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Multi-agent distributed systems are characterized by autonomous entities that interact with each other to
provide, and/or request, di�erent kind of services. In several contexts, especially when a reward is o�ered
according to the quality of service, individual agents (or coordinated groups) may act in a sel�sh way. In order
to prevent such behaviours, distributed Reputation Management Systems (RMSs) provide every agent with the
capability of computing the reputation of the others according to direct past interactions, as well as indirect
opinions reported by their neighborhood. This last point introduces a weakness on gossiped information that
makes RMSs vulnerable to malicious agents intent on disseminating false reputation values. Given the variety
of application scenarios in which RMSs can be adopted, as well as the multitude of behaviours that agents can
implement, designers need RMS evaluation tools that allows to predict the robustness of the system to security
attacks, before its actual deployment. To this aim, we present a simulation software for the vulnerability
evaluation of RMSs, and illustrate three case studies in which this tool was e�ectively used to model and
assess state-of-the-art RMSs.
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1 INTRODUCTION
Many distributed applications rely on software agents that repeatedly interact in order to achieve
complex goals. In trading and e-commerce frameworks [52], for instance, agents allow to automate
virtual business processes between di�erent users and/or institutions; agents support peer-to-peer
applications [39] by autonomously exchanging resources and services, so enhancing systems’ scala-
bility [56]; intelligent software agents can be exploited by collaborative intrusion detection systems
to perform distributed security monitoring [55]; �nally, social networks [7] and crowdsensing
systems [59] can be easily modeled as multi-agent systems in which di�erent entities are connected
to each others.
The previous enumeration, although not exhaustive, makes it clear how the reliability of these

applications depends on the correct behaviour of the agents. Unfortunately, the distributed nature
of these systems, and the consequent lack of a central point of control, make it di�cult to discover
agents that adopt sel�sh behaviours in order to maximize their own utility. This aspect is even
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2 V. Agate, A. De Paola, G. Lo Re, and M. Morana

more critical when the behaviour of a few agents a�ects the utility perceived by cooperative
agents, so impairing the whole community. For this reason, several distributed applications rely
on Reputation Management Systems (RMSs) to estimate the future behaviour of unknown agents
before establishing actual interactions [22].

In distributed RMSs, every agent is able to estimate the reputation of the others. Generally, this is
achieved by exploiting two di�erent types of information, namely i) the direct experience resulting
from previous interactions between the agent and its neighborhood, and ii) the indirect feedbacks
reported by the neighbors about their interactions with other agents in the network.
Such a distributed approach avoids single points of failure and represents a scalable solution

avoiding a potential performance bottleneck. Nevertheless, designing and evaluating a distributed
RMS is far more complex than the same in a centralized scenario. For instance, since the reputation
aggregation model is tightly dependent on the distributed protocol used to spread information over
the agent network, it is often hard to preventively assess how these two components simultaneously
in�uence each other.

Some distributed RMSs are based on a soundmathematical formulation that allows to theoretically
evaluate them [30]; however, mathematical analysis is usually intended to assess ad-hoc case studies
and do not provide a general formalism to evaluate a wide range of RMSs [20].
Other works have proposed solutions aimed to evaluate a RMS by simulating the interactions

between the agents. This category of tools can be extremely useful as long as it allows to model all
aspects that a�ect the behaviour of the RMS. However, even though several simulators have suc-
cessfully addressed individual challenges, to the best of our knowledge there are no comprehensive
frameworks which are able to deal with all the characteristics of a distributed RMS, regardless of
the application scenario.
The simulation platform proposed in this paper allows researchers, on the one hand, to model

a distributed environment where several agents interact, and on the other one to de�ne the
speci�c features of the RMS, the behavior of each agent, as well as the set of security attacks to be
simulated. High-level interfaces allow disregarding some low level details (e.g., implementing the
agent communications, driving the simulations), so letting the designer focus on more relevant
tasks, such as de�ning new reputation algorithms, or selecting the speci�c features to produce the
desired robustness. Moreover, an automatic assessment module permits to compute quantitative
metrics that summarize the level of vulnerability of the RMS under analysis. These results can be
immediately used to show the e�ects of di�erent design choices on the RMS’s performance.

With respect to other works presented in the literature, the simulation platform proposed here is
characterized by the following desirable characteristics, partially identi�ed in [33]:

• the inclusion of an abstract RMS model, that can be easily implemented to represent a speci�c
system, and that maintains the independence from speci�c application scenarios;

• the inclusion of formal models for most common security attacks against RMSs;
• the capability of evaluating the e�ects of the decentralized nature of the RMS under evaluation,
by comparing the achieved reputation estimation with reputation values obtainable by a
centralized RMS which knows the actual outcome of all transactions;

• the availability of a set of well-de�ned metrics, capable of evaluating the RMS’s accuracy
and its vulnerability to security attacks, as well as the utility perceived by the agents while
varying the policies of the designed RMS;

• a high �exibility in de�ning the set of security attacks, the aspects of the RMS to be analyzed,
and the simulation scenarios;

• the possibility of performing large-scale simulations.
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A Simulation So�ware for the Evaluation of Vulnerabilities in RMSs 3

This paper extends our previous work published in [3], by providing a solid formulation of the
RMS components, a formal model of di�erent security attacks, and a wider set of evaluation metrics.
The remainder of the paper is organized as follows. The �rst part of Section 2 introduces the

general RMS model we de�ned in order to represent many of the RMSs presented in the literature;
then, the Section describes the most common attacks on the security of such systems. Section 3
provides a description of the agent-based simulation framework, focusing on the models adopted
to de�ne the service exchange policies, the reputation algorithms, and the agents’ behaviours.
Section 4 presents distinct sets of evaluation metrics aimed to measure the RMS’s accuracy and
vulnerability, as well as the agents’ utility. Section 5 describes how the framework was used to
model three RMSs, while Section 6 presents the evaluation of their performances when dealing with
security attacks. Section 7 reviews the common approaches adopoted in the literature to evaluate
the robustness of RMSs. Conclusions follow in Section 8.

2 REPUTATION MANAGEMENT SYSTEMS
Most of the reputation management systems presented in the literature exhibit similar characteris-
tics: they exploit feedback coming from the agents (about other agents) in order to estimate the
reputation of every participant of the network. RMSs may be useful in several scenarios where
reputation values can be exploited to support agent’s decision processes, regardless of whether
agents are humans or software applications.

In the following, we present a general RMS model that can be adopted to represents many of the
RMSs presented in the literature, and discuss relevant security attacks which can in�uence their
performance.

2.1 RMS Model
In a generic model, each agent can act both as service consumer and/or provider. In the latter case,
the agents’ behaviour is unknown in advance to other agents; thus, its estimation is one of the
main goal of the RMS.

Let + (C) be the set of agents E8 taking part to the RMS, at time C . Without loss of generality, we
can assume that the behaviour of the provider E8 can be derived from its level of cooperativeness,
⇠8 , which represents the quantity and quality of the provided resources with a range of values that
depends on the speci�c distributed application. In a distributed peer-to-peer system, for instance, a
value ⇠8 = 0.8 in the range [0, 1] would indicate that the provider E8 satis�es on average 80% of the
received �le requests. It is worth noticing that, in a realistic scenario, the agents’ behaviour may
vary over time, thus the level of cooperativeness as to be indicated as ⇠8 (C).

The reputation of an agent, that should approximate its level of cooperativeness, is computed by
the RMS according to available information, the most important of which are feedbacks. In general
terms, a feedback 58 9 (C), generated by the consumer agent E8 about the provider agent E 9 , is a tuple
of values related to the outcome of the interaction between the provider and the consumer. These
may include, for instance, a boolean value indicating whether the service request has been accepted,
a quantitative value related to the quality of the obtained service, as well as other information as
described in [20].
The RMS’s architecture determines how feedbacks are exchanged between agents [28]. In

centralized systems, a central server aggregates feedbacks to build a global and unique reputation
value, i.e., '29 (C), associated with the provider agent E 9 . The centralized information fusion function
�2fusion can be expressed by the following equation:

'29 (C) = �2fusion
�
f⇤j

�
, (1)
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4 V. Agate, A. De Paola, G. Lo Re, and M. Morana

where, f⇤j =
�
58 9 (C 0),8C 0 2 [0; C],8E8 2 + (C) : E8 < E 9

 
is the set of feedbacks 58 9 (C 0) sent by each

consumer E8 2 + (C) about the provider E 9 2 + (C), with E8 < E 9 , for every timestep C 0 2 [0; C].
In a distributed RMS, agents other than generating feedbacks after each interaction, are involved

in the whole process of reputation evaluation, without any central coordination activity. In these
systems, information �ows among agents according to the topology of an overlay reputation network,
whose nodes correspond to the agents and each edge < E8 , E 9 > indicates that agents E8 and E 9
know each other. It is worth noticing that the reputation network, represented by the set of edges
⇢ (C), may vary over time. A single agent E8 can exploit direct feedbacks in order to compute a local
reputation value ;8 9 (C) of the agent E 9 :

;8 9 (C) = �local
�
fij

�
, (2)

where �local is the local reputation function that considers as input the whole history of direct
feedbacks about agent E 9 , i.e., fij =

�
58 9 (C 0),8C 0 2 [0; C]

 
, collected up to the current timestep.

Furthermore, E8 exploits both direct feedbacks and messages received from other agents in order
to build its own estimate of the reputation of E 9 , i.e., A8 9 (C). Message exchanges occur according to
a distributed gossip protocol which determines the information sharing between agents.

According to the gossip protocol adopted by the distributed RMS, at each time step C , the agent E8
may receive a messageM:!8 (C) from each neighbor E: in the reputation network. Such a message
is generated through the function �gossip, which can consider either the whole history of direct
feedbacks, or all received gossip information, or both of them. This can be speci�ed by the following
equation:

M8!: (C) = �gossip
�
fij,M8

�
, (3)

whereM8 = {M:!8 (C 0),8C 0 2 [0; C],8E: 2 + (C 0) : 9(E8 , E: ) 2 ⇢ (C 0)}.
Messages collected from other agents, together with direct feedbacks, allow E8 to estimate the

reputation of E 9 through the information fusion function:

A8 9 (C) = �fusion
�
fij,M8

�
. (4)

It is worth noticing that many RMSs presented in the literature do not consider the whole
history of feedbacks and messages at each time step, since this would require too much memory
and computational e�ort. A common approach, for instance, is the adoption of a Markov model,
according to which new reputation value depends on its previous value together with latest local
reputation and gossip messages:

A8 9 (C) = �fusion
�
A8 9 (C � 1), ;8 9 (C),M8 (C)

�
, (5)

whereM8 (C) = {M:!8 (C),8E: 2 + (C) : 9(E8 , E: ) 2 ⇢ (C)}, is the subset of messages received during
the current timestep C . Other approaches, not based on the Markov assumption, are also described
in the literature, e.g., the one discussed in [41]. In these cases, the information fusion process can
be modeled through the most general equation 4.
Reputation values estimated through equations 4 or 5 can be exploited as basis of an incentive

mechanismwhose goal is to drive agents to act cooperatively. Incentives can be de�ned by assigning
a penalty to agents with bad behaviour, or a reward to ones with good behaviour [43]. The
e�ectiveness of the incentive mechanisms depends on the assumption that agents are individually
rational, that is they choose the behaviour that maximizes their utility, to the best of their knowledge.

Although the de�nition of the utility function strictly depends on the application scenario, here
we describe some of the most frequently adopted solutions:
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• Utility as image. In some application scenarios, such as blog hosting sites or content-centric
frameworks, the main goal of an agent is to exhibit a high reputation value in order to acquire
high visibility in the community [43]. In such a case, the utility perceived by the agent E8 can
be modeled as:

D8 (C) = �utility_rep (r⇤i (C)), (6)
where r⇤i (C) is a vector containing the opinions held by other agents about the agent E8 at time
C , i.e., r⇤i (C) =

�
A 98 (C),8E 9 2 + (C)

 
, and �utility_rep (·) is a non-negative, concave, and increasing

function. In such a scenario, RMSs may not include and explicit incentive mechanism, since
a reputation loss would be the penalty for bad behaviors; as a consequence, rational agents
will behave so as to maximize their own reputation.

• Utility as amount of provided services.When distributed systems are based on service-
exchange models where some agents act as providers and other as consumers, the main goal
of providers is generally to maximize their reward, that is to provide as much services as
possible. Thus, the agent’s utility can be modeled as:

D8 (C) = �utility_prv (prvi (t)), (7)

where prvi (t) is the amount of services provided by agent E8 till timestep C , and �utility_prv (·) is
a non-negative, concave, and increasing function. In this case, agents’ utilities do not directly
depend on their reputation; nevertheless, obtaining a good reputation so as to have more
chances to be chosen as service provider is the implicit incentive that drives the agents to be
cooperative.

• Utility as balance between provided and received services. When agents at the same
time act both as providers and consumers, such as in peer-to-peer applications, the utility
function could be more complex since it should take into account the bene�t of obtaining
services, but also the possible cost of providing them [47]:

D8 (C) = �utility_p2p (prvi (t), rcvi (t)), (8)

where prvi (t) and rcvi (t) are, respectively, the number of services provided and received
by agent E8 until the timestep C . Here, the incentive mechanism has to encourage agents to
provide more services; thus, it generally imposes to provide few services to agents with low
reputation values.

The previous classi�cation underlines that in many of current distributed applications, it is
necessary the introduction of opportune incentive mechanisms in order to create a strict dependence
between the reputation of an agent and what it perceives as its own utility. In general terms, the
incentive mechanism can be seen as a mapping function, deterministic or not, that drives each
agent in the selection of the action to perform.

When the utility is de�ned according to equation 7, the decision function allows a consumer to
select a provider; for instance, it could suggest to choose the provider with the highest reputation,
or a random one with a probability that is proportional to its reputation. In scenarios in which the
utility function is modeled according to equation 8, the decision function is exploited by providers to
decided whether provide or not a service, for instance, the agent can establish to provide resources
proportionally to the reputation of its peers.

Therefore, the decision function evaluated by the agent E8 accepts as input its estimation of the
reputation of other agents, i.e., ri⇤ (C) =

�
A8 9 (C),8E 9 2 + (C)

 
, and its own level of cooperativeness,

i.e., ⇠8 (C):
08 (C) = �action (ri⇤ (C),⇠8 (C)), (9)
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The decision function can be also combined with a detection algorithm capable of identifying
malicious agents according to a given policy. In its simplest form, the detection algorithm could
consider malicious the agents with low reputation values. The most common approach is instead
to consider a wider range of decisions that directly depend on the reputation values.

2.2 Security A�acks on RMSs
In this subsection, we introduce the most common attacks capable of undermining the correct
functioning of distributed RMSs. Since the proper operation of these systems depends on the choice
of the agents to cooperate in the reputation estimation, fake feedbacks represent one of the most
serious threat.

Several type of security attacks that exploit the distributed nature of RMSs and their dependence
on agent feedbacks are reported in the literature [23, 51]. Malicious agents performing these
attacks are insiders, i.e., authorized agents of the system that legitimately participate in reputation
evaluation. According to this assumption, in this paper we do not consider security issues related
to attacks performed by outsiders, such as threats to authentication, integrity and con�dentiality.
Other approaches, such as the one proposed in [27], can be adopted in order to guarantee a correct
membership management.

A classi�cation of security attacks performed by insiders can be made on the basis of their goals,
e.g., promoting and slandering, or according to the technique adopted to complete the attack, such
as oscillating behaviours or the creation of more (sybil) identities. In promoting and slandering
attacks, malicious agents spread fake information over the network in order to alter the evaluation
of other agents’ reputation. This kind of attacks may be performed by an individual agent or by a
coalition of multiple agents. In oscillation attacks, instead, malicious agents modify their degree of
cooperativeness in order to elude a truthful evaluation of their reputation. A sybil attack, conversely,
aims to deceive the RMS detection algorithm by creating new identities that can be exploited to
whitewash a past bad reputation or to strengthen a coalition attack.

2.2.1 Promoting A�ack. Promoting attacks [36] aim to arti�cially increase the reputation of a
target agent in order to allow it to obtain illegitimate bene�ts, or to hide its sel�sh behaviour. For
instance, promoting attacks are very common in e-commerce applications, due to their capability
of providing an unjusti�ed advantage over competitors.

Such type of attack is performed by disseminating fake positive information through the gossip
protocol. Generally, the promoting agent, E 9 , is di�erent from the target agent, E8 , which actually
takes advantage of the attack.

Ideally, attackers should send to their neighborhoods thosemessages thatmaximize the reputation
of the target agent. However, malicious agents cannot achieve the best optimization, since they do
not know the policy and parameters used by the neighborhood agent to perform the reputation
fusion (see equation 4). As a consequence, typically, the attackers di�use into the neighborhood
most favorable information pro target agent.

The RMS component able to cope with promoting attacks is the information fusion function, �fusion,
which determines the balance among past history, direct experience, and gossiped information.
In order to increase the RMS resistance to fake information, �fusion could also weight information
obtained, e.g., on the basis of the reputation of gossiper agents.

2.2.2 Slandering A�ack. Slandering attacks [8] aim to decrease the reputation of a victim agent by
exploiting the gossip protocol to disseminate fake information over the reputation network. Just
as promoting, even this type of attack is very common in e-commerce scenarios, where malicious
agents try to obtain indirect advantages by spoiling their competitors.
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Unlike promoting attacks, here slanders should send to their neighbors those messages capable
of minimizing the target’s reputation. However, since such an optimization would require knowing
the reputation estimated by neighbors, the attack is actually performed by �ooding the worst
information regarding the victim agent.

Even in this case, the information fusion function is the main component that can let the system
resist through an opportune balancing of direct experience and whispered information.

2.2.3 Oscillation A�ack. This kind of attacks [50], also known as on-o� [34] or traitor attacks [39],
are performed by malicious agents that alternate faithful/unfaithful behaviours in order to mislead
the estimation of their own reputation. To be more speci�c, a malicious node maintains a loyal
behaviour until it has obtained a satisfactory reputation, then adopts a sel�sh behaviour in order
to misuse system resources. For the attack to be e�ective, malicious agents generally alternate
cooperative to antisocial behaviours for a limited amount of time, thus exhibiting an oscillating
reputation.

Oscillation attacks are frequently reported in applications characterized by a non negligible cost
for providing services, such as peer-to-peer applications [48], and multi-hop wireless networks [34].
In these scenarios, the sel�sh behaviour corresponds to provide low-quality (and low-cost) services
or even no service.
The attack pattern, represented as the duration of cooperative/non-cooperative time intervals

and the levels of cooperativeness, should be selected according to the speci�c characteristics of the
targeted RMS.

RMSs more vulnerable to this type of attacks are those in which past history weights more than
the recent experience, or, also, RMSs characterized by observation windows that are too short as
compared to the oscillation period.

2.2.4 Coalition A�acks. When the goal of the attack is to spread fake information over the rep-
utation network, e.g., promoting and slandering, the attackers usually need the support of other
agents. In slandering attacks, for instance, a coordinated plan which involves a coalition of malicious
agents allows to lower the victim’s reputation more signi�cantly, i.e., the greater the number of
attackers the stronger the e�ect of the attack. In other cases, e.g., in promoting attacks, the collusion
with other agents is necessary to elude the basic rule of any RMS, which prohibits an agent from
spreading feedbacks and information about itself.

2.2.5 Sybil A�ack. In many distributed scenarios, user registration is a simple procedure that does
not involve speci�c security checks. Attackers may easily register new users in order to obtain
multiple identities that can be exploited to perform a Sybil attack [17, 23].
During a whitewashing attack [18], for instance, a malicious agent which has reached a bad

reputation as consequence of a sel�sh behaviour, creates sybil identities to clean up its history and
rejoin the network with a restored, default, reputation value. RMSs that are more vulnerable to
such attacks are those which assign an optimistic default reputation value and exploit negative
feedbacks to discover malicious behaviour. In these systems, the default reputation is quite similar
to the long-term reputation obtained by cooperative agents; thus, for attackers it is more convenient
to start again with new identities than act cooperatively for a long time. Accordingly, a greater
resistance is expected by those RMSs that adopt a low initial reputation value A0 and exploit positive
feedbacks to rise their estimation.
Multiple identities created during a sybil attack can also be exploited to amplify the e�ect of

coalition attacks. RMSs more vulnerable to this condition are those that accept feedbacks without
verifying that the transactions have actually occurred. Such kind of attack could be a�orded by
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Fig. 1. Overview of the simulation framework.

discarding fake feedbacks coming from sybil accounts that have not participated in real service
exchanges.

3 THE SIMULATION FRAMEWORK
The aim of the simulation platform is to easily map the formal model described in the previous
section into a running RMS whose security can be assessed according to the behaviours of the
simulated agents. To this end, the simulator provides a set of high-level interfaces that allow to
quickly setup a simulation scenario, while neglecting low-level implementation details.
This abstraction is achieved by considering two distinct logic layers. The �rst layer allows to

model the RMS and the scenario in which it operates; here, the RMS is seen as a distributed system
in which the agents act in order to provide/obtain a service. The second one provides the low-
level functionalities needed for driving the simulation; at this layer, agents correspond to system
processes that communicate with each other by means of a message exchange paradigm.

The designers/developers can use the upmost layer to de�ne from scratch their own distributed
application and the adopted RMS, or can combine existing approaches starting from the classes
provided within the simulation library.

The architecture of the simulator is shown in Fig. 1. The designers interact with the simulation
engine by de�ning the algorithms of the RMS, the service exchange policies, as well as the agents’
behaviours. This last feature is particularly relevant since it allows to de�ne how the agents act
both during the exchange of services and in all the general operating phases of the RMS. Moreover,
as will be discussed later in this section, some default behaviours are provided which can be used
individually, or combined to de�ne new ones. Behaviour patterns, i.e., how the agents’ behaviours
change over time, and the topology of the distributed RMS, i.e., the set of neighbors each agent can
interact with, are the last two parameters needed for starting a simulation.

The RMS performances can be analyzed globally, or as observed by a speci�c agent. In the �rst
case, the designer can compare the RMS under evaluation with an ideal centralized RMS that is
not a�ected by fake information and bias introduced by the gossip protocol; thus, evaluation can
be based on an objective global error index. Moreover, global evaluation allows also to measure
the RMS’s vulnerability to a variety of security attacks, according to some well-de�ned metrics.
Conversely, when a single agent E8 is selected, it is possible to observe speci�c aspects of the
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A Simulation So�ware for the Evaluation of Vulnerabilities in RMSs 9

simulation, such as the trend over time of the reputation of E8 as estimated by its neighborhood, or
the percentage of service requests satis�ed by E8 .

3.1 Agent-based Model
The interactions that take place in the distributed system in which a RMS operates concern agents,
as both providers and consumers of services, that act to obtain some reward. As a general rule,
RMSs include incentive mechanisms which ensure that such a reward depends on the agent’s
behaviour.

In our model, the interactions happen according to the synchronous time-discrete model proposed
in [37]; thus, during the simulation, every agent executes the sequence of steps de�ned by the
developer, e.g., requiring/providing services, sending data to the neighborhood to support the
distributed reputation estimation. Single agents are de�ned by inheriting and implementing an
abstract class included in the simulation library. At each round of simulation, the platform cyclically
manages the agent behaviour through a set of methods that will be described in the following of
this section.

3.1.1 Service Exchange Model. Generally, agents are able to act simultaneously as both service
producers and consumers. The service exchange model sets up the agent’s behaviour in �ve distinct
phases, namely the service announcement, selection, request, reply, and rating:

(1) Through the service announcement protocol each provider communicates the set of available
services to a subset of consumers. For instance, an agent can notify its neighbours only,
announce its services to the whole network in a single simulation step, or select a group of
consumers reachable through a hop-by-hop path. The serviceAnnouncementmethod implements
this protocol allowing to specify, as input variables, names and number of the services

provided by the agent to the selected consumers.
(2) Consumers analyze services announced by the providers, and select some of the proposals

according to the service selection policy. The serviceSelection method allows to specify the
logic followed by a consumer agent to perform such a selection. For instance, a simple
implementation of this method allows to choose the provider with the highest reputation,
but such a policy can cause a lock on a few providers. Another common policy is to randomly
select providers according to probabilities linearly or exponentially proportional to their
reputation. Such a policy can balance among the exploitation of information about providers’
past behaviours and the exploration of new providers.

(3) Once a provider has been selected, consumers send service requests using the serviceRequest

method.
(4) Within a single simulation step, provider agents receive the requests and reply to each of them

with variable degrees of cooperation; this behaviour is achieved through the serviceReply

method. Decisions taken by this method are in�uenced by the agent’s behaviour as service
provider, which depends on its cooperativeness, i.e. ⇠8 (C).

(5) Finally, consumers give feedbacks on the completed transactions, e.g., 1 (success), or �1 if
the service has not been provided. Ratings for all services received from a provider till the
current time step are stored by each agent in txReport data-structure.

The incentive mechanism adopted by the RMS is generally related to the steps (2) or (4), depending
on the agents’ interaction model. When the distributed system is based on a service-exchange
model in which agents act distinctly as providers or consumers, and the providers’ utility depends
on the amount of exchanged services, as modeled in equation 7, the incentive mechanism should
reward providers with a high reputation during the service selection step (2).
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10 V. Agate, A. De Paola, G. Lo Re, and M. Morana

Conversely, in application scenarios where agents act both as providers and consumers, and the
utility function takes into account provided services (as a cost) and obtained services (as a reward),
as modeled by equation 8, the incentive mechanism operates within the service reply method (4). For
instance, a service reply policy could state that a service is provided only to consumers that have
some reputation requirements; thus, rewarding trustworthy agents implicitly discourage sel�sh
behaviours.

3.1.2 Reputation Algorithms. One of the main features of the proposed simulation platform is the
possibility of specifying the RMS algorithm, which basically de�nes how to di�use agents’ opinions
over the network, and how to compute the reputations according to the available information.
Reputation can be expressed as numbers, labels representing prede�ned values (e.g., low, normal,
high), as well as custom objects summarizing multiple data.
Although the literature presents a great variety of RMSs, it is possible to identify four basic

components that are represenative of most of them [1].
The �rst, i.e., the local reputation evaluation, implements the �local function presented in equation 2

and exploits the feedbacks 58 9 collected during past interactions between agents 8 and 9 . From a
simulation point of view, the localReputation method allows the developer to implement any local
reputation algorithm according to the rates provided in the last NT time steps and stored in txReport.
The output of this method represents a �rst, rough, estimation of the reputation of other agents.

Two other components, namely the gossip protocol and the information fusion mechanism, allow
to compute the reputation of agents that have never been seen before. The former consents to
agents to exchange information about the reputation of their neighbours, while the latter is used to
locally merge estimated and gossiped reputation.
The gossip protocol implements the abstract model �gossip function (see equation 3); the method

provided by the simulator, i.e., gossipProtocol, allows to de�ne which data have to be shared with the
agents speci�ed in a destination list. A common choice, for instance, is to share recent reputation
values, i.e., A8 9 (C), with neighbors only.

As regards the information fusion mechanism, which implements the �fusion function from the
model equation 4, the simulation platform provides the informationFusion method that allows an
agent to estimate at each time step the reputation of the others by merging all the available
information. Generally, this method takes as input the whole history of direct feedbacks and the
received messages. Nevertheless, in some RMSs, the information fusion can be simpli�ed in order to
consider only the last received messages and the local reputation value, as expressed in equation 5.
If no information is available, information fusion can be performed by exploiting a default reputation
value.

The fourth component is the incentive mechanism operated by the RMS in order to discourage
antisocial behaviours by rewarding collaborative agents. This last component is implemented by
the service exchange methods, as described above.

3.1.3 Agent behaviour. The simulation framework makes it possible for a designer to de�ne the
detailed behaviour of the agents with respect to their trustworthiness as members of the RMS, and
their cooperativeness as service providers. The former re�ects behaviours such as honest, slander
(if neighbors are attacked with fake negative feedbacks), and promoter (in case of fake positive
opinions). Similarly, service providers can be cooperative, sel�sh, or partially cooperative, with a
degree that can be speci�ed by the user.

Malicious behaviours as RMS members are obtained by altering the content of data sent through
the gossipProtocol method; conversely, di�erent behaviours as service providers can be de�ned by
modifying the serviceReply method.
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We present here some methods, already available for developers, which can be adopted in generic
producers/consumers scenarios, where message exchanged through the gossip protocols contain
the reputation values of providers. Nevertheless, these can be further combined and extended by
new de�nitions with the aim to describe any type of attack.
The spreadRep method creates the messages through which a malicious agent can di�use a

fake reputation value for a target agent. If the announced value is lower than the true perceived
reputation A8 9 , such behaviour produces a slandering e�ect; conversely, the behaviour results in
promoting the target.

The oscillatingProvider method allows to model a provider involved in an oscillating attack that
can be directed against all consumers, or the subset speci�ed in a targets’ list. An honest behavior,
associated with a predetermined cooperativeness degree value is maintained for some time steps;
then, a malicious conduct continues for some other time steps, speci�ed as input variables.
Finally, the whileReputationBelow and whileReputationOver methods allow the attacker to tune its

behaviour as service provider according to a local estimate of its own reputation. Since these
methods alter the cooperativeness degree, they are invoked before serviceReply. To be more speci�c,
whileReputationBelow can be used to make an agent operate with a given cooperativeness deegree,
as long as its reputation is under some threshold. This method, for instance, can be adopted when
an attacker is trying to rising its reputation by acting cooperatively, until a safe reputation value is
reached. Conversely, whileReputationOver makes the agent adopt a chosen cooperativeness degree,
as long as its reputation is over a given threshold. This method is run when a malicious provider
tries to abuse the system resources by acting sel�shly, until an alarm reputation value is reached.
In both cases, when the threshold value is reached, the agent adopts the default cooperativeness
degree. By combining the two methods is possible to perform an oscillation attack, whose time
intervals depends on the e�ect of agent’s actions on its reputation.
More generally, the simulation framework includes also a set of behavioural patterns users

can combine to describe how speci�c agents should act. While con�guring a speci�c simulation
scenario, it is possible to de�ne how many agents should exhibit a single behaviour 1, or an
ensemble of = di�erent behaviours, 1 = [11, ...,1=]. When planning coalition attacks, for instance,
a hostile agent might be interested in rising the reputation of its associate, while also reducing
that of the victim. In such a case, the behaviour of the attacker � could be expressed as 1� =
[1promoter (targets),1slander (victims)]. Similarly to simple attacks, even complex behaviours can be
implemented by altering the reputation values sent through the gossipProtocol(). For instance, we
could de�ne a promoter behaviour from time step 0 to 50 for a set of targets, and a slander behaviour
from step 10 to 60 for a set of victims:
behaviours.add(“promoter”, targets_list_p, 0,50);

behaviours.add(“slander”, victims_list_s, 10,60);

During the simulation, before the gossipProtocol() is run, it is possible to generate the data to be
sent according to the behaviour as RMS members de�ned for the current time step:
data = behaviour_as_RMS_members(data,behaviours.getCurrentBehaviours());

gossipProtocol(data,destination);

In this example, behaviour_as_RMS_members would run the spreadRep method twice; �rst to implement
promoting, then to carry out slandering.

All the parameters needed by these methods during the simulation are speci�ed in two con�gu-
ration �les, processed at startup, that adopt a simple language to detail the characteristics of the
reputation network and its agents.
The �rst �le speci�es the network topology, indicating for each node the list of its neighbours.

Generally, the topology is dynamic, thus it is possible to specify the edges to be added to, or removed
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12 V. Agate, A. De Paola, G. Lo Re, and M. Morana

from, the network for each time step. The second con�guration �le contains the agents’ behaviour
parameters.

4 EVALUATION METRICS
The simulation framework produces as output a set of measures that allow the designers to evaluate
the performance of the RMS under analysis, with respect both to its accuracy and its vulnerability
to security attacks.

4.1 Accuracy Metrics
The accuracy of a RMS can be evaluated by measuring the error between the true cooperativeness
of providers and their reputations as estimated by other agents.

The accuracy metrics proposed here can be adopted in RMSs characterized by absolute reputation
indexes, that is where the reputation value assigned to a single agent is independent of the values
assigned to other ones. On the contrary, RMSs that adopt relative reputation indexes perform a
normalization among reputation values. As a consequence, two agents may estimate di�erent
reputation values for the same provider, due to their di�erent knowledge about other agents.

The following de�nition of accuracy requires that reputation values and cooperativeness belong
to the same domain and range. If this condition is not satis�ed, a normalization step is needed
before evaluating the accuracy.

Since there is not a unique value of reputation for each agent, we propose to evaluate, for each
agent E8 , at each time step C , the error between its true cooperativeness, i.e., ⇠8 (C), and its average
reputation, de�ned as:

A8 (C) =

Õ
E9 2�8 (C )

A 98 (C)

# {�8 (C)}
, (10)

where �8 (C) is the set of agents that hold an opinion about the agent E8 at time C , and # {�8 (C)} is
the number of these agents. Consequently, the average error on a single agent E8 can be computed
as:

48 (C) = |⇠8 (C) � A8 (C) |. (11)

Moreover, besides such absolute measure of error, the simulator allows to highlight whether, and
to what extent, the error depends on the distributed gossip protocol. Such assessment is performed
by comparing the error obtained by the RMS under analysis, with that achieved by an ideal RMS
which adopts the same reputation model, but exploits true interaction evaluations rather than
messages received through the gossip protocol.

Such a RMS is implemented by means of a truth-holder agent (see Fig. 2) that does not participate
to the gossip protocol and collects true interaction outcomes in order to evaluate the ground-truth
reputation '⇤8 (C) of each agent E8 .
It is worth noticing that it necessary that the reputation aggregation algorithm adopted by the

truth-holder is the same adopted in the considered RMS model, but neglecting gossiped information;
thus, it must be rede�ned by the designers in order to meet the behaviour of the RMS under analysis.
The relative error achieved by the RMS respect to the truth-holder, on a single agent, is de�ned

as:

4⇤8 (C) = |'⇤8 (C) � A8 (C) |. (12)
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Fig. 2. The role of the truth-holder within the agents network.

The average system error is then computed by averaging the relative error over the whole set of
agents:

4⇤ (C) =

Õ
E8 2+ (C )

4⇤8 (C)

# {+ (C)} . (13)

4.2 Vulnerability Metrics
In order to measure the robustness of a RMS to di�erent security attacks, the simulation platform
provides the developers with a set of prede�ned metrics, while also giving the possibility to de�ne
new ones according to the speci�c simulation needs.

The de�nition of the vulnerability metrics is strictly connected to the speci�c success conditions
of the various attacks. As regards the two simple attacks as RMS member described in Section 2.2,
the success conditions can be de�ned by observing the long-term reputation of an agent, i.e., its
stable reputation estimated after )<0G time steps:

• a promoting attack succeeds if the long-term reputation of the target (a sel�sh agent) is
greater than half of the maximum reputation value '<0G , i.e., 'C⌘ = '<0G/2;

• a slandering attack succeeds if the long-term reputation of the victim (a cooperative agent) is
below this limit.

The vulnerability to attacks based on the di�usion of fake feedbacks, i.e., attacks as RMS member,
can be evaluated through the following set of metrics, preliminarily outlined in [2]:

• time-to-falsify (TF ): the time required to achieve the attack success condition, normalized
with respect to the simulation time threshold )<0G ;

• collusion-degree (CD): the percentage of malicious agents required for a collusion attack to
succeed within a certain time, e.g., )C⌘ = )<0G/2.

The collusion-degree is evaluated by performing several simulations with di�erent percentage of
malicious agents, so as to �nd the minimum percentage required to achieve the above described
condition. The same two metrics can be adopted to evaluate the vulnerability of the RMS to sybil
attacks, aimed at making the impact of promoting and slandering more e�ective.
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14 V. Agate, A. De Paola, G. Lo Re, and M. Morana

When dealing with attacks aimed at misusing the system resources for as long as possible, i.e.,
when an attacker exhibits a malicious behavior as service provider, the following metric can be
adopted:

• exploitation-time (ET ): the normalized time during which a malicious agent misuses the
system resources, before its reputation drops below an alarm threshold.

For instance, considering the sel�sh behaviour at the basis of whitewashing, if we assume that) ⇤

time steps are required to bring the reputation below the threshold 'C⌘ , the exploitation-time can
be de�ned as ⇢) (sel�sh) = ) ⇤/)<0G . Thus, changing the threshold value 'C⌘ corresponds to de�ne
stricter or weaker success conditions. In the case of oscillation attacks, since cooperative and sel�sh
behaviours are alternated for )coop and )sel�sh time steps, the normalization required to evaluate
the exploitation time considers the duration of the oscillation period only, rather then to the whole
simulation duration. Thus ⇢) is the greatest (normalized) value of )sel�sh, which guarantees that
reputation remains above the 'C⌘ threshold, i.e., ⇢) (oscillation) = )sel�sh/()coop +)sel�sh). Even in
this case, the simulation software performs di�erent simulations by varying the value )sel�sh, in
order to �nd the one which satis�es the above described condition.
According to these metrics, the vulnerabilities indexes of a RMS exposed to slandering ((;),

promoting (Pr), sel�sh (Se), and oscillation ($B) attacks can be expressed as:

VI(; = [1 � TF (slandering)] ⇥ [1 � CD(slandering)];
VIPr = [1 � TF (promoting)] ⇥ [1 � CD(promoting)];
VI(4 = ET (sel�sh);
VI$B = ET (oscillation).

These indexes have a numeric score ( , 0  (  10, that corresponds to a qualitative rating
as proposed by the Common Vulnerability Scoring System (CVSS) [15]: none (if ( < 0.1), low
(0.1  ( < 4.0), medium (4.0  ( < 7.0), high (7.0  ( < 9.0), critical (9.0  (  10.0).

The overall vulnerability index can be represented as a vector containing the list of the detected
vulnerabilities, and the number of vulnerabilities evaluated as high or critical, i.e., #⌘2 :

RMS_vulnerability = {[VI ⇤Sl,VI ⇤%A ,VI ⇤(4 ,VI ⇤$ ], #⌘2 },

where the VI ⇤ values are obtained by applying a gamma correction, with W = 0.5, and a scale factor
 = 10:

VI ⇤ =  ⇥ VIW .

 andW values have been experimentally determined in order to allow that the four vulnerabilities
metrics would be comparable in a network composed of 100 agents with 6 neighbors for each
agent on average. Clearly, users of the simulation software can modify these parameters in order
to obtain a di�erent scales for metrics.

4.3 Utility Metrics
The third group of metrics aims to evaluate the e�ect of di�erent design choices and policies on the
utility perceived by the agents. Our simulation software provides three basic utility metrics that
can be further enriched by the developers according to the characteristics of speci�c application
scenarios.

In service-exchange applications, such as in the e-commerce domain, the utility of a provider E8
depends on the number of provided services prvi, as modeled by equation 7. In order to obtain a
comparative analysis for providers that operate in the same network, such a quantity should be
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normalized with respect to the average number of services provided by fully cooperative agents.
Being +⇠⇤ the set of agents that maintain the average cooperativeness ⇠⇤:

+⇠⇤ =

(
E8 2 + (C),8C 2 [0;)<0G ] : average

C 2 [0;)<0G ]
{⇠8 (C)} = ⇠⇤

)
, (14)

their average utility can be measured through the following metric:

*prv (⇠⇤) =
average
E8 2+⇠⇤

{prvi ()<0G )}

average
E8 2+⇠<0G

{prvi ()<0G )}
. (15)

Providing developers with this average value allows to obtain a high-level estimation of the e�ect
of the adopted policies on whole classes of agents.

In peer-to-peer applications, the utility may be measured by considering each agent separately
as a consumer and as provider. In the �rst case, the utility of E8 at time )<0G can be measured as
the ratio of the obtained rcv8 ()<0G ) and requested req8 ()<0G ) services; the utility is measured by
averaging among all the consumers, according to the following equation:

*p2p2 = 0E4A064
E8 2+

⇢
rcv8 ()<0G )
req8 ()<0G )

�
, (16)

Conversely, the utility of agents seen as providers can be evaluated, according to equation 8, as the
ratio of received and provided services:

*p2p? = 0E4A064
E8 2+

⇢
rcv8 ()<0G )
prv8 ()<0G )

�
. (17)

This last metric allows to measure also the fairness of the RMS, since a perfectly fair model should
drive this utility value to 1.

5 CASE STUDIES
This section presents how the proposed simulation framework can be used to model three reputation
management systems, namely a sample RMS, Beta Reputation [29], and Core Reputation [41].

5.1 Sample RMS
The �rst RMS chosen as case study is designed for peer-to-peer scenarios in which agents act both
as consumers and providers of the same service, and the service announcement protocol speci�es
that agents send announcement messages to their neighborhood only.
In the considered model, reputation values A8 9 (C) are real numbers in the range [0, 1], and the

cooperativeness value⇠8 2 [0, 1] represents the probability that the provider E8 successfully attends
to a service request. Thus, a fully cooperative agent is characterized by ⇠8 = 1, while a totally
sel�sh one by ⇠8 = 0.
The adopted service selection strategy speci�es that a consumer asks for services to all the

providers in its neighborhood. Such a naive approach is absolutely fair, so avoiding the possible
bias introduced by more complex selection strategies.

The service reply method implements an incentive mechanism that provides random replies, with
probabilities proportional to the reputation of the requiring agents, as described in [14]. If the
agents behave also as service providers, such probabilities are further enforced according to their
cooperativeness. Thus, at time C , E8 will positively reply to service requests coming from E 9 , with a
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probability ?8 9 (C) de�ned as:
?8 9 (C) = A8 9 (C) ⇤⇠8 (C). (18)

After each interaction, the consumer generates a feedback 58 9 (C) 2 {1, 0} depending on whether
the service has been provided or not.
The considered RMS model implements three common components, namely local reputation

evaluation, gossip protocol, and information fusion.
The local reputation algorithm is inspired to [30]; for each provider, it computes the ratio of the

number of successful transactions and sent requests, with respect to a sliding window of �) time
steps:

;8 9 (C) = �local
�
fij

�
=

Õ
58 9 2fij (�) )

58 9

#
�
fij (�) )

 , (19)

where fij (�) ) is the set of feedbacks collected during the last �) timesteps, i.e.,
f8 9 (�) ) =

�
58 9 (C 0),8C 0 2 [C � �) ; C]

 
.

The gossip protocol assumes that each agent sends to its neighbors the last estimated reputation
values of other agents it knows, as speci�ed by the following equation:

M8!: (C) = �gossip
�
fij,M8

�
= �gossip

�
rij (C � 1)

�
=

⇥ �
9, A8 9 (C � 1)

� ⇤
E9 2$8 (C�1),E9<E: , (20)

where rij (C � 1) are the reputation values of agents E 9 as estimated by E8 , i.e.,
rij (C � 1) =

�
A8 9 (C � 1),8E 9 2 + (C)

 
, and $8 (C) is the set of agents about which E8 has an opinion at

time C .
The information fusion technique is inspired to the reputation algorithm proposed in [16],

which requires that gossiped information is weighted with reputation of the gossiper agents. Two
parameters U and V specify, respectively, the weight of last direct experience with respect to past
history, and the weight of received opinions on the overall reputation. Since this fusion algorithm
is explicitly based on the Markov assumption, the information fusion method can be expressed
according to equation 5:

A8 9 (C) = �fusion
�
A8 9 (C � 1), ;8 9 (C),M8 (C)

�
=

= (1 � V) ⇤ [U ⇤ ;8 9 (C) + (1 � U) ⇤ A8 9 (C � 1)] + V ⇤
Õ

E: 2#8 (C )
A8: (C�1)⇤A: 9 (C�1)
Õ

E: 2#8 (C )
A8: (C�1) ,

(21)

where U, V 2 [0, 1], and #8 (C) is the set of neighbors of E8 at time step C , i.e.,
N8 (C) = {E: 2 + (C) : 9(E8 , E: ) 2 ⇢ (C)}.
It is worth noticing that U and V , together with the initial default reputation value A0, can be

declared as varying parameters so that they can be automatically tuned by the user in di�erent
simulation runs.

5.2 Beta Reputation
Beta Reputation [29] is one of the most well-known and cited RMSs in literature. The model is
based on a statistical-mathematical formulation, which takes advantage of the Beta probability
density function, and combines information about past transactions in order to obtain reputation
ratings.
After each transaction, the consumer provides as feedback a positive value if the requested

service was correctly provided, or a negative one if the service was not provided, or if its quality
was unsatisfactory. In our implementation, feedbacks are de�ned as 58 9 (C) 2 {�1, 1}.
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The local reputation of a given provider is computed taking into account the number of satisfactory
and unsatisfactory transactions, over the total number of requests made during thewhole simulation:

;8 9 (C) = �local
�
fij

�
=

CÕ
C 0=0

58 9 (C 0)_ (C�C
0)

Beta

2 +
CÕ

C 0=0

���58 9 (C 0)_ (C�C 0)Beta

���
, (22)

where _Beta is a forgetting factor, de�ned in the range [0, 1], which allows to assign lower weight to
past feedbacks. The obtained values of local reputation are in the range [�1; 1].

The gossip protocol of Beta Reputation involves that every agent communicates to its neighbor-
hood the feedbacks generated in the last time step:

M8!: (C) = �gossip
�
fij,M8

�
=

⇥ �
9, 58 9 (C)

� ⇤
E9 2$8 (C ),E9<E: .

(23)

Agents exploit received messages in order to build the history of feedbacks generated by each of
their neighbors. The reputation value computed through the information fusion method is based on
the history of all received and locally generated feedbacks. Thus, according to the general equation
4, the information fusion operates as follows:

A8 9 (C) = �fusion
�
fij,M8

�
=

CÕ
C 0=0


58 9 (C 0) +

Õ
E: 2N8

5: 9 (C 0)
�
_ (C�C

0)
Beta

2 +
CÕ

C 0=0

��58 9 (C 0)�� + Õ
E: 2N8

��5: 9 (C 0)��
�
_ (C�C

0)
Beta

(24)

5.3 Core Reputation
CORE RMS [41] was introduced to prevent sel�sh and malicious behaviours in Mobile Ad hoc
NETworks (MANETs). MANETS correct behaviour depends on the cooperation between nodes
that have to perform both packets routing and forwarding. As a consequence, from a RMS point of
view, MANETs can be treated as peer-to-peer networks, in which the edge < E8 , E 9 > indicates that
E 9 is in the wireless transmission range of E8 , and vice versa. CORE supports vectors of reputation
values, each corresponding to a di�erent function that a MANET node can perform, e.g., routing or
forwarding. In this case study implementation, we considered just a single function in order to
make the comparison with other RMSs clearer.
After each interaction, the requesting agent generates a feedback 58 9 (C) 2 {�1; 1}, with �1

corresponding to a bad experience, and +1 to a positive one.
Every agent computes the local reputation of its neighbors by weighting the feedbacks so as

to give higher relevance to older data. The authors of [41] made this choice in order to prevent
sporadic misbehavior from negatively a�ecting the reputation evaluation. In the implementation
of this sample case, we chose to generate the weights according to the function d (C, C 0) = 1 � _C�C 0Core ,
with _Core 2 [0; 1]. The local reputation is then evaluated through the following equation:

;8 9 (C) = �local
�
fij

�
=  

C’
C 0=0

d (C, C 0) 58 9 (C 0) =  
C’

C 0=0
(1 � _C�C 0Core) 58 9 (C 0), (25)

where  =
✓

CÕ
C 0=0

d (C, C 0)
◆�1

is a normalization factor required to bring the reputation values in the

range [�1, 1].
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According to the CORE’s gossip protocol, the agents share only positive information in order to
prevent denial of service attacks, which could be based on the broadcasting of fake negative ratings
for legitimate nodes. Thus, each agent can spread local reputation only if it has a positive value:

M8!: (C) = �gossip
�
fij,M8

�
=

⇥ �
9, ;8 9 (C)

� ⇤
E9 2$+

8 (C ),E9<E:
, (26)

where $+
8 (C) is the set of neighbors of E8 , for which E8 has a positive local reputation, i.e., $+

8 (C) =�
E 9 2 + (C) : 9(E8 , E 9 ) 2 ⇢ (C), ;8 9 (C) > 0

 
.

The �nal reputation is then computed by E8 as a linear combination of his local reputation and
local reputation values received by its neighbors, as de�ned by equation 5:

A8 9 (C) = �fusion
�
A8 9 (C � 1), ;8 9 (C),M8 (C)

�
= ;8 9 (C) +

Õ
E: 2# (8)

;: 9 (C)

# {M8 (C)}
. (27)

6 EXPERIMENTAL EVALUATION
This section describes how the proposed framework can be con�gured to simulate the behaviour
of the three RMSs described above and evaluate their robustness to security attacks. Experiments
were performed considering simulations of 500 time steps, i.e., )<0G = 500, on a random network
of 100 nodes, each one having six neighbors on average.

6.1 Analysis of the reputation trend
The �rst analysis focused on the capability of the simulation framework to model slandering,
promoting, oscillation, and sybil attacks. Results about the observed reputation trends can be
exploited to assess the performances of the target RMS.

6.1.1 Slandering and Promoting. Slandering was set up by de�ning the ID of the target agent, which
information to observe (i.e., the reputation value), and the number of attacking agents. A relevant
aspect to evaluate in this type of attack is how the size of the coalition impacts on the reputation
of the victim. Intuitively, the greater is the number of attacking agents, the more e�ective is the
attack; however, a simulation can support this assumption by quantifying how many agents should
be involved in order to achieve the attack.
Fig. 3-a,b,c show the results of di�erent simulations performed while varying the percentage

of malicious agents (10%, 20%, 30%, and 40%) in the networks of the sample RMS, Beta RMS, and
Core RMS respectively. Attacks start after 50 time steps; by observing Fig. 3-a, we can notice
that the reputation estimated by the sample RMS decreases and settles down approximately at
time step 70. Moreover, as the size of the coalition increases, the reputation value deviates more
signi�cantly from the ground truth. For instance, when the coalition involves 40% of the agents,
slandering is able to compromise the reputation of the victim of about 30% of the ground truth
value. Fig. 3-b presents the same experiment tailored to Beta RMS, in a scenario in which the
ground-truth reputation of the victim is 0.6. Note that the reputation values considered by this RMS
are in the range [�1, 1]; thus, a reputation of 0.6 re�ects a cooperative behaviour of the victim agent
of 0.8, i.e., if 80 positive and 20 negative transactions were recorded, the reputation of the agent is
beta_rep = (80� 20)/(80 + 20 + 2) ⇡ 0.6. As compared to what observed in Fig. 3-a, Beta reputation
shows a smoother trend which indicates a longer time before the attack succeeds. Finally, as regards
Core RMS, since one of its most notable characteristics is the spreading of positive feedbacks only,
it is not surprising that the e�ect of slandering is almost negligible (see Fig. 3-c). Slight variations
in the average reputation values can be attributed to the reputation evaluated by malicious agents.
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(a) Sample RMS: slandering (b) Beta RMS: slandering (c) Core RMS: slandering

(d) Sample RMS: promoting (e) Beta RMS: promoting (f) Core RMS: promoting

Fig. 3. Simulation of slandering and promoting a�acks performed against the sample RMS, Beta RMS, and
Core RMS. The figures show the reputation of the victim, as observed by neutral agents, while varying the
percentage of the a�ackers involved.

A similar setting was be adopted to simulate promoting attacks performed by coalitions of
di�erent size. In this case, the three plots in Fig. 3-d,e,f show the reputation of the target of the
attack as perceived by the RMS. In the RMS considered as �rst sample case (Fig. 3-d), when 40% of
the agents are malicious, the reputation of the target can be increased by 150% of its actual value in
about 20 time steps from the beginning of the attack.

A quite similar behavior is observed in Beta, where the initial reputation value of �0.6 re�ects a
cooperative behaviour of 0.2. The di�erent slopes of the four curves in Fig. 3-e highlight that also
the e�ect of promoting is dependent on the size of the coalition involved. Moreover, as compared to
the sample RMS, even for promoting it is possible to observe in Beta RMS a longer time before the
attack is achieved.

Although promoting in Core is more e�ective than slandering, this RMS shows anyway a greater
robustness to these kind of attacks because of its attitude to consider past feedbacks more than
recent ones (see Fig. 3-f).

6.1.2 Oscillation. Other simulations have been performed with the aim of modeling oscillation
attacks, that require the de�nition of complex behaviours in which the attacker alternates coopera-
tive (all the received requests are satis�ed) and partially cooperative (only part of the requests are
satis�ed) periods. Such oscillations are de�ned as described in Section 3.1.3; during the cooperative
phase, the agent is characterized by a value of⇠8 (C) = 1 for �)1 = 100 time steps, while the partially
cooperative behaviour ( ⇠8 (C) = 0.5) is maintained for �)2 = 50 time steps.

Results in Fig. 4 show the reputation trend of an agent performing an oscillation attack (red line
is the actual behavior) as well as the capability of the RMSs to detect the attack while varying the
weight of recent experience. In the case of the sample RMS, this corresponds to choose di�erent
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(a) Sample RMS (b) Beta RMS (c) Core RMS

Fig. 4. Simulation of oscillation a�acks performed against the (a) sample RMS, (b) Beta RMS, and (c) Core
RMS. The three figures show the reputation of an agent alternating cooperative and selfish behaviours, as
observed while varying the parameters that weights the recent experience to build the local reputation.

values of U , e.g., 0.1, 0.5, and 0.9 (see Fig. 4-a). As expected, if recent experience weights more than
history, i.e., increasing values of U , changes in the agent’s behaviour can be detected earlier.

Fig. 4-b shows how, in Beta RMS, the reputation of the attacker varies according to the forgetting
factor _Beta . Results indicate that smaller values, i.e., giving more importance to recent transactions,
allow Beta RMS to better capture rapid changes in the behaviour of the attacker. On the contrary,
taking into consideration all the past history (_Beta = 1.0) makes the reputation settle down to an
average value, between the low and the high peaks of the oscillation.

The robustness observed in Core when dealing with slandering and promoting is not con�rmed
in the case of oscillation attacks. Due to its design, CORE is insensitive to rapid changes in agent
behaviours; thus, as can be seen in Fig. 4-c, the reputation curves do not follow the oscillatory
pattern depicted in red. Such a trend is very similar for the three reputation curves obtained by
choosing di�erent weights of the recent feedbacks (_Core), where the lower is the weight the more
is the importance of the last transactions.

6.1.3 Sybil. The last of this set of experiments concerns sybil attacks carried out by a malicious
agent in order to increase its relevance within the reputation network. The e�ect of such an attack
could be mitigated, or even avoided, by the RMS thanks to the adoption of policies for regulating
the registration of new users. Nevertheless, the simulation we carried out were aimed to measure
the impact of sybil attacks on RMSs in which these countermeasures are not realized.
The three plots in Fig. 5 show the e�ects of an attack performed by a single malicious agent E8

that starts promoting itself at time step 50. Then, after 10 time steps it is helped by a community of
sybil accounts that start joining the network with di�erent replication factors (see Table 1) and
continue the attack until time step 100.
Fig. 5-a evidences that the malicious behaviour of agent E8 causes the sample RMS to decrease

its reputation from the default value '8 (0) to '8 (50) ⇡ 0.2, which correctly approximates the true
cooperativeness⇠8 (50) = 0.2. When the attack is launched, the reputation of E8 increases slowly and
start growing faster as the number of sybil accounts increases. The three curves show the impact
of di�erent replication rates, namely linear, quadratic, and cubic, on the capability of the RMS to
perform a correct estimation of the reputation value. A similar pattern is observable in Fig. 5-b and
Fig. 5-c, where the behaviours of Beta and Core con�rm that a higher damage is achieved when the
growth of the sybil accounts is faster.
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(a) Sample RMS (b) Beta RMS (c) Core RMS

Fig. 5. Simulation of sybil a�acks performed against the (a) sample RMS, (b) Beta RMS, and (c) Core RMS.
The three figures show the e�ect of a promoting a�ack supported by a community of sybil accounts created
with di�erent replication rates.

Time step # of sybil accounts
linear quadratic cubic

50 1 1 1
60 2 3 4
70 3 7 14
80 4 15 41
90 5 31 122
100 6 63 365

Table 1. Replication rates of sybil accounts created to promote a target agent.

6.2 Analysis of accuracy
The performance of the three RMSs in managing the attacks described so far were further inves-
tigated by computing the accuracy metrics de�ned in Section 4.1. In particular, the relative error
4⇤8 (C) achieved on a single agent is obtained as the di�erence between the ground truth and the
average reputation of the agent E8 .

In the case of our sample RMS, the truth-holder computes the ground truth reputation of E8 , i.e.,
'⇤8 (C), according to the local reputation evaluation algorithm:

'⇤8 (C) =

Õ
58 9 2fi (�) )

58 9

# {fi (�) )}
, (28)

where fi (�) ) is the set of feedbacks collected by other agents about E8 during the last �) time
steps, i.e., f8 (�) ) =

�
58 9 (C 0),8E 9 2 + ,8C 0 2 [C � �) ; C]

 
.

A detailed analysis of the values of 4⇤8 (C) measured during slandering, promoting, and sybil attacks
for the target agent E8 is provided in Fig. 6-(a,b,c) respectively. Results suggest that the estimation
error made by this speci�c RMS when dealing with slandering grows almost proportionally to the
percentage of malicious agents involved. Thus, the RMS does not boost the fake negative opinions,
thanks to the inclusion of the direct experience (i.e., the local reputation) in the aggregation
algorithm. Similar results are obtained for the promoting attack (Figs. 6-b); this indicates that the
RMS is able to handle fake positive and fake negative feedbacks equally. Finally, Fig. 6-c shows
the trend of the error in the case of sybil attacks performed with various replication rates. In
this case, the sample RMS makes an initial error due to the reputation value assigned by default,
when no information about the agent is known. After a transition phase (steps 50-70) in which the
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(a) Sample RMS: slandering (b) Sample RMS: promoting (c) Sample RMS: sybil

(d) Beta RMS: slandering (e) Beta RMS: promoting (f) Beta RMS: sybil

(g) Core RMS: slandering (h) Core RMS: promoting (i) Core RMS: sybil

Fig. 6. Relative error 4⇤8 (C) on the single target of the a�ack, for the RMSs considered as case studies during
slandering, promoting and sybil a�acks, while varying the percentage of malicious agents involved (slandering
and promoting), and the account replication rate (sybil).

RMS correctly estimates the reputation of E8 , the error starts growing again because of the sybil
attack launched at time step 50. Since step 80, the three error curves have di�erent magnitudes,
proportionally to the growth of sybil accounts in the network.
In the case of Beta RMS, the ground truth reputation of E8 is computed by the truth-holder

according to the local reputation described in Section 5.2:

'⇤8 (C) =

CÕ
C 0=0

Õ
E9 2+ (C 0)

58 9 (C 0)_ (C�C
0)

Beta

2 +
CÕ

C 0=0

Õ
E9 2+ (C 0)

���58 9 (C 0)_ (C�C 0)Beta

���
. (29)

The curves shown in Fig. 6-d and Fig. 6-e suggest that the estimation errors made by Beta RMS
under slandering and promoting attacks grow almost proportionally to the percentage of malicious
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agents involved. Thus, Beta RMS does not amplify the e�ect of false indirect opinions, and similar
errors in the two �gures point out how it makes no distinction in dealing with false positive and
false negative feedbacks. Fig. 6-f indicates that, from step 80 on, the error starts growing because
of the sybil attack launched at time step 50. Since step 90, the three error curves have di�erent
magnitudes, proportionally to the number of sybil accounts in the network. Nevetheless, Beta RMS
exhibits a greater resistance to sybil attacks than the �rst sample RMS; this result is coherent with
the observed greater robustness of Beta RMS to promoting attacks.
As regards Core RMS, the ground truth reputation of E8 is estimated according to the local

reputation evaluation algorithm, which implements the de�nition described in Section 5.3:

'⇤8 (C) =  0
C’

C 0=0

’
E9 2+ (C 0)

(1 � _C�C 0Core) 58 9 (C 0). (30)

where  0 =

 
CÕ

C 0=0

Õ
E9 2+ (C 0)

(1 � _C�C 0Core)
!�1

is a normalization factor that leads the reputation value

in the range [�1, +1]. Since the Core reputation values (see equation 27) are de�ned in [�1, 2], a
further nonlinear normalization is done to obtain values in the correct range.

Fig. 6-g shows that the error associated to slandering is very limited since no negative feedbacks
are disseminated among the network. Then, the errors measured during the simulation are only
dependent on the presence of an increasing number of agents (the attackers) that alter the reputation
values. On the contrary, reputation estimation during promoting attack (Fig. 6-h) is less e�ective
and the error made by Core grows proportionally to the size of the coalition. This indicates that
Core RMS is resilient to the e�ect of false indirect opinions, while the di�erent magnitudes of the
errors in the two �gures highlight its greater di�culty in dealing with false positive feedbacks.
Finally, Fig. 6-i shows the error in the case of sybil attacks performed with various replication rates.
Similarly to what observed in the �rst sample case study (Fig. 6-c), Core takes a while (about 30
time steps) to correctly estimate the reputation. After the step 80, the error starts growing because
of the sybil attack launched at time step 50. From that time on, the three curves follow di�erent
trends according to the number of sybil accounts in the network.

6.3 Analysis of security
Besides accuracy analysis, our simulation software allows to perform a global evaluation of the
considered RMS, according to the chosen set of security metrics. As described in Section 4.2, the
base set of metrics includes time-to-falsify (TF ), collusion-degree (CD) and exploitation-time (ET ),
which are summarized in a global vulnerability index. Researchers can analyze such index in order
to evaluate the impact of the RMS design choices on its vulnerability to security attacks.

The indexes obtained by the RMS considered as �rst sample case study, with parameters U = 0.1,
V = 0.1 and cooperativeness ⇠8 (0) = 0.9, are summarized in left block of Table 2. These results
show that the RMS does not exhibit any high or critical vulnerability. In particular, the design
choices produce a greater robustness to sel�sh behaviours and medium vulnerability to promoting,
slandering and oscillation attacks.
As summarized in the middle part of Table 2, the vulnerability indexes of Beta RMS (with

_Beta = 0.9) indicate that it has a quite similar resistance to slandering and promoting attacks as the
sample RMS. On the ohter hand, the exploitation-time of sel�sh and oscillation attacks is lower in
Beta, suggesting a greater resistance to these attacks.
Results on the security evalution of Core RMS (with _⇠>A4 = 0.9) indicate a great resistance to

slandering and promoting, with the corresponding vulnerability indexes VI ⇤(; = VI ⇤%A = 0 re�ecting
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Sample RMS Beta RMS Core RMS
Metric value index value index value index
TF (slandering) 0.54

VI⇤(; 4.80 0.59
VI⇤(; 4.51 1.0

VI⇤(; 0
CD (slandering) 0.5 0.5 1.0
TF (promoting) 0.55

VI⇤%A 4.74 0.57
VI⇤%A 4.61 1.0

VI⇤%A 0
CD (promoting) 0.5 0.5 1.0
ET (sel�sh) 0.088 VI⇤(4 2.97 0.004 VI⇤(4 0.63 0.04 VI⇤(4 2.0
ET (oscillation) 0.286 VI⇤$B 5.35 0.167 VI⇤$B 4.08 0.99 VI⇤$B 9.95

Table 2. Security evaluation of the RMSs considered as case studies.

(a) Utility (*?2?2 ) (b) Fairness (*?2?? )

Fig. 7. Analysis of agents’ utility and fairness in sample RMS, Beta RMS, and Core RMS. Simulations are
performed (see the di�erent bars) while considering fully cooperative agents, agents with cooperativeness 0.8,
and a single agent victim of slandering.

the non-achievement of the success condition for the two attacks. As regards the capability of
detecting sel�sh behaviours, the vulnerability index suggests that Core RMS is less e�ective then
Beta RMS, even if its performances are comparable with those of the sample RMS. Moreover, Core
RMS exhibits a high vulnerability to oscillation attacks that start with a cooperative behavior; this
is mainly due to the greater weight given to older feedbacks.

6.4 Analysis of utility
The simulation framework allows also to evaluate the utility perceived by the agents in order to
support developers in assessing the e�ectiveness of di�erent incentive mechanisms, or estimating
the �nal e�ect of security attacks. Since the three considered RMSs are implemented in peer-to-
peer scenarios, the assessment is based on the metrics*?2?2 and*?2?? (see equations 16 and 17),
which measure the ratio of received and requested services, and received and provided services
respectively. It is important to recall that *?2?? can be also interpreted as a measurement of the
fairness of the analyzed RMS, and this is how it is named in Fig. 7.

Experiments were performed considering a network where 80% of agents have a cooperativeness
⇠8 = 1, 20% is characterized by ⇠8 = 0.8, and a single agent with cooperatives ⇠8 = 0.8 is victim
of slandering performed by a coalition that involves 40% of network agents. The �rst analysis
(leftmost bars in Fig. 7) concerns fully cooperative agents (⇠8 = 1.0), which represent a base-line
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for comparing other results. As expected, in such a case, the three RMSs produce the maximum
utility and fairness values.

As regards agents with cooperativeness ⇠8 = 0.8, as indicated by the middle bars in Fig. 7-a, the
three RMSs cause a reduction of their utility, proportionally to their cooperativeness. Conversely,
as shown in Fig. 7-b, all the RMSs are fair, i.e., each agent obtains as many resources as it provides.
The third analysis (rightmost bars in Fig. 7) is focused on a single agent, with cooperativeness

degree⇠8 = 0.8, which is victim of slandering. Both in the sample RMS and in Beta RMS, this attack
causes a 40% drop of the victim’s utility, while in Core RMS the utility decrease is smaller because
of the greater resistance of Core to this type of attacks. The same behaviour can be observed by
analyzing the fairness values.

7 RELATEDWORK
In recent years, a number of works presented new methodologies and tools aimed to assess the
validity and robustness of RMSs. An e�ective taxonomy of related literature according to four
di�erent approaches is presented in [20].

The �rst type of approaches concerns ad-hoc evaluations, in which RMSs are analyzed by using
domain-speci�c and ad-hoc methodologies that cannot easily be applied to other RMSs. Ad-hoc
evaluations, for instance, are often carried out for the assessment of speci�c security issues in
popular application scenarios, such as Wireless Sensor Networks [6, 21, 38, 49], or in the context of
e-commerce. Some works try to provide common criteria to compare di�erent approaches, such
as in [12], where a review of 40 relevant papers that focus on computational trust and reputation
models is presented. Nevertheless, although signi�cant e�orts have been made to de�ne common
strategy, the authors highlight that there are still critical open issues about the aggregation of
reputation values and the most suitable incentive mechanisms. Ad-hoc evaluation methods do not
allow to consistently address these issues, and often lead to ambiguous results.

Other works propose the adoption of a formal approach based on a mathematical and theoretical
analysis [31, 46]. An Induced Trust Computation method (ITC), based on information theory, is
presented in [57] in order to measure the usefulness of recommendations received from di�erent
agents. Such an approach is applied to three known trust and reputation models, i.e., TRAVOS [53],
BLADE [44] and MET [26]. Unfortunately, despite being very accurate,mathematical and theoretical
analysis requires a huge e�ort to adapt a givenmodel to new aspects that were not intially considered.
As an example, the same authors of [57] presented a new work [58] to expand their original model
so as to consider also the e�ect of collusion-based attacks. Similarly, the evaluation method in [13]
requires the RMS to be modeled as a sequence of graphs transformations and allows to manage
slandering and self-promotion attacks only. Moreover, the framework does not allow to simulate
dynamic agents behaviours, which may represent a relevant limitation for many RMS designers.
A third class of works follows a formal veri�cation approach [4, 5, 10, 11, 24, 42] that allows

to obtain precise evaluations of computational aspects of RMSs, often through automatic tools,
resulting in an easier analysis as compared to the mathematical and theoretical one. One of the
earliest works in this area [9] proposes a veri�cation method for assessing the performance of
Beta Reputation [29] against security attacks; to this aim, a probabilistic technique based on
Markov Decision Processes is discussed. However, such a solution is neither unable to deal with
medium-sized networks nor suitable for di�erent RMSs. The authors of [54] and of [35] adopt,
respectively, semi-ring and game theories to assess cooperation strategies between agents. An
algebraic framework to evaluate access control policies based on trust management is proposed
in [40]. RepSyFire [24] de�nes a formal veri�cation strategy to asses strengths and weaknesses of
RMSs in di�erent environments and against di�erent security attacks. It has been used to evaluate
some well-known RMSs, but it has some limitations in describing other RMSs, as well as di�culties
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Type Security Attacks Agent Behaviour Evaluation Metrics
(AH-M-S-V) standard custom standard custom security accuracy utility

TREET [32] S X X X
ITC [57] M X X X X
ART [19] S X X X
ATB [25] S X X X X X X
DART [45] M/V X X X X X
TOSim [61] S X X X X
RepSyFire [24] V X X X
Bidgoly(2013)[9] V X X X
QTM [60] S X X X
TRIM-checker [20] V X X X X X
This work S X X X X X X X

Table 3. Comparison between the features provided by some relevant related works that adopt ad-hoc (AH),
mathematical (M), simulation (S), and verification (V) approaches.

in considering new attacks. DART [45] adopts a model based on prisoner’s dilemma games to
analyze di�erent RMSs, even against some security attacks. Its main limitation is that the chosen
decision making mechanism highly in�uences the experimental evaluation, so preventing for a
clear and unbiased assessment of other RMS’s components. More recently, TRIM-checker [20], a
logic-based veri�cation framework aimed at assessing RMSs in hostile environments was presented.
Such a system shows a great e�ciency in evaluating modeled RMSs; however, the de�nition of new
RMS models, especially with regards to the gossip protocols, is quite di�cult for the developers.
Moreover, TRIM-checker can be adopted only in scenarios with a single consumer; thus, it is not
suitable to assess the e�ect of di�erent design choices on a population of agents. Despite of the
great potential of these approaches, the work in this area is yet immature and proposed solutions
are characterized by several drawbacks or weaknesses.

Finally, other works propose simulation-based analyses, and the framework we describe in this
paper belongs to this category. These approaches model the interactions between agents, whose
behaviour is de�ned stochastically or by following prede�ned patterns. Generally, the less aspects
a framework is able to deal with during the simulation (e.g., di�erent RMSs properties, agents
interactions models, security attacks), the weaker is its generality and capability of being applied in
various scenarios. ART (Agent Reputation and Trust) [19] represents one of the earliest simulated
environment that allows to compare two RMSs through objective metrics. However, it has some
limitations, the most signi�cant of which are the lack of any speci�c analysis of the vulnerabilities
brought by the distributed RMS protocol, and forcing the designer to model the RMS while meeting
the speci�cations of a Multi-Agent System (MAS). Such a drawbacks is common to several other
simulation frameworks. TREET [32], for instance, focuses on the evaluation of RMSs in marketplace
scenarios and allows to measure their robustness to some attacks. This tool introduces a certain
degree of dynamism by allowing agents to randomly join or leave the simulation, but such events
cannot be scheduled in advance. ATB [25] mainly addresses the modeling of the decision making
mechanism, so limiting the variety of RMSs that can be evaluated. QTM [60], instead, consents
to de�ne new RMSs without limiting the characteristics of the RMS or the application scenario;
however, it provides only the hit rate value, i.e., the percentage of successful transactions performed
by cooperative users, as metric to evaluate the RMS’s performance. As a consequence, the set of
experiments that can be run is quite limited. TOSim [61] addresses the need for a �exible simulation
environment by proposing a modular framework, also intended for scalable simulations, whose
application is however limited to the evaluation of P2P overlay systems.
Table 3 brie�y summarizes relevant features of some of the most important related works, in

order to enable an immediate comparison with the proposed simulation framework.
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8 CONCLUSIONS AND FUTUREWORK
Many distributed applications are ruled by Reputation Management Systems aimed to estimate
the behaviour of unknown agents before starting a service exchange. Because of the complexity
of distributed systems, designing and evaluating RMSs is very complex; for this reason, in recent
years, a number of works presented new methodologies and tools aimed to assess the validity and
robustness of RMSs since their design. Nevertheless, to the best of our knowledge there are no
comprehensive frameworks which are able to deal with all the characteristics of a distributed RMS,
regardless of the application scenario.

In order to address this lack, in this paper we presented a novel simulation platform that allows
developers to model a distributed environment where several agents interact, to de�ne the speci�c
features of the RMS, the behavior of each agent, as well as the set of security attacks to be simulated.
At the end of a simulation, the platform provides a set of accuracy, vulnerability, and utility metrics
that can be exploited to evaluate the robustness of the RMS to security attacks which can in�uence
its performance.
The validity of the proposed solution has been extensively tested by using the simulation

framework to model three reputation management systems, namely a sample RMS, Beta Reputation,
and Core Reputation. The results, aimed not at the actual evaluation of these RMSs but rather
at demonstrating the capability of the framework in highlighting their peculiarities, show the
e�ectiveness of such a simulation-based approach.
As future work we plan to investigate the performance of the platform while varying the

capabilities of the exploited hardware infrastructure, both in terms of the number of cluster cores
and their features, and the scale of the simulated community of agents. We are also working on the
release of an open source version of the plarform that includes some popular RMSs and common
attack models proposed in the literature.
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