
NDS LAB - Networking and Distributed Systems 
http://www.diid.unipa.it/networks/ 

 

      
 
 
 
 
 

Adversarial Machine Learning in e-Health: attacking a 
Smart Prescription System 
 
Article 
 
Accepted version 
 
 
 
S. Gaglio, A. Giammanco, G. Lo Re, M. Morana 
 
Proceedings of AI*IA 2021 Advances in Artificial Intelligence:  
XX International Conference of the Italian Association for 
Artificial Intelligence, Milan, Italy, 2021. 
 
 
 
 
It is advisable to refer to the publisher’s version if you intend to cite 
from the work. 
 
Publisher: Springer 



Adversarial Machine Learning in e-Health:
attacking a Smart Prescription System

Salvatore Gaglio1,2, Andrea Giammanco2, Giuseppe Lo Re1,2, Marco Morana1,2

1Smart Cities and Communities National Lab CINI - Consorzio Interuniversitario
Nazionale per l’Informatica

2Dept. of Engineering, University of Palermo, Palermo, Italy
{salvatore.gaglio, andrea.giammanco, giuseppe.lore,

marco.morana}@unipa.it

Abstract. Machine learning (ML) algorithms are the basis of many ser-
vices we rely on in our everyday life. For this reason, a new research line
has recently emerged with the aim of investigating how ML can be misled
by adversarial examples. In this paper we address an e-health scenario in
which an automatic system for prescriptions can be deceived by inputs
forged to subvert the model’s prediction. In particular, we present an
algorithm capable of generating a precise sequence of moves that the ad-
versary has to take in order to elude the automatic prescription service.
Experimental analyses performed on a real dataset of patients’ clinical
records show that a minimal alteration of the clinical records can subvert
predictions with high probability.

Keywords: Adversarial Machine Learning · Healthcare · Evasion attacks.

1 Introduction

Machine learning algorithms are extensively adopted in scenarios where the anal-
ysis of large amounts of data is mandatory [28]. Typically, the higher the con-
fidence of the automatic learning algorithm on its predictions, the higher the
trust that the practitioner has towards the model, orienting his decisions ac-
cordingly. In recent years, a novel research line, named Adversarial Machine
Learning (AML), is studying how to exploit the same optimization mechanism
at the core of ML algorithms with an opposite intent: to let the model be sure,
with high confidence, about an erroneous prediction. In particular, Adversarial
examples are defined as “those that change the verdicts of machine learning sys-
tems but not those of humans” [7]. Because of the immediateness for a human
to verify the appearance of a certain image and evaluate the correctness of the
classifier, image processing has been for several years the most common scenario
in which the effectiveness of adversarial examples can be demonstrated. In this
context, the attacks are aimed at creating noise patterns [29] that exhibit two
main characteristics: their superimposition over the original image is invisible to
the human eye, and they cause an error in the classification algorithm. More-
over, algorithms for adversarial images corruption can heavily exploit the very
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large number of features (i.e., all the pixels of the image), as well as their scale
of variability depending on the adopted encoding, so that the ascent along the
gradient can proceed simultaneously in multiple directions at the same time. In
other application domains, understanding the best way to corrupt the input with
adversarial noise can be very challenging. For instance, considering a malware
detection algorithm based on the API calls made by a software [15], one possi-
ble adversarial noise may consist in adding innocuous calls [5], while preserving
the malicious behavior of the software. In an ambient intelligence scenario [4],
sensors’ raw data can be altered through a vector of carefully selected real val-
ues, in order to let a smart anomaly detection system [12] raise false irregularity
alerts regarding users’ behaviors, or interrupt the operation of an intelligent
energy-saving system [13]. Assuming the presence of a Reputation Management
System capable of identifying malicious entities in a sharing environment [2, 3],
changing the released feedback patterns can refresh the bad reputation of an
adversary. Conjugated in Online Social Networks, slight modifications in spam-
mers behavior (e.g., inflating the number of innocuous tweets) can hide their
malicious intent to an intelligent detector [11]. Systems relying on smartphones
sensors to recognize the activities carried out by users [9, 10], may be trained
on corrupted labeled data and fail in their identification task worsening the end
services provided. In other domains, guaranteeing that the final verdict of the
human remains unchanged is not straightforward. In a healthcare scenario, for
example, it would mean that an expert clinician should not alter his judgment in
the face of an altered clinical record. However, if the adversary’s move consists
in altering the patient’s record, it is highly likely that the final decision made
by the clinician will change. Nonetheless, perturbed clinical records may still
be regarded as adversarial examples, as they share both the final goal to fool
a machine learning algorithm, and the methodology used to get to the specific
noise through the formulation of an optimization problem. In this paper, we
address this issue and show how an adversary may alter binary entries in the
clinical record of a patient in order to elude a smart prescription system. In this
scenario, given that economic return is one of the most common motivations to
conduct adversarial attacks in the healthcare domain [17], we can imagine as
adversary an agent of a pharmaceutical company that produces a particular ac-
tive ingredient, and wants to increase the sales by artificially inflate the number
of prescriptions. In order to elude the smart prescription system, we propose an
algorithm capable of generating the precise sequence of moves that the adversary
has to take, i.e., which binary entries on the clinical record of the patient need
to be flipped. In particular, we assume that the target model to evade is a neural
network, whose parameters can be reasonably emulated by probing the smart
prescription service as a black box [6]. The remainder of the paper is organized
as follows. Section 2 discusses recent studies in the field of AML. Section 3 out-
lines the healthcare scenario considered as case study. Section 4 formalizes the
model of the adversary. Section 5 describes the algorithm to generate the adver-
sarial perturbation for the clinical records of the patients. Section 6 presents the
experimental analysis to validate our proposal. Section 7 draws the conclusions.
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2 Related Work

In recent years, AML has been the subject of studies from multiple fields of
inquiry [6]. These are spearheaded by the image processing field, given the easy
demonstrability of how well-designed adversarial examples are potentially lethal.
In [29] for example, the authors formulate a method to create a perturbation
which is strictly constrained in space, in order to craft a sort of sticker that is
similar to real-world noise. By applying such stickers to danger road signs, state-
of-art object detectors are led to completely different predictions, which can be
fatal for self-driving cars. Considering the speech recognition field, in [21] multi-
ple denoising strategies are leveraged to defend against attempts of altering the
semantics of the sentences. These attempts reveal their full malevolent potential
when cast on popular systems (e.g., Alexa), in order to redirect users to fraudu-
lent sites instead of performing their intended requests. The problem of malware
detection is studied in [24], where a set of instructions are injected after the
return statement of ActionScript programs in order to inflate the detection of
false negatives (i.e., malicious applications classified as benign) without altering
the behavior of the code. In [5] is presented a similar approach, where the malev-
olent behavior in terms of Windows API calls is kept fixed, while the addition of
benign calls serves the purpose to inflate the recognition of false negatives. The
security of machine learning algorithms in mobile edge computing scenarios is
addressed in [30], where false data are injected in the training set of the models
in order to alter the aggregated results computed by the server, and in turn, the
service offered to end users. The authors propose a graph matching algorithm
to filter outliers according to the distance between the graph inferred from data,
and the graph extracted from popular location based social networks. Network
intrusion detection systems are examined in [8], where an autoencoder is em-
ployed to generate features resembling the benign class, which an attacker can
use to circumvent automatic detectors. With regard to the healthcare domain,
in [26] the authors evaluated the impact of several attack algorithms against
models trained on a dataset containing ten vital signs of patients, showing how
both attacks during training and test phase can have perilous implications. How-
ever, it is not formulated a precise sequence of steps the adversary has to make
in order to achieve his goal, given that the perturbation is a real number which
is difficult to interpret, and thus, inject into the data in a realistic scenario.

3 Case Study

Electronic healthcare represents an ideal scenario to describe an adversary attack
because of the strong economic interests that move the pharmaceutical produc-
tion. In this paper we consider a typical scenario, schematically represented in
Figure 1, where Alice and Bob are the doctor and the patient respectively. Bob
reports his symptoms to Alice, who compiles a medical record also including
his personal information, so that a decision about which treatment to prescribe
can be made. In order to refine her decision, Alice relies on a trusted Smart
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Fig. 1. A Smart Prescription System with adversary.

Prescription Service on cloud, which is able to reason about the information in
the medical record and suggest appropriate treatment. It is assumed that the
model beneath this service is a neural network. In this context, a pharmaceutical
company infiltrator named Darth, gains an economic return when a drug of its
corporation is prescribed. Darth suggests Alice to install a software in the host
that will interact with the cloud service, whose stated purpose is to optimize
response times and effectiveness of the prescription system. Actually, this pro-
gram performs an AML algorithm able to elude the Smart Prescription Service
and induce the prescription of Darth’s intended treatment. In particular, this
middleware software identifies a restricted set of features which have to be al-
tered in order to deceive the predictor in the cloud. Altering just a few features
is a characteristic of the utmost importance in this scenario, since the Smart
Prescription Service may return a detailed report including the altered clinical
record received as input, which therefore needs to contain no striking changes in
order not to make any doctor suspicious. Finally, Alice will weigh her judgment
based on the response of the intelligent service, resulting in the prescription of
Darth’s intended drug with high probability. The following subsections describe
the attack.

4 Threat Model

Following the guidelines proposed in [6], in this section we frame the model
of the adversary according to three main aspects: what is the pursued security
breach (attacker’s goal); what is the degree of acquired knowledge on the problem
domain (attacker’s knowledge); what are the concrete viable actions to achieve
the malevolent intent (attacker’s capability).

Attacker’s goal: the adversary carries out an integrity violation of the pre-
dictive algorithm in order to flip its belief without disrupting the system in
the whole, thus protecting himself from the risk of being caught. The attack
specificity is indiscriminate, since the adversary does not make any distinction
between the patients he wants to fool at his benefit. Accordingly, the error speci-
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ficity is specific, as the target label, i.e., the active principle, that the adversary
wants to be prescribed to raise an economic return for his company, is prefixed.

Attacker’s knowledge: we assume the adversary has perfect knowledge
on the domain at hand, in other words, he conducts a white-box attack. The
parameters (weights and biases) and hyperparameters (number of layers, num-
ber of neurons per layer) of the neural network under attack are known to the
adversary, as well as the feature representation of the data. What needs not
to be necessarily known are the portion of samples being part of the training
set, and certain hyperparameters of the training process such as the batch size,
the number of epochs, the learning rate, the weight decay factor adopted as
regularizer, and the momentum coefficient for gradient descent. Although these
assumptions may seem highly unlikely, it is common practice to test the strength
of a machine learning model against the worst case scenario, so that under real
and softer conditions the security of the system should not decrease. Moreover,
in light of the transferability property of adversarial attacks [16], the model’s
parameters can be estimated by querying repeatedly, until a surrogate model
capable of providing the same answers as the target model can be built.

Attacker’s capability: the attack influence is exploratory, as the adversary
has no access to the training data, and can only corrupt data belonging to the
test set. The data manipulation constraints strongly depend on the particular
scenario we are addressing in this study, where data are in the form of binary
feature vectors. It is thus clear that the adversary has to respect the range of
allowed values in the clinical records of the patients, i.e., values either of 0 or 1.

5 Methodology

The target Smart Prescription Service is a neural network, whose structure
will be further investigated in Section 6.1. The pseudocode for the proposed
strategy to create an effective perturbation against this model is provided in
Algorithm 1. Our approach leverages the logic behind the Fast Gradient Sign
Method (FGSM) [20], by first computing the gradient of the model’s loss function
L(θ, x, y) with respect to the input vector x, ground truth label y, and trained
parameters θ. It then selects the least amount of features whose perturbation
leads to the most precipitous step taken along the direction of the gradient. In
what follows we retrace the complete logical flow of the proposed algorithm.

This algorithm is executed by the malicious code injected by Darth into Al-
ice’s PC. The first step of the attack consists in computing the forward pass
of the neural network w.r.t. the input vector x Darth wants to perturb. If the
hypothesis of the model ŷ is different from the target label ytarget, Darth’s ob-
jective is to flip the predicted label for the input vector x to the intended one.
In other terms, the goal of the attack is to find the perturbation δ such that
hθ(x + δ) ̸= ŷ. First, Darth puts in place a revised version of FGSM [20]. The
traditional approach aims at climbing up the gradient by adding the perturba-
tion ξ = ϵ · sign(∇xL(θ, x, y)), for a given ϵ > 0, so that the perturbation vector
ξ is composed by values equal to ±ϵ. ∇x symbolizes the gradient taken w.r.t. the
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Algorithm 1 Binary Adversarial Perturbation

Input:
x: the input binary feature vector to perturb;
y: the ground truth label for x;
mask: a binary indicator of alterable features;
θ: trained parameters of the neural network;
ψ: number of binary features the adversary may perturb;
ytarget: the desired output label.

Output:
δ: perturbation to add to the input sample such that: hθ(x+ δ) = ytarget ̸= ŷ.

1: ŷ ← hθ(x)
2: δ ← zeros like(x)
3: if ŷ == ytarget then
4: return δ
5: ξ ← ∇xL(θ, x, y)
6: ξranked ← sort descending(ξ, key = abs)
7: flippable← mask & (x⊕ sign(ξ))
8: counter ← 0
9: for value ∈ ξranked do
10: if counter == ψ then
11: break
12: idx← ξ.index(value)
13: if flippable[idx] == 1 then
14: if x[idx] == 0 then
15: δ[idx]← +1
16: else if x[idx] == 1 then
17: δ[idx]← −1
18: counter ← counter + 1
19: return δ

input vector. In this paper we decided to consider only the term ξ = ∇xL(θ, x, y),
so that each single ξi ∈ R. The reason lies in the need to select only a small subset
of the input features to perturb. Opposed to the image processing domain, where
each pixel may be perturbed with a small step in its scale of representation, in
different domains where the features may assume a limited set of values (in this
case, binary values), each single perturbation added to the input features has
to be selected with care. Therefore, from the real-valued perturbations vector ξ,
Darth has to craft a binary perturbation mask to add to the input sample in
order to flip the neural network’s prediction. Initially, Darth sorts the pertur-
bation vector ξ according to the absolute values of its components. The higher
the value in ξ for a specific feature, the higher the contribute along the error
that its perturbation will induce, thus becoming the optimum target. Let us now
suppose that the application domain imposes some constraints on the features
that may be altered; we represent these constraints in the form of a binary mask
as input to our algorithm, where the presence of a 1 indicates that the related
feature may be perturbed. This mask explicates those features whose alteration
is risky, because they can easily lead to the possibility of being disclosed during
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the attack. Another input parameter to the attack algorithm is the maximum
number of features ψ that Darth may alter from the input vector. A single input
feature xi may be altered in two cases:

1. xi == 1 and the perturbation which results from ascending along the gradi-
ent of the loss function has negative sign, i.e. sign(ξi) = −, so that xi may
be flipped by adding δi = −1. In other words, a feature value of 1 can be
altered to 0 only if the sign of the gradient along that feature is negative;

2. xi == 0 and the perturbation has positive sign instead, i.e. sign(ξi) = +, so
that in order to flip xi, δi = +1 may be added.

To achieve this aim, we first take the sign of the perturbation vector ξ, sign(ξ),
which is then XORed with the input vector x: x⊕sign(ξ), so as to obtain a True
value only when the input feature is 1 and the perturbation has negative sign,
and vice versa. We represent sign(ξ) as a binary vector where 1 stands for the
sign ’+’ and 0 for ’-’. The result of this operation is then processed with a bit-wise
AND with the input mask: flippable = mask & (x ⊕ sign(ξ)). This operation
results in a binary vector, flippable, which signals all those features that, if
altered, make the neural network increase the error, because their alteration is
concordant with the direction of the loss’s gradient. Finally, having the list of
features he may alter to deceive the neural network, Darth chooses the ψ features
with maximum absolute value, in order to take the gradient’s sharpest stride.

In order to achieve the attack, Darth must have a deep knowledge of the
medical domain he is going to infiltrate. This implies the awareness of both
the set of alterable features to compose the mask and, most importantly, the
parameters θ of the model beneath the smart prescription service. The latter can
be achieved by probing the service as a black box, and building a surrogate model
which responds in the most similar manner to the smart prescription service [6].
This approach finds his justification in the demonstrated transferability property
of adversarial attacks [16]. When Alice provides Bob’s clinical record to Darth,
he first decides a threshold ψ of maximum binary feature values to perturb.
He computes the loss’ gradient ∇x of the surrogate model’s parameters with
respect to Bob’s record. The most proficient features to alter are those which
posses three properties: they do not appear in themask of inconvenient features;
they have the highest correspondent module in ∇x; their alteration is concordant
with the respective sign of ∇x. The perturbed clinical record is then provided to
the smart prescription service, which will return, with high probability, a report
to Alice containing Darth’s intended medicine as the suggested prescription. It
is Darth’s concern to select ψ as a good trade-off between an higher probability
of subverting the smart prescriber prediction, and a lower probability of raising
Alice’s doubts towards the model’s outcome.



8 S. Gaglio et al.

6 Experimental Analysis

In order to validate our proposal, we adopted the AMR-UTI dataset1 [18,23,27],
which contains electronic health records of patients with urinary tract infections.
Each record consists of demographic information, past clinical data such as pre-
vious antibiotic exposure or resistance, and the antibiotic prescription chosen
by a clinician to treat the patient. This dataset, allows to train a model able to
prescribe the so-called “empiric antibiotic treatment”, which the patient should
take while waiting the necessary three days for the accurate response from his
urinal specimen analysis. In our scenario, the interest of the adversary lies in
altering the treatment chosen by the model, simultaneously respecting any con-
traindications w.r.t. the patient’s clinical status. In particular, we considered the
patients who were treated with a first-line antibiotic, which is one of two classes:
nitrofurantoin (NIT) and trimethoprim-sulfamethoxazole (SXT). The authors of
the dataset provided a train/test division based on the years: specimen samples
of the train set have been collected during the years 2007-2013, whereas the
specimen in the test set refers to the period 2014-2016. Respecting this origi-
nal division, the train set of first-line prescriptions contains 6815 samples, while
the test set contains 2618 samples. Among the train set, 1892 samples received
an empirical prescription of nitrofurantoin (NIT), and 4923 the trimethoprim-
sulfamethoxazole (SXT). In the test set, 1358 samples where prescribed nitrofu-
rantoin (NIT), the remaining 1260 trimethoprim-sulfamethoxazole (SXT).

Among the features exposed in the AMR-UTI dataset, we considered the
patients’ demographic information as “not-corruptible” (which we model through
the input mask in Algorithm 1), in the sense that the adversary has no interest
in altering these information in the clinical record of the patient, because of their
ease of counter-proofing with reality. By performing other preprocessing steps
which are released as part of the source code2, we resort to a set of 564 binary
features which are represented with different time granularities. In this paper, we
restrict the analysis to the features registered within 180 days, also because this
is the time window most commonly shared between all the features, for a total
amount of 135. Finally, we select the κ best features according to the chi-square
independence test [25], where κ is considered as one of the hyperparameters
whose exploration will be further described in the next subsection. Having fixed
a specific value for κ, we remove all those samples with equal binary features
values but different label.

6.1 The classification network

Experiments were performed starting from an existing neural network3, which
we extended by adding the cross entropy loss function, the softmax activation
layer, the momentum gradient descent, the regularization through weight decay,

1 https://www.physionet.org/content/antimicrobial-resistance-uti/1.0.0/
2 https://github.com/agiammanco94/AIxIA2021
3 https://github.com/RafayAK/NothingButNumPy

https://www.physionet.org/content/antimicrobial-resistance-uti/1.0.0/
https://github.com/agiammanco94/AIxIA2021
https://github.com/RafayAK/NothingButNumPy
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Table 1. Ranges of values for the hyperparameters explored with Random Search.

Category Hyperparameter Min Max

Network
Number of layers 2 7

Number of neurons in 1st layer 50 500

Dataset Number of κ features 20 70

Learning rate α 1e−4 1e−3

Training Weight decay λ 1e−5 1e−3

Momentum ν 1e−3 8e−1

the random search algorithm for hyperparameters tuning [19], the FGSM [20],
and the attack algorithm proposed in this work. We employ the random search
approach [19] to explore different structures for the neural network (in terms of
number of layers, and number of neurons per layer) and different configurations
of the training phase (the learning rate, weight decay, and momentum factors
for the gradient descent algorithm). Table 1 shows the range of values explored
for each of the hyperparameters: in each experiment, a uniform probability with
Min and Max as extremes is sampled for every hyperparameter. In particular,
once the number of neurons for the first layer had been selected, the neurons for
the subsequent layers are halved, given that a preliminary experimental evalua-
tion proved this architectural choice to be more effective. The number of neurons
in the last layer is equal to 2, since there are two classes (NIT and SXT) in the
problem we are addressing. The activation functions employed are the ReLU for
all the intermediate layers, and the Softmax for the output layer. This choice led
to the adoption of the weights initialization procedure described in [22], which
has been proved to be the optimal choice to combine with ReLU layers.

The f-score measure [19] has been employed to evaluate the effectiveness of
the neural network classification; to be more specific, f-score values have been
computed for each of the two classes separately, thus by assuming NIT and SXT
as the positive class in turn. Then, in order to evaluate the effectiveness of the
attack algorithm, the analysis was restricted to the portion of samples of the
test set that the neural network identifies correctly, and we measured the error
percentage of the model w.r.t. the corrupted input samples of a specific class as:

error < class >=
|hθ(x+ δ) ̸= class & hθ(x) = class = y|

|hθ(x) = class = y|
,

where hθ is the hypothesis of the model with the trained parameters θ, x is
the set of samples in the test set, δ is the perturbation created with the attack
algorithm, and y is the ground truth class.

6.2 Results and discussion

We ran 50 batches of experiments where the neural network architecture hy-
perparameters are sampled from ranges shown in Table 1. For each batch, 50
different samplings of training hyperparameters have been explored while keep-
ing fixed the network structure sharing such values in all neurons, so resulting



10 S. Gaglio et al.

Table 2. F-score and errors of the best performing experiment in each group.

Exp.
f-score f-score error NIT error SXT
NIT SXT ψ = 1 ψ = 2 ψ = 3 ψ = 4 ψ = 5 ψ = 1 ψ = 2 ψ = 3 ψ = 4 ψ = 5

1 0.80 0.72 0.74 1.00 1.00 1.00 1.00 0.71 0.96 1.00 1.00 1.00
2 0.73 0.70 0.58 0.87 0.97 1.00 1.00 0.78 1.00 1.00 1.00 1.00
3 0.64 0.67 0.31 0.70 0.89 0.96 1.00 0.29 0.60 0.84 0.95 1.00

Table 3. Hyperparameters of the most significant experiments.

Experiment Neurons κ α λ ν

1 145, 2 29 6.70e−4 1.71e−4 4.38e−1

2 177, 2 42 5.40e−4 1.36e−4 7.49e−3

3 215, 2 59 5.18e−4 3.25e−5 7.65e−1

in a total number of 2500 configurations. Results have been analyzed according
to the value of κ; in particular we considered three ranges of values, i.e., κ in
[20; 30], [31; 50], and [51; 70]. For the sake of clarity, in Table 2 we present the
most significant results from each group, while the corresponding hyperparam-
eters are reported in Table 3. In particular, Table 2 shows the f-scores of the
selected models w.r.t. the two classes, as well as the error percentage due to the
injection of ψ ∈ [1, 2, 3, 4, 5] binary feature values into the test data with our
attack algorithm. When the dataset is preprocessed in order to select only the
κ = 29 most meaningful features (first row), our attack procedure with ψ = 3
allowed to completely mislead the neural network for all the test data. This
result can be due to the extreme sparsity of the AMR-UTI dataset, in which
the vast majority of the binary features have value 0. For such a reason, when a
binary feature value is flipped from 0 to 1 in the direction of the loss’ gradient, it
is extremely likely that the new feature becomes “characteristic” for the target
class, thus flipping the label with high probability. As the number of features
considered increases, an higher quantity of features needs to be perturbed in
order to completely subvert the predictions, in particular, for κ = 42 and κ = 59
(second and third row of Table 2), the best performances of the algorithm are
achieved by altering 4 and 5 features respectively.

In order to provide a more in-depth analysis of the features that have actu-
ally been altered in the experiments carried out, Figure 2 shows the percentage
of times that a given feature has been chosen by our algorithm, and the corre-
sponding success rate in deceiving the model. The two heatmaps are computed
aggregating the results of the three experiments reported in Table 2. It is im-
portant to note that the percentages of feature selections depicted in the first
heatmap have unitary sum for a fixed value of ψ, meaning that the shown set
of features contains all the perturbed ones. Instead, the percentages of success
due to feature perturbations represented in the second heatmap sum to the er-
ror rate of the model, e.g., when ψ = 5 the percentages of success add up to
1, since results shown full model deception in all the experiments by altering 5
features. The most selected feature (38) is related to breathing difficulties, and
it has been chosen for the 13.67% of times across both all the experiments and
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Fig. 2. Heatmaps of the perturbed features by our attack algorithm, and the respective
success percentage in changing the prediction of the model.

ψ values, leading to success in 8.89% of cases w.r.t. the total of all other per-
turbation attempts. The motivation behind this fact can be traced back to the
adverse effects of the two active principles. Indeed, among the side effects of ni-
trofurantoin assumption4 there is pulmonary toxicity, which is instead absent in
trimethoprim-sulfamethoxazole’s side effects5. In light of this consideration, our
approach realized the shrewd behavior of the doctor prescribing SXT treatment
for patients who have recently experienced breathing complications.

7 Conclusions

In this paper, we proposed an algorithm for the generation of adversarial ex-
amples in scenarios with electronic health records in the form of binary data.
In particular, we studied how an adversary may alter the medical record of a
patient in order to fool an intelligent system for antibiotic prescription. The ex-
perimental results showed that even only modifying three fields in the patient
record, a trained neural network can almost always be induced into suggesting
a prearranged treatment. As part of our future works, we want to eliminate the
time granularity as input parameter to filter the dataset. For example, if the
adversarial noise produced by an attack algorithm suggests to modify a feature
with time granularity equal to 14 days from 0 to 1, then, all the features falling
in the same category and with a granularity > 14 should be set to 1. Moreover,
we plan to define an automatic strategy for dynamically choosing the number of
ψ features to perturb based on the magnitude of the gradient, so that ψ does not
need to be specified as input to the approach. Finally, we want to investigate the
feasibility of our approach in other smart environments such as university cam-
puses [1], where adversarial attacks aim at disrupting the provision of intelligent
services to users [14].

4 https://www.msdmanuals.com/professional/infectious-diseases/

bacteria-and-antibacterial-drugs/nitrofurantoin
5 https://www.msdmanuals.com/professional/infectious-diseases/

bacteria-and-antibacterial-drugs/trimethoprim-and-sulfamethoxazole

https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/nitrofurantoin
https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/nitrofurantoin
https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/trimethoprim-and-sulfamethoxazole
https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/trimethoprim-and-sulfamethoxazole


12 S. Gaglio et al.

References

1. Agate, V., Concone, F., Ferraro, P.: Wip: Smart services for an augmented campus.
In: 2018 IEEE International Conference on Smart Computing. pp. 276–278 (2018)

2. Agate, V., De Paola, A., Gaglio, S., Lo Re, G., Morana, M.: A framework for par-
allel assessment of reputation management systems. In: 17th International Confer-
ence on Computer Systems and Technologies. pp. 121–128 (2016)

3. Agate, V., De Paola, A., Lo Re, G., Morana, M.: A simulation software for the
evaluation of vulnerabilities in reputation management systems. ACM Transactions
on Computer Systems (TOCS) 37(1-4), 1–30 (2021)

4. Agate, V., Ferraro, P., Gaglio, S.: A cognitive architecture for ambient intelligence
systems. In: AIC. pp. 52–58 (2018)

5. Al-Dujaili, A., Huang, A., Hemberg, E., O’Reilly, U.M.: Adversarial deep learn-
ing for robust detection of binary encoded malware. In: 2018 IEEE Security and
Privacy Workshops (SPW). pp. 76–82 (2018)

6. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition 84, 317–331 (2018)

7. Buckner, C.: Understanding adversarial examples requires a theory of artefacts for
deep learning. Nature Machine Intelligence pp. 1–6 (2020)

8. Chen, J., Wu, D., Zhao, Y., Sharma, N., Blumenstein, M., Yu, S.: Fooling intrusion
detection systems using adversarially autoencoder. Digital Communications and
Networks (2020)

9. Concone, F., Gaglio, S., Lo Re, G., Morana, M.: Smartphone data analysis for
human activity recognition. In: Conference of the Italian Association for Artificial
Intelligence. pp. 58–71. Springer (2017)

10. Concone, F., Lo Re, G., Morana, M.: A fog-based application for human activity
recognition using personal smart devices. ACM Transactions on Internet Technol-
ogy (TOIT) 19(2), 1–20 (2019)

11. Concone, F., Lo Re, G., Morana, M., Ruocco, C.: Twitter spam account detection
by effective labeling. In: ITASEC (2019)

12. De Paola, A., Ferraro, P., Gaglio, S., Lo Re, G., Morana, M., Ortolani, M., Peri,
D.: A context-aware system for ambient assisted living. In: Ochoa, S.F., Singh,
P., Bravo, J. (eds.) Ubiquitous Computing and Ambient Intelligence. pp. 426–438.
Springer International Publishing, Cham (2017)

13. De Paola, A., Ferraro, P., Lo Re, G., Morana, M., Ortolani, M.: A fog-based hy-
brid intelligent system for energy saving in smart buildings. Journal of Ambient
Intelligence and Humanized Computing 11(7), 2793–2807 (2020)

14. De Paola, A., Gaglio, S., Giammanco, A., Lo Re, G., Morana, M.: A multi-agent
system for itinerary suggestion in smart environments. CAAI Transactions on In-
telligence Technology (2021)

15. De Paola, A., Gaglio, S., Lo Re, G., Morana, M.: A hybrid system for malware
detection on big data. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). pp. 45–50 (2018)

16. Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-
Rotaru, C., Roli, F.: Why do adversarial attacks transfer? explaining transfer-
ability of evasion and poisoning attacks. In: 28th {USENIX} Security Symposium
({USENIX} Security 19). pp. 321–338 (2019)

17. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.:
Adversarial attacks on medical machine learning. Science 363(6433) (2019)



Adversarial ML in e-Health: attacking a Smart Prescription System 13

18. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark,
R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, phys-
iotoolkit, and physionet: components of a new research resource for complex phys-
iologic signals. circulation 101(23), e215–e220 (2000)

19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
20. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial ex-

amples. In: International Conference on Learning Representations (2015)
21. Guo, Q., Ye, J., Chen, Y., Hu, Y., Lan, Y., Zhang, G., Li, X.: INOR—An In-

telligent noise reduction method to defend against adversarial audio examples.
Neurocomputing 401, 160–172 (2020)

22. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV) (2015)

23. Kanjilal, S., Oberst, M., Boominathan, S., Zhou, H., Hooper, D.C., Sontag, D.: A
decision algorithm to promote outpatient antimicrobial stewardship for uncompli-
cated urinary tract infection. Science Translational Medicine 12(568) (2020)

24. Maiorca, D., Demontis, A., Biggio, B., Roli, F., Giacinto, G.: Adversarial Detection
of Flash Malware: Limitations and Open Issues. Computers & Security 96 (2020)

25. McHugh, M.L.: The chi-square test of independence. Biochemia medica 23(2),
143–149 (2013)

26. Newaz, A.I., Haque, N.I., Sikder, A.K., Rahman, M.A., Uluagac, A.S.: Adversarial
attacks to machine learning-based smart healthcare systems. In: GLOBECOM
2020 - 2020 IEEE Global Communications Conference. pp. 1–6 (2020)

27. Oberst, M., Boominathan, S., Zhou, H., Kanjilal, S., Sontag, D.: Amr-uti: Antimi-
crobial resistance in urinary tract infections (version 1.0.0). Physionet (2020)

28. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer,
J.S.: A survey on distributed machine learning. ACM Computing Surveys (CSUR)
53(2), 1–33 (2020)

29. Xue, M., Yuan, C., He, C., Wang, J., Liu, W.: NaturalAE: Natural and robust
physical adversarial examples for object detectors. Journal of Information Security
and Applications 57, 102694 (2021)

30. Zhao, P., Huang, H., Zhao, X., Huang, D.: P3: Privacy-preserving scheme against
poisoning attacks in mobile-edge computing. IEEE Transactions on Computational
Social Systems (2020)


	Adversarial Machine Learning in e-Health:  attacking a Smart Prescription System

