one critical task. Conversely, if the relevance of
the device is low, its battery depletion would just lead to
an attentive condition. In order to trigger these alerts, the
following rules are adopted:

defrule setStressCondition-BatteryPoweredDevices:
if (energy-level(Di) is “low”) and (wd(Di) is “high”) then

device-condition(Di) ← “stress”

defrule setAttentiveCondition-BatteryPoweredDevices:
if (energy-level(Di) is “low”) and (wd(Di) is “low”) then

D
R
A
FT

1

Device-condition(Di) at t Action(a, p)

Utility

Device-condition(Di) at t+1

Figure 3: The planning subsystem influence diagram.

device-condition(Di) ← “attentive”

Besides conditions related to the energy level, the perception
system has to manage alarms triggered by other device-specific
faults. To this aim, the ontology contains the definition of all
the alarm signals a device could send, each associated with a
criticality degree provided by the producer. This type of alarms
are triggered through rules like the following:

defrule setStressCondition-PoweredDevices:
if (∃ fault signal fi triggered by device Di) and
(criticalness(fi, Di) is “high’) and (wd(Di) is “high”) then

device-condition(Di) ← “stress”

defrule setAttentiveCondition-PoweredDevices:
if (∃ fault signal fi triggered by device Di) and
(criticalness(fi, Di) is “low’) and (wd(Di) is “high”) then

device-condition(Di) ← “attentive”

The knowledge inferred by the perception subsystem is then
managed by the planning subsystem, which is responsible for
selecting the appropriate actions to be taken in order to bring
the system back to a normal condition. The planner evaluates
if a triggered alarm can be tackled through a simple human
intervention or if it requires an external maintenance service.
In the former case, the planning subsystem notifies the AmI
system’s administrator providing the details of the request and
suggestions on how to deal with it. Otherwise, the planner
forwards the request to the smart contract handler, which will
instantiate an appropriate smart contract in order to request
third-party assistance.

The selection of the action to be taken mainly depends on
two factors: guidelines provided by the producer of the device,
and history of past interventions. Since the effectiveness of a
specific action, given a device condition, is characterized by
a non-negligible level of uncertainty, we chose to design the
planner inference core according to a probabilistic approach.
In particular, the planning subsystem is based on an influence
diagram [26], a generalization of a Bayesian network, capable
of supporting probabilistic decision-making.

According to the influence diagram structure shown in
Fig. 3, the probability of a change of the device-condition
property for a device Di, given the current state and the

possible action a performed by the potential external/internal
provider p, is given by:

p(device-condition(Di, t+ 1) |
device-condition(Di, t), action(a, p)). (3)

The conditional probability distribution of the state transition
model is initialized by considering the suggestions of the
device producer, and is updated after each maintenance in-
tervention. This continuous training process allows to include
in our planning model the experience derived from past
interaction with service providers, thus implicitly rewarding
reliables providers associated with a high rate of successful
interventions. The utility node gives a score to each state
transition, considering not only such past experience, but
also the overall reputation of potential external providers,
gathered through a distributed reputation management system
that involve a collaborative network of AmI systems [27], [28].

By exploiting the state transition model and the utility
function, the influence diagram allows the planning subsystem
to select the best action to perform in order to maximize the
expected utility value.

When the selected action requires the intervention of an
external provider, the planning subsystem triggers the smart
contract handler sending it a list of potential providers, ob-
tained by considering only those with a reputation higher than
a threshold chosen by the administrator of the AmI system.

The smart contract handler is the only system compo-
nent that can directly interact with the Ethereum network;
it compiles the smart contracts through SOLC (Solidity
command-line compiler), producing a bytecode executable
by the Ethereum Virtual Machine, and the ABI (Application
Binary Interface) public interface. Finally, the smart contract
is deployed in the Ethereum network by means of the GETH
client [29], developed by Ethereum Foundation developers in
the Go programming language, which also provides support
for a full integration in mobile applications. After the de-
ployment, the system publishes the address and the ABI of
the smart contract in a public repository, known to service
providers, so that they can participate in the smart auction.

V. SMART AUCTIONS

As mentioned in the previous sections, the maintenance
interventions are managed by the autonomic AmI system
through smart auctions; such an approach guarantees that
transactions are executed in a secure way and also that the
agreement negotiated between the two parties will be honored.

The procedure followed to manage a smart auction is
summarized in Fig. 4. When a fault occurs, the involved
device sends a signal to the smart home; here, the perception
subsystem analyzes the severity of the current state and deter-
mines whether to trigger a smart auction through the planning
subsystem. Each auction remains valid for a given period,
during which service providers can submit their bids. When
the auction ends, the smart contract automatically selects the
best bid and informs the AmI system, which in turn requires
the authorization of the AmI system administrator. Once the

D
R
A
FT

1

User Physical
Device AmI System Ethereum

Network
Service
providers

Failure notification

Starting auction

Bids
Auction
duration

Stopping auction

Notify winner

Notify winner

Confirm winner
and pay

Confirm winner and
unlock payment

Receive
payment

Perform maintenance
intervention

Figure 4: Flow diagram of the smart auction.

provider has been confirmed, the smart contract code notifies
the winner and unlocks the conditional payment. Only after
the maintenance intervention has been completed, the payment
is done.

Auctions are managed through a set of smart contract
templates that can be customized to deal with different kind
of events.

Service providers can submit an offer by invoking the bid()
function. As shown in Fig. 5, bids can be submitted only
during the auction life-time (line 3), and only by authorized
service providers (line 6), that are identified by the planning
subsystem according to their distributed reputation. Moreover,
the smart auction guarantees that providers can submit a single
bid per auction (line 9). Implicitly, due to the lack of functions
that enable providers to modify or read the bid list, they can
not retract bids already placed, and are not able to know the
bids submitted by others.

Each Ethereum transaction performed to submit a bid in-
volves a small fee (less than $0.10 in average during the last
six months), that is paid by the service provider. Nevertheless,
this cost can be recovered as commission for the service in-
tervention and it is necessary to discourage fraudulent service
providers from participating in the auction.

When the auction ends, the SC handler declares the con-
clusion by invoking the smart contract auctionEnd() function
(see Fig. 6). This function can be called only by the SC
handler, which is the owner of the SC (line 5), and is aimed
to trigger the identification of the best bid by means of the
winnerIdentification() function (line 17).

Identifying the winner (see Fig. 7) is a critical task that must
consider several issues in order to guarantee the resistance of
the smart auction to security attacks performed by malicious
providers. The first, for instance, is that the smart auction has
to include also a minimum threshold for bids, below which
they are ignored (line 12). This constraint, tunable by the AmI

1 function bid(uint amount) public {
2 // Is the auction is done?
3 require(!ended);
4
5 // Is the user blacklisted?
6 require(authorizedProvider(msg.sender));
7
8 // Has the user previously placed a bid
9 require(!hasBid(msg.sender));

10
11 // Update bidders list
12 bidderUsers[bidderUsersCount] = msg.sender;
13 bidderUsersCount = bidderUsersCount + 1;
14
15 // Store the bid
16 bids[msg.sender] = amount;
17 }

Figure 5: SC function to place a bid for the smart auction.

1 function auctionEnd() public {
2
3 /* Only the beneficiary of the repair
4 service can interrupt the auction */
5 require(msg.sender == owner);
6
7 // Auction not yet ended
8 require(now >= auctionExpirationTime);
9

10 // auctionEnd has already been called
11 require(!ended);
12
13 // Set variabile flag a true
14 ended = true;
15
16 // Establish the best bid
17 winnerIdentification();
18 }

Figure 6: SC function to end the auction and notify the owner
of the best bid.

system administrator, allows both to discard zero bids which
would invalidate the auction, and to neglect bids for which the
quality of service may be not adequate.

In the implementation discussed here, the best bid is that
associated with the lowest price (lines 11-22), and it is
considered valid only if it does not exceed the maximum
threshold set by the AmI system administrator (line 25). It
is worth noting that such policy may be simply modified by
adopting different criteria, for example by performing a multi-
objective optimization that takes into account also the provider
reputation.

Finally, if the selected proposal is accepted by the user,
the payment process is activated by transferring the required
amount of ETHs to the smart contract, which has to be at least
equal to the maximum threshold applied to bids. However,
the reward remains bound into the smart contract account
until the conclusion of the maintenance intervention. Then
the AmI system interacts with the smart contract notifying
the correct conclusion of the requested service by means of
the unlockPayment() function, as shown in Fig. 8. Even this

D
R
A
FT

1

1 function winnerIdentification() private returns (
bool) {

2 bool foundBid = false;
3
4 // Check if there’s at least one bid
5 if(bidderUsersCount == 0){
6 return false;
7 }
8
9 /* Search the lowest bid above the

10 minimum threshold */
11 for (uint i = 0; i < bidderUsersCount; i++) {
12 if(bids[bidderUsers[i]] >= minThreshold){
13 if(foundBid && bids[bidderUsers[i]] <

bestBid){
14 bestBid = bids[bidderUsers[i]];
15 bestBidder = bidderUsers[i];
16 } else if (!foundBid){
17 bestBid = bids[bidderUsers[i]];
18 bestBidder = bidderUsers[i];
19 foundBid = true;
20 }
21 }
22 }
23
24 // Is the bid below the maximum threshold?
25 if(foundBid && bestBid <= maxThreshold){
26 // We have a winner!
27 hasWinner = true;
28 return true;
29 }
30 return false;
31 }

Figure 7: SC function to identify the winner of the auction.

function can be invoked only by the AmI system, which is
the owner of the SC (line 5). The unlockPayment() triggers
an effective ETH transaction (line 15) only when the auction
yields a legitimate winner (line 8). Since, it is possible that
the best bid requires a payment lower than the current ETH
balance, at the end of the transaction, the residual amount of
ETHs is transferred again back to the AmI system account
(line 19).

VI. CONCLUSIONS AND FUTURE WORK

In order to achieve a fully autonomic behavior, modern AmI
systems should be able to negotiate services with unknown en-
tities without the brokering of trusted third parties. A relevant
scenario in which this requirement is particularly worthy of
attention is the system self-maintenance.

In this paper we showed as smart contracts and blockchains
can be exploited to create smart auctions through the Ethereum
network. According to the proposed architecture, the AmI
system is able to maintain an explicit model of itself that
can be used to detect faulty devices, and to plan the actions
to perform in order to get the system functioning again.
These tasks are accomplished by two components, namely the
perception and planning subsystems, that are based on a rule-
based inference engine and a probabilistic decision-making
model respectively.

Then, a subsystem responsible for creating and managing
the smart contracts has been presented. The smart contract

1 function unlockPayment() public {
2
3 /* Only the beneficiary of the repair
4 service can unlock the payment */
5 require(msg.sender == owner);
6
7 // Has the winner been selected?
8 require(hasWinner);
9

10 /* Check if the contract balance is
11 greater than the amount to be paid */
12 require(address(this).balance >= bestBid);
13
14 // Payment execution
15 bestBidder.transfer(bestBid);
16
17 /* Return of any remaining money in
18 the contract account */
19 owner.transfer(address(this).balance);
20 }

Figure 8: SC function to transfer payment to the winner of the
auction.

handler directly interacts with the Ethereum network and
invokes all the functions of the smart contract that allow to
manage the auction, identify the winner, and complete the
payment.

The case study addressing the self-management of faulty
smart home devices showed the feasibility of the proposed
solution. Then, we aim to investigate how our architecture
can be extended to support automatic interactions between
AmI systems and other external service providers, e.g., energy
providers and prosumers operating in a smart-grid. In such a
context, a greater number of complex constraints should be
considered in the smart contract, and this will be subject of
future work.

REFERENCES

[1] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient Intelligence:
technologies, applications, and opportunities,” Pervasive and Mobile
Computing, vol. 5, no. 4, pp. 277–298, 2009.

[2] E. Aarts and B. De Ruyter, “New research perspectives on Ambient
Intelligence,” Journal of Ambient Intelligence and Smart Environments,
vol. 1, no. 1, pp. 5–14, 2009.

[3] A. De Paola, G. Lo Re, M. Morana, and M. Ortolani, “Smartbuildings:
an AmI system for energy efficiency,” in 2015 Sustainable Internet and
ICT for Sustainability (SustainIT). IEEE, 2015, pp. 1–7.

[4] D. I. Tapia, J. A. Fraile, S. Rodríguez, R. S. Alonso, and J. M. Corchado,
“Integrating hardware agents into an enhanced multi-agent architecture
for Ambient Intelligence systems,” Information Sciences, vol. 222, pp.
47–65, 2013.

[5] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
Things: vision, applications and research challenges,” Ad hoc networks,
vol. 10, no. 7, pp. 1497–1516, 2012.

[6] A. De Paola, P. Ferraro, G. Lo Re, M. Morana, and M. Ortolani, “A fog-
based hybrid intelligent system for energy saving in smart buildings,”
Journal of Ambient Intelligence and Humanized Computing, pp. 1–15,
2019.

[7] M. Bartoletti and L. Pompianu, “An empirical analysis of smart con-
tracts: platforms, applications, and design patterns,” in Proc. of the
International Conference on Financial Cryptography and Data Security.
Springer, 2017, pp. 494–509.

[8] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

D
R
A
FT

1

[9] V. Buterin, “Ethereum: A next-generation smart contract and decen-
tralized application platform, 2013,” http://ethereum.org/ethereum.html,
2017.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
https://nakamotoinstitute.org/bitcoin, 2008.

[11] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[12] M. Iansiti and K. R. Lakhani, “The truth about blockchain,” Harvard
Business Review, vol. 95, no. 1, pp. 118–127, 2017.

[13] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: architecture, consensus, and future trends,” in
Proc. of the 2017 IEEE International Congress on Big Data (BigData
Congress). IEEE, 2017, pp. 557–564.

[14] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for board-
room voting with maximum voter privacy,” in Proc. of the International
Conference on Financial Cryptography and Data Security, 2017, pp.
357–375.

[15] T. Nugent, D. Upton, and M. Cimpoesu, “Improving data transparency in
clinical trials using blockchain smart contracts,” F1000Research, vol. 5,
pp. 2541–2541, 2016.

[16] A. Hahn, R. Singh, C. Liu, and S. Chen, “Smart contract-based campus
demonstration of decentralized transactive energy auctions,” in Proc.
of the 2017 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), 2017, pp. 1–5.

[17] S. Huh, S. Cho, and S. Kim, “Managing IoT devices using blockchain
platform,” in 2017 19th international conference on advanced commu-
nication technology (ICACT). IEEE, 2017, pp. 464–467.

[18] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
IoT security and privacy: The case study of a smart home,” in Proc.
of the 2017 IEEE international conference on pervasive computing and
communications workshops (PerCom workshops). IEEE, 2017, pp. 618–
623.

[19] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of
Trust: A decentralized blockchain-based authentication system for IoT,”
Computers & Security, vol. 78, pp. 126 – 142, 2018.

[20] S. Gaglio and G. Lo Re, Advances onto the Internet of Things. Springer,
2014, vol. 349.

[21] A. De Paola, S. Gaglio, G. Lo Re, and M. Ortolani, “Sensor9k: A testbed
for designing and experimenting with WSN-based Ambient Intelligence
applications,” Pervasive and Mobile Computing, vol. 8, no. 3, pp. 448–
466, 2012.

[22] M. Parashar and S. Hariri, Autonomic computing: concepts, infrastruc-
ture, and applications. CRC press, 2018.

[23] A. De Paola, “An ontology-based autonomic system for Ambient Intel-
ligence scenarios,” in Advances onto the Internet of Things. Springer,
2014, pp. 1–17.

[24] A. De Paola, P. Ferraro, S. Gaglio, and G. Lo Re, “Autonomic behaviors
in an Ambient Intelligence system,” in 2014 IEEE Symposium on
Computational Intelligence for Human-like Intelligence (CIHLI). IEEE,
2014, pp. 1–8.

[25] E. Friedman, Jess in action: rule-based systems in Java. Manning
Publications Co., 2003.

[26] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[27] C. Crapanzano, F. Milazzo, A. De Paola, and G. Lo Re, “Reputation
management for distributed service-oriented architectures,” in Proc.
of the4th IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshop, SASOW 2010, 2010, pp. 160–165.

[28] V. Agate, A. De Paola, G. Lo Re, and M. Morana, “A simulation
framework for evaluating distributed reputation management systems,”
in Proc. of the 13th International Conference on Distributed Computing
and Artificial Intelligence, DCAI 2016, vol. 474, 2016, pp. 247–254.

[29] V. Tron and F. Lange, “Geth. available from:
https://github.com/ethereum/go-ethereum/wiki/geth,” 2017.

D
R
A
FT

1

