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Abstract—Vehicular Social Networks (VSNs) is an emerging
communication paradigm, derived by merging the concepts of
Online Social Networks (OSNs) and Vehicular Ad-hoc Networks
(VANETs). Due to the lack of robust authentication mechanisms,
social-based vehicular applications are vulnerable to numerous
attacks including the generation of sybil entities in the networks.
We address this important issue in vehicular crowdsourcing
campaigns where sybils are usually employed to increase their
influence and worsen the functioning of the system. In partic-
ular, we propose a novel User Recruitment Policy (URP) that,
after extracting the participants within the event radius of a
crowdsourcing campaign, detects and filters out the sybil vehicles
by using a novel sybil detection approach, called SybilDriver.
This technique combines the advantages of VANETs and OSNs
by means of an innovative concept of proximity graph obtained
from the physical vehicular network, in conjunction with a
community detection and Random Forest techniques adopted in
the OSN domain. Detailed experimental evaluations demonstrate
the effectiveness of our approach and also show that it outperforms
existing state-of-the-art methods typically used in the OSNs. 1

Index Terms—Vehicular Social Network; Crowdsourcing; Sybil
detection; Trust and Truthfulness; Proximity Graph.

I. INTRODUCTION

Vehicular Social Networks (VSNs) provide an emerging
mobile communication paradigm that combines the features
of Vehicular Ad-hoc Networks (VANETs) and Online Social
Networks (OSNs), allowing the deployment of a wide variety of
applications in smart cities [1]. In particular, the inheritance of
social features in the study of vehicular systems has significant
potential to improve the reliability and efficiency of the vehicu-
lar environment [2]. However, bringing social network aspects
into vehicular scenarios comes up with enormous challenges
due to the intrinsic nature of VSNs [3].

In spite of such challenges, the potential impact of VSN
applications in smart environments justifies the importance of
this paradigm and significant interests in the research com-
munity. A vehicle can be considered as a dynamic sensing
platform that moves around an (urban) area, collects and
processes the data locally to share with other entities over the
network. This phenomenon represents the concept of vehicular
crowdsourcing, where a multitude of entities helps to solve a

1This work was done while F. Concone, F. De Vita and A. Pratap were at
the Missouri University of Science and Technology, Rolla, USA.

wide range of problems sharing real-time information among
themselves or with a centralized system like the Cloud.

Although crowdsourcing applications have tremendous ben-
efits [4], the systems supporting them are also vulnerable to
various attacks, such as malicious or selfish users seeking to
disrupt or worsen the functioning of the system itself [5]. A self-
ish user may generate pseudonymous identities, named sybils,
to increase its own benefits [6]; the sybils have more significant
influence on the VSN-based crowdsourcing platforms [7], thus
worsening application-specific goals [8]. For instance, if an
event is related to a real vehicular traffic due to a crash, the sybil
vehicles can use their influence to make honest drivers believe
that there is no traffic in the nearby. Such a malicious behavior
was, for example, exploited to hack Google’s Waze generating
false traffic information and deceiving genuine drivers [9].

Unfortunately, there exist no widely deployed tools to cor-
roborate selfish/malicious behaviors due to the lack of robust
authentication mechanisms in VSNs. A possible approach to
address this challenging issue is to leverage on the trustworthy
participants by adopting a proper User Recruitment Policy
(URP) that aims to identify the best set of participants to
achieve application-specific goals. However, not all URPs are
suitable for VSN applications. For example, consider a system
that assigns a sensing task to the users in a specific urban area
and uses a distance-based URP. Such a recruitment policy leads
to a situation where all participants within the event radius are
selected to release feedback. Then, malicious participants could
generate a large number of sybil to gain a disproportionately
large influence on the network. This implies that the distance-
based URP alone is not enough to provide high quality services
in the network.

Our Contributions: This paper describes a novel URP for
VSN-based crowdsourcing applications that not only takes care
of event radius but also the reduction of sybil vehicles in
the network. In essence, the contributions of this paper are
as follows: (i) We propose a novel sybil detection technique,
called SybilDriver, that combines the concept of proximity
graph, the Louvain community detection algorithm [10], and
Random Forests (RFs) in order to detect and filter out sybil
vehicles within the VSN. (ii) We use a well-known vehicular
dataset for extensive performance evaluation of SybilDriver.



After demonstrating the impact of proximity graph has on
the Louvain method, we show that our approach outperforms
two existing sybil detection techniques employed in the OSN
domain, achieving strong performance even when the number
of vehicles is quite limited. (iii) To the best of our knowledge,
we are the first to apply the OSN-based approaches to a
real vehicular dataset. Our analysis suggests that most of
the existing techniques for sybil detection on OSNs are not
suitable for vehicular crowdsourcing applications because of
some assumptions that are usually valid in OSNs but not in
VSNs [2], thus demonstrating empirically their low detection
rate when applied to the vehicular domain.

The paper is organized as follows. Section II briefly summa-
rizes existing works on sybil detection and sybil-based URP.
Section III presents the system and threat model, while Sec-
tion IV describes the proposed SybilDriver approach. Finally,
Section VI concludes the paper with directions of future works.

II. RELATED WORK

This section reviews the literature on sybil detection in
VANETs and OSNs, and sybil-based URPs.

Sybil Detection in VANETs: In the recent past, different
approaches have been proposed to defend against sibyls in
vehicular networks. These approaches can be divided into three
main categories: resource testing-based, trusted certification-
based, and physical measurement-based. The methods in the
first category rely on the assumption that the malicious en-
tities are constrained by the computation or communication
capability to deal with time-consuming tasks. However, these
methods may no longer be suitable for next-generation ap-
plications because malicious entities own considerable com-
putational capabilities. More recent solutions are the trusted
certification-based methods (e.g., [11], [12]) that adopt crypto-
graphic techniques to establish trust among all entities. The
main drawback of such methods is the need for a central-
ized authority to be trusted by all participants to generate
and manage public keys, certificates and digital signatures.
Moreover, they require a widespread deployment of Road-Side
Units (RSUs) to disseminate these certificates. Finally, the most
recent solutions leverage on measurement-based methods. In
this category, the most commonly used techniques are based
on Received Signal Strength Indicator (RSSI), such as signal
strength distribution [13], position verification [14], similarity
comparison [15], or power control [16] to discover sybils within
the VANET. In spite of the above approaches to preventing
sybil attacks in VANETs, there is still a need for further
enhancements because those proposed solutions bypass several
constraints or vulnerabilities due to strongly dependence on
RSUs, trustworthiness of vehicles, trust and verification of data
context [17], [18]. The emergence of VSNs has enabled these
constraints to pave the way for next-generation systems that can
take advantage of VANET characteristics and sibyl detection
techniques adopted in the OSN domain.

Sybil Detection in OSNs: The sybil detection techniques
proposed in recent years have mainly leveraged the structural
properties of the social graph to discriminate sybil accounts

from legitimate users. In [19], the authors proposed an effi-
cient and effective sybil community detection algorithm, called
SybilExposer, which exasperated on the properties of social
graph communities to rank them according to the structural
features that characterize sybil and honest regions. However, it
does not deal with non-community sybil nodes as well as edges
that occur between the sybil communities. Another technique
based on the social graph feature is SybilRank [20], where
the users are ranked based on their perceived likelihood of
being sybil. Such a scheme is considered efficient due to high
accuracy and lower computational complexity of O(|V |log|V |),
where V is the set of vertices in the graph. Several other
works following the SybilRank guidelines achieved best results
in terms of accuracy detection, while maintaining the same
complexity. For example, SybilRadar [21] outperforms Sybil-
Rank by proposing a novel mechanism that is able to detect
nodes with weak trust relationships against sybil accounts. It is
also shown that SybilRadar has much better detection accuracy
than other methods. As discussed in Section V, SybilExposer,
SybilRadar, and many other existing methods adopting similar
guidelines are not suitable for vehicular crowdsensing applica-
tions because of some assumptions that are usually valid for
OSNs but not for VSNs [3]. They are due to: (i) the limited
number of nodes and dynamic nature of VSNs, (ii) occurrence
of social connections among members even if they do not know
each other, and (iii) users communicating through intermittent
and unreliable inter-vehicle connections.

Sybil-based User Recruitment Policy: Regardless of their
applicability and effectiveness, the above approaches aim only
at sibyl recognition without considering that such entities can
be used for malicious purposes in crowdsourcing applications.
Only a few works in the literature attempt to address this
dual aspect. For instance, the authors in [22] proposed a
cryptography-based scheme that not only protects the user’s
privacy, but also allows the sybil users to be recognized when
subscribing to the task. Although this scheme is effective from
the view point of privacy protection, it has limitations because
the sybil recognition process assumes that the request to join
a task can only be made by a user that is correctly registered
to the system. In other words, if an entity is able to register
itself to the system, then it will consider the malicious entity
as genuine, thus performing malicious activities.

Similarly, in [23], the authors stress the importance of
removing sibyls during crowdsourcing campaigns and design
a sybil-proof online incentive mechanism to detect the sybil
attack during the user recruitment. Here, the objective of the
sybil attackers is to maximize the utility that is calculated as
the difference between the payment and the cost. Although the
described approach is effective, it does not deal with attackers
aiming to influence and manipulate the network, and relies on
payments, a typical behavior in crowdsourcing scenarios.

III. SYSTEM AND THREAT MODEL

Our system model captures a particular urban area containing
(potential) participants and sensing task, as depicted in Fig. 1.
Each participant is registered to a crowdsourcing application



Event

Event radius

Sybil vehicle

Honest vehicle

Selfish vehicle

Fig. 1: System model.

equipped with a Reputation Management Engine (RME) that,
based on the past interactions, takes care of assigning a trust
score to each participant. Specifically, we identify three main
actors in the proposed model, namely honest vehicles, selfish
vehicles, and sybil vehicles. The first category consists of par-
ticipants who physically exist and want to release real feedback
about a sensing task. The second category of participants
also physically exist in the model but they act as internal
attackers by creating sybil vehicles. Finally, sybil vehicles are
pseudonymous identities generated and employed by selfish
vehicles to significantly impact the system.

In general, selfish participants aim to influence the network
for deceiving the belief about a sensing task. To do so, our
threat model assumes that the selfish vehicle is able to create
an unlimited number of sybil vehicles, even if the genera-
tion of such pseudonymous identities requires computational
resources. In particular, due to the constraints on vehicular
network, we consider a selfish vehicle is able to inject sybil
attacks only within one-hop range. In other words, a selfish
vehicle knows its position and the relative positions of the
neighboring vehicles in the proximity graph, due to proximity
nature of equipped sensors. After the selfish vehicle knows who
are its neighbors, it simulates sybil entities (i) by including
them, as neighboring vehicles, in its own message shared with
Fog entities, and (ii) by forging new fake messages which allow
to mimic the existence of sybil entities as if they were real
vehicles (refer to Sec. IV).

To deal with this malicious behavior, we are proposing an
URP that leverages on a Fog computing architecture [24],
in which information retrieved by the vehicular network is
exploited to discover and filter-out sybil vehicles. Specifically,
a sensing task created by the Cloud is submitted to the more
appropriate Fog entities, and then to the n vehicles in the
vehicular network satisfying the event radius. These vehicles
are responsible for detecting other vehicles and share such
data with the intermediate Fog entities at the upper layer. At
the intermediate level, the Fog entities (Road-Side Units or
RSUs) aim to construct the proximity graph by aggregating data
obtained from the vehicular network. Note that the Fog entities
can also exchange information with other devices at the same
layer via a high capacity mesh network. Information produced
at the Fog layer is sent to the Cloud responsible for resource-
consuming analysis of data. First, the Cloud groups vehicles
into communities, and filters those that do not fit in specific

requirements. Next, the remaining communities are analyzed by
employing a Smart Sybil Detection approach which returns the
set of selected (trusted) participants (vehicles) that can release
feedback about the published event.

IV. SybilDriver: THE PROPOSED APPROACH

In the following sections, we describe each module involved
in the proposed approach.

A. Vehicular Network

A VSN is composed of interconnected vehicles that can inter-
act with each other using short-range communication protocols.
We assume that two vehicles vi and vj in the network can
communicate with each other only if the distance between them
is smaller than or equal to a given threshold θ i.e., d(vi, vj) ≤ θ.

Once the communication is established, the vehicle vi asks
for the list of neighbors of vj , and vice-versa, to calculate the
Jaccard similarity index, as defined in the following:

Ji,j =
|ζ(vi) ∩ ζ(vj)|
|ζ(vi) ∪ ζ(vj)|

. (1)

where ζ(·) represents the set of neighbors of a vehicle. The idea
behind this similarity measure is that the more the neighbors
between two vehicles, the stronger will the connection be. Even
if the time complexity of computing Jaccard similarity is lower
than other techniques in the literature [25], assigning a weight
to each communication link may require a very long time for
mid-size to large-size networks. To overcome this limitation,
we utilize a distributed approach where each vehicle is able
to calculate its own Jaccard similarity index using information
shared by other vehicles within its proximity range.

At the end of above process, each vehicle sends a message
Msg to the closest Fog entity enabling the creation of the
proximity graph. The message is formatted using the following
JSON-like syntax:

Msg = {k1 : IDvi ,
k2 : [{k3 : IDv1 , k4 : Ji,1} ,

. . . ,
{k3 : IDv|ζ(vi)|

, k4 : Ji,|ζ(vi)|}]}

where k1, k2, k3, and k4 respectively represent keys to access
the vehicle ID, the list of neighboring vehicles, the neighbor
ID, and the estimated Jaccard similarity.

B. Proximity Graph Generation

To meet the latency and scalability requirements of VSNs,
the generation of the proximity graph is a task performed
by the Fog entities that maintain the set of messages, M =
{Msg1,Msg2, . . . ,Msg|M|}, shared by the vehicles. These
messages are used to generate a proximity graph G ,
(V,E,W ) by considering a certain time slot window, where V
is a set of vehicles, E ⊆ V × V represents the communication
links between node pairs, and W is the set of weights assigned
to the links.

Algorithm 1 presents the pseudo-code of the proximity graph
generation which takes M as the input. For each message in
M, the algorithm extracts the vehicle ID, its neighbors list, and



Algorithm 1: Proximity Graph Generation
Data: M = {Msg1,Msg2, . . . ,Msg|M|}
Result: Proximity Graph, G

1 (V,E,W )← (emptyList(), emptyList(), emptyList());
2 foreach msg ∈ M do
3 vi ← msg.get(k1);
4 neighborsList← msg.get(k2);
5 V.add(vi);
6 foreach obj ∈ neighborsList do
7 vj ← obj.get(k3);
8 msgvj ← M.getMsg(vj);
9 if E.exist(vi, vj) then

10 Ji,j ← obj.get(k4);
11 Jj,i ←W.getFromEdge(vi, vj);
12 W.update((Jj,i + Ji,j)/2);
13 else
14 Ji,j ← obj.get(k4);
15 if vi ∈ msgvj .get(k2) then
16 W.add(Ji,j)
17 else
18 W.add((Ji,j − 1)/2);

19 E.add(createEdge(vi, vj));

20 G← createGraph(V,E,W );

adds the vehicle to the vertex set V (lines 2-5). At this point,
the algorithm dynamically updates the other two sets, i.e., E
and W , by implementing the following logic (lines 8-19). Let
vi and vj be two vehicles. Three different cases can occur: (i)
an edge between vi and vj already exists (lines 9-12); (ii) no
edge exists between them and vi ∈ ζ(vj) (lines 15-16); and
(iii) no edge exists between vi and vj and vi 6∈ ζ(vj) (lines
17-18). Specifically, the first case represents a scenario where
both vi and vj are honest vehicles or both are sybil vehicles,
i.e., vi ∈ ζ(vj) and vj ∈ ζ(vi). The second one represents a
scenario where a new link has to be added; while the third one
is a special case where a sybil node is trying to attach itself
to a honest vehicle. To manage the third case, the algorithm
subtracts 1 to highlight those links between a honest vehicle
and a sybil vehicle. These three cases can be summarized in
the following weight function:

wi,j =


Ji,j+Jj,i

2 if ei,j ∈ E (i)
Ji,j if ei,j 6∈ E and vi ∈ ζ(vj) (ii)
Ji,j−1

2 if ei,j 6∈ E and vi 6∈ ζ(vj) (iii).
(2)

Upper and lower bounds of the weight are demonstrated in the
following Lemma 1.

Lemma 1. The weight of the link between any honest vehicle
vi and a sybil vehicle vj is bounded by −0.5 ≤ wi,j ≤ 0.

Proof. By definition, the Jaccard similarity index of any two
vehicles is bounded as 0 ≤ Ji,j ≤ 1. The minimum value
is obtained when there are no common neighbors, whereas
the maximum value is obtained when all the neighbors are in
common. If vi and vj are honest and sybil vehicles, respectively,
then Algorithm 1 follows Case (iii) of Eq. 2. At the lower bound
of Jaccard similarity index Ji,j , we can estimate −0.5 ≤ wi,j .
At the upper bound of Ji,j , the weight is bounded as wi,j ≤ 0.

Thus, the weight between vehicles vi and vj is bounded as
−0.5 ≤ wi,j ≤ 0.

The proposed approach is novel in two folds: (a) Our scheme
is distributed in the sense that each vehicle estimates its own
Jaccard similarity index with respect to the neighboring vehi-
cles, thus reducing the computational complexity; (b) Based
on Lemma 1, the system is able to discover links between
the sybil and honest vehicles by improving the performance of
community detection and ranking algorithm as will be better
described in Section V.

C. Community Detection and Ranking

In our model, we used the Louvain method to extract the
community set C = {C1, C2, . . . , C|C|} from the proximity
graph, G. Once communities are detected, the system is ready
to select and remove them from the set C based on the size
of each community, and a trust score owned by the system for
each vehicle within that particular community. Specifically, the
trust value is calculated by the RME (mentioned in Section III)
that assigns a score in a range between 0 and 1 where 0
means that the user has no trust, whereas 1 indicates that user
is totally trusted. Users are initialized with a 0.5 trust score
and updated over time (increased or decreased) based on the
analysis performed by the RME. If the trust score of a vehicle
is higher than a given threshold, τtrust, then the system can
trust that particular vehicle.

Based on above concepts, let Si ⊆ Ci be the set of
vehicles having a trust score higher than τtrust. Then, for each
community, we modeled the rank, Ri, as follows.

Ri = α
|Si|
|Ci|

+ (1− α) |Ci|
|V |

(3)

where 0 ≤ α ≤ 1, |Ci| is the cardinality (i.e., the number of
vehicles in Ci) of the community Ci, and |V | is the number
of vehicles in the proximity graph G. The idea behind this
ranking index lies in preferring bigger communities with a
higher number of trusted vehicles.

Algorithm 2 describes the pseudo-codes of the Community
Detection and Ranking algorithm. The inputs of the algorithm
are the proximity graph G and thresholds Thr, τtrust, and
τrank. The threshold Thr is used to verify whether the car-
dinality of C is in the order of the number of network nodes,
whereas τrank is used for the pivot detection. Here, the pivot
helps the systems to reduce the search space by preferring those
communities having higher rank values.

Lines 1-3 initialize variables used in the algorithm. Once the
communities are extracted by Louvain (line 4), the algorithm
checks if the cardinality of C is in the order of the number of
nodes which constitute the graph G (lines 5-8). In particular, if
the condition is satisfied (line 5), the entire graph is considered
as a single large community (line 6); otherwise the algorithm
stores all communities discovered by Louvain method (line 8).
Next, the algorithm iterates over each community (line 9), and
assigns a rank by calling the function setRank() returning Ri,
defined in Eq. 3 (line 10). At the end of this procedure, the



Algorithm 2: Community Detection and Ranking
Data: G,Thr, τtrust, τrank

Result: Community Ranks
1 Ranks← emptyList();
2 Communities← emptyList();
3 V ← G.getV ertexes();
4 C← G.communityDetection();
5 if |G| − |C| ≤ Thr then
6 Communities← G;
7 else
8 Communities← C.asList();
9 foreach Ci ∈ Communities do

10 Ranks.add(i, setRank(|V |, Ci, τtrust));

11 Ranks← sortByRankInAscendingOrder(Ranks);
12 pivot← 0;
13 foreach obj ∈ Ranks do
14 if obj.getNext() ! = NULL then
15 if obj.getNext().getR()− obj.getR() < τrank then
16 pivot← pivot+ 1;
17 else
18 break;

19 if pivot < |Ranks| then
20 Ranks← Ranks.subList(pivot, |Ranks|)

Rank list is sorted in ascending order (line 11). At this point,
the algorithm iterates over each object in the list (line 13) and
if the condition is not satisfied, the pivot is set (line 16) and the
for loop is interrupted (line 18). Finally, the algorithm takes the
sublist from pivot’s index to the end of the Rank list (line 20).

D. Smart Sybil Detection

The last phase of the proposed system leverages a machine
learning technique to perform a more in-depth analysis for
identifying sybil vehicles. The introduction of this further
step is due to the fact that, after the filtering performed by
Algorithm 2, the system cannot rely only on the trust score of
each vehicle. In fact, if the trust score is used only as an index
to determine the possibility for a vehicle to provide a feedback
for a sensing task, it would be unfair to those vehicles which
are new to the system.

The classification process is based on the Random Forest
(RF) technique. As the algorithm is a supervised learning
model, it requires data to be labeled and represented as a feature
vector in order to learn how to classify unlabeled data. To this
aim, in our scenario, the feature vector of each vehicle is built
by considering a tuple made of the following four parameters:
Nr, Wr, T , and Nt.

Given the node vk belonging to the community Ci, Nr is
the trusted neighbors ratio defined as:

Nr =
|ζ(vk) ∈ Si|
|ζ(vk)|

(4)

which expresses the fraction of trusted neighbors connected to
a node. Wr is defined as the weights ratio and, for the generic
k-th node, it is expressed as follows:

Wr =

∑
j∈ζ(vk) wk,j

|ζ(vk)|
(5)

such a parameter provides very useful information about the
nature of the neighborhood of a node (e.g., if the node has
many sybils attached to it or not. Finally, T is the associated
node trust value assigned by the reputation system, and Nt is
the neighbors trust obtained by simply summing the trust values
of the node neighbors. In this sense, the proposed RF algorithm
performs a binary classification to determine if a node is to be
considered as “honest” or “sybil” according to its extracted
information as described above.

Theorem 1. Computational complexity of the proposed scheme
is O(|V |2+Dk), where D is the depth of the classification tree
and k is the number of trees, respectively.

Proof. The computational complexity of the proposed scheme
depends on the execution of Algorithm 1, Algorithm 2, and
the classification process described so far. Algorithm 1 trans-
forms the vehicular network into the proximity graph. This
transformation may take O(|V |2) computational time in the
worst-case scenario due to the fact that each vehicle explores
its neighboring vehicles to connect over edges in the proximity
graph. In the worst-case each vehicle could be a neighbor of
the rest of vehicles and this results in O(|V |(|V | − 1)) =
O(|V |2) computational complexity. Regarding Algorithm 2, the
worst-case time complexity mainly depends on the execution
of Louvain method and sorting ranks in ascending order.
As stated by author in [10], the computational complexity
of Louvain method is O(|V |log|V |); while, sorting ranks in
ascending order can also take O(|V |log|V |) computational
complexity (applying heapsort) in the worst case. Thus, the
worst-case computational time complexity of Algorithm 2 is
O(|V |log|V |). Finally, the last phase of the proposed scheme
is composed of feature extraction and classification. As a
consequence, the worst case time complexity of the extracted
features can be O(|V |2) because it is necessary to visit all the
neighbors for each vehicle. Moreover, the classification process
performed by RF depends on the depth of the classification tree
(=D) and the number of trees (=k) created by the algorithm
itself, i.e., O(Dk) [26]. We can conclude that the overall
complexity of Smart Sybil Detection phase is O(|V |2 +Dk).

On the basis of what has been discussed so far, the overall
computational complexity is led by Smart Sybil Detection
scheme, i.e. the computational complexity of the proposed
scheme is O(|V |2 +Dk).

V. PERFORMANCE EVALUATION

In order to evaluate the effectiveness of our technique,
several experiments were performed. First, we describe how the
experiments were conducted by means of some pre-processings
and type of attacks. Then, we present the calibration of the
parameters to implement the algorithms and a comparison
between the results obtained while using different classifiers.
Finally, the overall performances of the system we propose are
tested on real data and compared with state-of-art techniques
used in OSN applications.



A. Experimental Setup

Pre-processing of chosen dataset: The effectiveness of our
system is proved by using the Cologne dataset [27] that contains
the mobility patterns of more than 700.000 individual car trips
over a period of 24 hours, covering a region of about 400
square kilometers. This dataset is not directly applicable to
our scenario and, therefore, it was necessary to pre-process the
contained information before testing our method. In particular,
we have generated multiple events over time, each of which
has a randomly chosen location along the vehicles’ routes.
Considering a radius of about 60 meters for the campaign, we
took all the vehicles that at a specific timestamp are inside it
and set a inter vehicle distance of 5 meters so that two vehicles
could physically detect each other. For each extracted VSN,
we randomly selected a subset of vehicles that act as selfish,
allowing them to generate a set of sibyl vehicles.

Attack strategies: We have considered [28] three types of
attack. The first type of attack is very simple because the
selfish node creates an edge between itself and a self-created
sibyl node. Then, a more complex attack in which the selfish
vehicle creates a set of sibyl nodes that can connect with
honest vehicles is considered. This type of attack is typical
of mobile networks where, due to the dynamism of these
networks, attackers exploit the fact that nodes cannot keep
connections with others for the long time. Finally, a selfish
vehicle is able to launch a combination of the attacks described
previously. In all the three cases, the main goal is to manage
the local popularity and manipulate the sensing campaign in a
negative way. During the experiments, the attacks are chosen
randomly between the honest and sybil nodes and, when the
attack requires the creation of sybil regions, these are generated
by using the Barabasi-Albert’s scale-free model [29]. To the
best of our knowledge, there is no real-world evidence that
the sybil regions are generated following a particular model,
because the adversary can be arbitrarily malicious. However,
the networks generated using a scale-free model allow to have
the node degree following the power-law distribution.

Construction of dataset for the Random Forest: From the
previous phase, the identity of the selfish node as well as the
generated sybil nodes is known, so we were able to implicitly
obtain a “labeled” VSN dataset for the RF. This training dataset
contains very different VSN topologies to analyze due to the
randomness of the events generated along the way as well as the
selfish selection and the attacks. In particular, by extracting for
each node the feature vector we described in Section IV-D, we
ended up obtaining a dataset with a total number of 30, 639
labeled samples thus making the RF algorithm ready to be
trained and tested.

B. Calibration and Choice of Classification Algorithm

Tuning the threshold τrank: Remark that this value is used
to discover the pivot by the Community Detection and Ranking
algorithm for the filtering process. To set this value accurately,
we performed several experiments to obtain the best values
aiming to minimize the mean error. Here, the mean error is
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Fig. 2: (a) Comparison between mean error and trust prop-
agation threshold τrank (b) F-Score and accuracy compared
for Random Forest (RF), Support Vector Machine (SVM), and
Gaussian Naive Bayes (GNB) classifiers.

an average of all the errors computed, for each community
Ci ∈ C, as the ratio of the number of elements of minority
class within the Ci and its size. With reference to Fig. 2a, our
experiments have shown that when τrank = 0.16, the curve
reaches the minimum value possible and, consequently, we set
τrank = 0.16 in our experimental analysis.

Choice of classification algorithm: By analyzing the dataset
constructed for the Random Forest (refer to Sec. V-A), as we
would expect, the number of samples labeled as “sybil” is
much lower than the number of “honest” ones which could
cause wrong results during the training phase. To overcome
this problem and properly train and validate the RF algorithm,
a stratified 10-fold cross-validation [30] is adopted in order
to guarantee the same amount of samples for each of the
two classes in both train and test phases. Fig. 2b depicts a
comparison in terms of accuracy and F1-score with respect to
the two classes [31]. In general the RF performed better than
the Support Vector Machine (SVM) and Gaussian Nayve Bayes
(GNB) algorithms reaching a F1-score of 0.94 and 0.96 for the
honest and sybil classes respectively and an overall accuracy of
96%. With regards to the SVM and GNB, these two algorithms
performed well in terms of accuracy and F1-score for the honest
class and resulted to be comparable with the RF, however, they
reached very low values of F1-score for the sybil class (0.74 and
0.86 respectively) which make them not suitable for the sybil
detection as they would cause a high level of false positives and
false negatives. Moreover, in terms of time execution the RF
results to be again the fastest algorithm. For all these reasons
we selected the RF algorithm to perform the sybil detection.

C. Comparison with State-of-the-art Methods

The final set of experiments aims to make a direct com-
parison against some state-of-the-art methods. Each result has
been obtained by repeating 1.000 times the logic introduced
in Section V-A. At each iteration events are created, thus
generating a network whose number of honests, selfish and
sybils is not known in advance, due to the randomness of the
parameters. Therefore, the final results are grouped depending
on the number of nodes in the vehicular network and plotted
by using the boxplots, usually used for describing the salient
features of a distribution.



Fig. 3: Error rate comparison between the proposed community
detection algorithm and the traditional Louvain method.

Discussion on the novel proximity graph: The first notable
result achieved by the proposed system is improvement on the
community detection because of the novel way the system
assigns weights to the links (refer to Algorithm 1). Fig. 3
compares our approach with the traditional one by running the
Louvain algorithm with varying number of honest and selfish
vehicles. For better understanding, let us introduce the Error
rate as the ratio of the majority class within the community
cluster (i.e., honest or sybil) and the total number of vehicles in-
side the community. It is evident that our approach outperforms
the original one in every case, thus ensuring a lower Error
rate. Hence, we are able to obtain a better Louvain community
detection as it aims to have relatively many positive links within
communities, while for negative links the opposite holds.

Discussion on the sybil detection performance: To better
demonstrate the potential of our approach we have conducted
experiments aiming to make a direct comparison against two
algorithms applied to the OSN domain SybilRadar [21] and
SybilExposer [19]. These experiments are justified by the fact
that our approach, similarly to these works, exploits the struc-
tural features to discover the accounts of the sibyl nodes within
the OSNs. The Fig. 4a shows that SybilDriver requires more
execution time than the two other techniques. This additional
runtime is mainly due to the various phases of the proposed
algorithm. In fact, SybilExposer is composed only by the
community detection phase, while SybilRadar by the edge
weighing and Random Walk-based trust propagation phases.
However, even if the higher number of steps results in a higher
runtime, the proposed technique requires an execution time
less than seconds, an acceptable value for real-time vehicular
crowdsensing applications. Regarding the sybil’s detection,
Fig. 4b and Fig. 4c show how our approach outperforms other
methods when varying the number of vehicles inside the VSN.
Indeed, by increasing the number of the vehicles, the system is
always able to achieve high values of accuracy and F-Score. On
the contrary, the main reason of the low detection performances
of the other techniques is due to the number of nodes that,
in an urban context, is much lower than in an OSN. As an
example consider SybilRadar that uses a Short Random Walk-
based Trust Propagation (SRW-TP) approach to identify sibyl
vehicles. Given a graph and a trusted node (as start point), the
SRW-TP selects a neighbor at random, moves to this neighbor,

and propagates the trust value. This process continues until a
stopping criterion is reached causing each vehicle to have a trust
score. In a VSN, where the interconnected vehicles is quite lim-
ited, the probability that a sybil node will attach to multiple trust
nodes is very high as well as the probability that the SRW-TP
chooses the malicious node several times to propagate the trust
value. This behavior causes a sibyl vehicle to have a very high
chance to gain a high trust value and be misclassified as honest.
Contrary to SybilRadar, SybilExposer does not use any trusted
nodes in the social graph and does not depend on the SRW-TP.
The idea is to use the node diversity and community diversity
properties of the social graph with the aim to identify the sybil
nodes as part of a sybil community. However, interconnections
between nodes within a VSN are made on the fly regardless
of any known relationship. This suggests that if selfish is able
to create a sufficiently large community of Sibyl nodes the
system will not be able to distinguish between honest and Sibyl
communities, thus leading to an incorrect classification. We
conclude that SybilExposer, SybilRadar, and many other works
having similar characteristics, rely on assumptions (see Sec. II)
that are not valid in VSN applications and inevitably lead to
poor performance in terms of detection accuracy.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel URP model aiming to
reduce sybils in vehicular crowdsourcing campaigns. The core
of this URP is SybilDriver, a sybil detection approach based on
a combination of proximity graph, Louvain and RF techniques
to recruit the best set of participants from VSNs by removing
sybil entities and, thus, reducing the possibility of false reports.
Through extensive experimental analysis, we demonstrated that
the proposed model outperforms other state-of-the-art schemes
usually adopted in OSN applications. The results obtained
by the proposed system demonstrate that the majority of the
generated sybil vehicles is filtered by the Community Detection
and Ranking, and Smart Sybil Detection algorithms. Thus,
even if selfish vehicles are able to generate sibyl entities and
are selected by URP, our system, by filtering-out as much as
possible the generated sibyls, is able to strongly reduce their
influence in the vehicular network, making their attempt to
manipulate the belief about a sensing task ineffective. The
performance comparison also demonstrates that the response
time is suitable for real-time VSN applications.

Our future work will be devoted at improving the perfor-
mance of the system from different aspects. First, the current
output of the system could be used to conduct a more accurate
offline analysis to enhance the detection of sybil vehicles. In
addition, since the proposed algorithm relies on a reputation
system, we plan to extend our approach by integrating a trust
management module to estimate the user’s trustworthiness and
discourage malicious behavior in real-time VSN applications.
Finally, we plan to propose an extension of this work by
including quality contributions of every recruited participant
to determine whether the contribution is true or false [32].



(a) (b) (c)

Fig. 4: Running time: (a) Accuracy and (b) F-Score comparisons for different approaches for varying number of vehicles.
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