
NDS LAB - Networking and Distributed Systems
http://www.dicgim.unipa.it/networks/

Distributed Symbolic Network Quality Assessment for Resource-
constrained Devices

Andrea Augello, Salvatore Gaglio, Giuseppe Lo Re, Daniele Peri

In Proceedings of the International Conference on Emerging
Technologies and Factory Automation (ETFA'21)

Article

Accepted version

It is advisable to refer to the publisher’s version if you intend to cite
from the work.

Publisher: IEEE



DRAFT

Distributed Symbolic Network Quality Assessment
for Resource-constrained Devices

Andrea Augello∗, Salvatore Gaglio∗†, Giuseppe Lo Re∗, and Daniele Peri∗
∗{andrea.augello01, salvatore.gaglio, giuseppe.lore, daniele.peri}@unipa.it

∗ Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
†ICAR-CNR, 90146 Palermo, Italy

Abstract—After a Wireless Sensor Network (WSN) is deployed
it is subject to significant variations of the quality of its radio links
during its lifetime. Knowledge of the condition of the wireless
links can be useful to optimize power consumption and increase
the reliability of the network. However, resource-constrained
nodes may not be able to spare the storage space for network
monitoring code. Also, reprogramming deployed nodes can be
costly or unfeasible. In this work, we show how an approach
based on the exchange of symbolic executable code among
nodes enables the assessment of the network status in terms of
Packet Reception Rate (PRR) with no extra storage requirements
on deployed networks. We also compare the predictions made
through this estimate with the actual network behavior.

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of sensors,
also called nodes, that exchange data through radio interfaces.
WSNs are used in a wide range of endeavors, like military
surveillance, agriculture, environment monitoring, and vehicular
area networks [1].

WSNs typically use low-powered radios, whose signal quality
is highly susceptible to external environmental variables that
can change over time [2]. The quality of radio links can be
subject to fluctuations [3] and may exhibit characteristics that
differ from the ones observed during pre-deployment testing [4].
Message exchanges have a great impact on energy consumption
and network lifetime [5], therefore link failures can cause
a significant increase in energy consumption [6]. Moreover,
knowledge on the link quality can improve the routing inside a
WSN [7]. Thus, assessing the network quality is of the utmost
importance [8].

Traditional approaches to network quality estimation require
some code to be already loaded on the nodes for this specific
purpose [9]–[11]. In this work instead we adopt a symbolic
approach as the basis to implement network quality assessment
on deployed WSNs.

Real-time executable symbolic code exchange between nodes
can introduce complex behaviors into already-deployed WSNs
via runtime code injection [12]. Indeed, the symbolic approach
enables many testing schemes without requiring special-purpose
routines on the nodes [13], leaving more resources available
for other applications.

A symbolic approach is, moreover, easily extended to
application-specific formalisms, such as fuzzy logic [14].

The remainder of the paper is organized as follows: in
Section II we present an overview of the features of the used

software platform, Section III outlines the proposed quality
assessment scheme, in Section IV we provide experimental
results. Finally, Section V reports our conclusions.

II. SYMBOLIC EXECUTION PLATFORM

Popular general-purpose operating systems for WSNs like
TinyOS and Contiki [15] primarily focus on efficient resource
usage and reduced power consumption, and support the
development of high-level applications.

With these frameworks, application code is cross-compiled
and uploaded on the device storage through a wired connection,
with little flexibility and extensibility at runtime, making repro-
gramming already deployed nodes a complex endeavor [16].

Alternatively, interpreted languages enable the dynamic
execution of programs speeding up the development process,
and allowing debugging and modifications to the programs
even at runtime. These interpreters usually run atop a general-
purpose operating system or need to be embedded inside an
application [17], dramatically increasing resource consumption
and memory occupation [18], and limiting the access to the
underlying hardware.

In this work we leveraged the software platform DC4CD [19],
which permits symbolic code injection and execution on
resource-constrained WSN nodes due to its compact memory
footprint.

In DC4CD, which is based on the stack-based programming
language Forth [20], programs consist of sequences of symbols,
called words. Words are stored in a dictionary that can easily
be expanded.

Colon (:) and semicolon (;) are the Forth words to start and
end the definition of new words in terms of a sequence of
already-defined executable words:
:<new word> <word 1> <word 2>...<word n>;

It is also possible to define special symbols, known as
markers, to create restore points in the dictionary: executing a
marker rolls back the dictionary to its state before the marker
was defined, deleting all the words defined after it. These
mechanisms permit the interactive development on resource-
constrained devices [21], even of distributed applications,
reducing development time [22].

Words use a stack to pass return values and parameters, for
example, when executing the sequence of words

1 2 +



DRAFT

Node A

. . . . . . . . . . . . . . . . . .
B

B tell: 1 2 + :tell

Node B

. . . . . . . . . . . . . . . . . .
1 1

2
3

1 2 +

Fig. 1. Stack effects of the execution of the “B tell: 1 2 + :tell”
Forth code. B is placed on the stack of Node A and is consumed by tell:,
Node B executes the arithmetic operations laves the result on top of its stack.

literals 1 and 2 leave their values on top of the stack, to be
consumed by the word +, which then leaves their sum, 3, on
the stack.

To facilitate the exchange of executable symbolic code, the
platform natively provides support to distributed computing
schemes through two special-purpose words, tell: and
:tell. These words build IEEE 802.15.4-2003-compliant
messages containing all the sequence of words enclosed
between them as payload of datalink level packets. These
messages are sent to the node whose MAC address is on top
of the stack when tell: is executed, placing that value in
the destination address field of the packet. Upon reception, the
destination node immediately executes the received instructions
without any further translation step. So if a node were to execute
the code

1D01 tell: VALVE OPEN :tell
then said node would send the message VALVE OPEN to the
MAC address 1D01. The receiving node, provided that its
dictionary holds definitions for the received words, would run
that code producing the desired effect, i.e. opening the valve.

As a more practical example, given two nodes, Node A
and Node B, with A and B being hexadecimal IDs as in the
previous example, when Node A executes the symbolic code

B tell: 1 2 + :tell
B is put on top of Node A stack, and is then consumed by
the tell: :tell construct. All the following words up to
:tell are not executed and are instead put in the payload
of a packet sent to node B as soon as :tell is encountered.
Upon reception, Node B will execute the symbolic code 1 2
+ in the payload leaving the final result on top of its stack.
The effects on the stacks of both nodes are shown in Fig. 1.

III. POINT-TO-POINT PACKET RECEPTION RATE ESTIMATE

As shown in Section II, executable code can be sent as a
chain of symbols inside a regular message. Hence, by sending
the appropriate executable code, it is possible to have the
nodes execute non-trivial actions without programming them
beforehand. Imposing no extra burden on the limited flash
memory of the resource-constrained device.

In this work, we used this characteristic of the adopted
platform to generate a connectivity matrix of the WSN.

We assume a 1-hop star topology, meaning that the bridge
node Node0 can communicate with every other node in the

Node1

Node2

Node0

Node1

Node2

Node0

Node1

Node2

Node0

Node2 tell: Node0 tell: <sequence number> :tell :tell

Node0 tell: <sequence number> :tell

<sequence number>

Fig. 2. Messages sent during one iteration of the point-to-point packet reception
rate estimation.

WSN. To obtain an estimate for the packet reception ratio (PRR)
in each directed link (Node1, Node2) in the network we use a
recursive code exchange, employing nested <destination
address> tell: <code> :tell primitives, building a
chain of messages to force communication between nodes.

The devised scheme entails the following steps:

1) through a serial connection we send instruction to the
bridge node to have it transmit a message to the first
node in the pair;

2) the sent message contains tell: :tell instructions
to forward some payload to the second node in the pair;

3) finally, the second node receives a message with instruc-
tions to send the bridge node a sequence number uniquely
identifying this message;

4) after the time required for Node2 to transmit this
message has elapsed, the last received sequence number
can be retrieved from the top of the stack of the bridge
node, if present;

5) it is then possible to check whether the expected sequence
number was received or some error occurred during this
process.

Fig. 2 shows an example of the exchanged messages in an
instance of this procedure.

These steps are repeated k times for each ordered pair to
obtain an estimate of the ratio of messages lost between the
two nodes. We consider ordered pairs as it is frequent in WSNs
that links are asymmetric [23].

The execution of these steps for each pair yields a connec-
tivity matrix containing the PRR for each directed link in the
WSN (Fig. 3).

The order in which the pairs are tested is randomized to min-
imize spurious correlations with possible external interferences.
In this work, for simplicity, we assume lossless communication
between the nodes and the bridge. In fact, the bridge may not
even be permanently part of the deployed network and act as
a probing node only occasionally instead (e.g. a mobile node
on an unmanned aerial vehicle).



DRAFT
1 2 3 4 5 6 7 8 9 10

 to

1
2

3
4

5
6

7
8

9
10

fro
m

0 0 0 0 0 0 0 0 0
0 0.5 0.2 0 0.2 0.1 0 0 0
0 0.6 0.4 0.4 0.2 0.6 0.4 0.4 0.7
0 0.8 0.4 0.8 0.5 0.9 0.6 0.4 0.6
0 1 0.2 0.9 0.5 0.9 0.3 0.1 0.8
0 0.2 0.2 0.3 0.5 0.3 0.3 0 0.7
0 0 0.3 0.8 0.9 0.6 0.6 0.3 0.9

0.1 0.2 0.1 0.2 0.8 0 0.5 0.2 0.7
0 0 0 0.1 0.1 0.1 0.1 0.1 0.1
0 0.2 0.5 0.8 0.6 0.4 1 0.5 0.1

Fig. 3. Connectivity matrix of the WSN. Each cell contains the PRR between a
pair of deployed nodes computed through 10 iterations of the quality assessment
scheme.

IV. EXPERIMENTAL EVALUATION

To test this system we deployed ten nodes plus a bridge
node in a domestic environment (Fig. 4). All the nodes are
IRIS motes with an IEEE 802.15.4 compliant RF transceiver,
a 4 KB EEPROM, 128 KB of Flash memory, and an 8 KB
static RAM.

0

6

7

5
4

3

2

8

1

9

10

Fig. 4. Nodes distribution inside the home environment where the nodes were
deployed.

The quality assessment was carried out through k = 10
repetitions for each pair of nodes. The resulting connectivity
matrix, expectedly asymmetric, is reported in Fig. 3.

To verify that the predictions provided by our model are in
agreement with the actual behavior of the network we devised
a simple distributed application involving the following steps:

1) the bridge node broadcasts an initialization message to
all the nodes in the network;

2) each node, upon receiving the initialization message,
resets a counter for the received messages and starts a
timer counting down to a value proportional to its ID;

3) when its timer expires each node broadcasts the update
message;

4) whenever a node receives an update message, it incre-
ments its counter.

At the end of the execution, each node is queried for the
number of received messages. Given that part of this test

0.0

0.2

0.4

0.6

0.8

1.0
Node 1 PMF Node 2 PMF Node 3 PMF Node 4 PMF Node 5 PMF

0 5
0.0

0.2

0.4

0.6

0.8

1.0
Node 6 PMF

0 5

Node 7 PMF

0 5

Node 8 PMF

0 5

Node 9 PMF

0 5

Node 10 PMF

Fig. 5. Probability mass function of the random variable “total received
messages” for each node.

scheme deterministically depends on node IDs, we performed
the evaluation by repeating this test ten times assigning each
time a different ID from the 0-65535 range to every node.

When a node broadcasts a message, its reception by all
the other nodes is considered independent. Moreover, we also
assume independence between the reception by a node of
messages coming from different sources.

Under these premises, the reception of each message by
a specific node is a Bernoulli trial, with chances of success
depending on the message source. The total amount of messages
received by a node is then the outcome of a series of
independent Bernoulli trials with distinct distributions. Thus it
can be modeled as a Poisson binomial distribution [24].

Given a set S of nodes, if each node sends one message,
the expected number of received messages by node n is given
by Eq. 1 and its variance by Eq. 2.

µn =
∑

i∈S\n

pn,i (1)

σ2
n =

∑
i∈S\n

(1− pn,i)pn,i (2)

with pi,j corresponding to the PRR in the i-th column and
j-th row of the connectivity matrix in Fig. 3.

Each node has a different probability of receiving messages
from any given origin node and, consequently, a distinct
probability mass function (PMF) for the random variable “total
received messages”. The computed probability mass function
for each node used in the experimental setup is shown in Fig. 5.

The average outcome of ten runs of our experiment compared
to the theoretical value given by the computed PMF is reported
in Fig. 6. Most observed values are within 1.5σ of the predicted
value. The prediction tends to be a lower bound of the actual
number of received messages, partially because the lossless
bridge assumption underestimates link quality and also because
the test application exchanges messages that are much shorter
than the assessment ones (Fig.2) thus having smaller chances
of being corrupted.

As a possible extension, the connectivity matrix, together
with the computed PMFs, could be used as an input to a



DRAFT
1 2 3 4 5 6 7 8 9 10

Node ID

0

2

4

6

8

10

Re
ce

iv
ed

 m
es

sa
ge

s Actual value
Expected value

Fig. 6. Expected and actual number of received messages. The error bars
correspond to 1.5σ.

Bayesian reasoner in order to diagnose issues in the network
and detect malfunctioning or poorly positioned nodes. More-
over, the proposed scheme could also be used to programmati-
cally tune transmission power control parameters and compute
the Expected Transmission Count between nodes during the
network lifetime.

Links characteristics can vary significantly over time, and the
quality assessment is an expensive operation with a required
time that is quadratically proportional to the number of nodes.
The application used to test the quality of the PRR estimation
then can also be used to ascertain whether the previous estimate
is still valid or a new execution is needed.

V. CONCLUSIONS

In this paper we proposed a network quality assessment
scheme rooted in a symbolic programming paradigm based on
the exchange of executable code among nodes. This approach
enables complex network monitoring operations on resource-
constrained devices without the need for any additional code
stored on the nodes. This goal is achieved by sending out
messages containing appropriate instructions at runtime.

Future work will consider extending the proposed scheme
to multi-hop topologies, using the collected data as an input
for a diagnostic Bayesian reasoner, and assessing the impact
of the proposed scheme on node power consumption.

REFERENCES

[1] A. Ali, Y. Ming, S. Chakraborty, and S. Iram, “A comprehensive survey
on real-time applications of WSN,” Future internet, vol. 9, no. 4, p. 77,
2017.

[2] J. Hughes, P. Lazaridis, I. Glover, and A. Ball, “An empirical study
of link quality assessment in wireless sensor networks applicable to
transmission power control protocols,” IET Conference Proceedings,
January 2017. [Online]. Available: https://doi.org/10.1049/cp.2017.0274

[3] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study
of low-power wireless,” ACM Transactions on Sensor Networks (TOSN),
vol. 6, no. 2, pp. 1–49, 2010.

[4] A. Schoofs, G. O’Hare, and A. Ruzzelli, “Debugging Low-Power and
Lossy Wireless Networks: A Survey,” IEEE Communications Surveys
Tutorials, vol. 14, no. 2, pp. 311–321, 2012.

[5] I. Das, R. N. Shaw, and S. Das, “Analysis of Energy Consumption
of Energy Models in Wireless Sensor Networks,” in Innovations in
Electrical and Electronic Engineering, M. N. Favorskaya, S. Mekhilef,
R. K. Pandey, and N. Singh, Eds. Singapore: Springer Singapore, 2021,
pp. 755–764.

[6] R. Kotian, G. Exarchakos, S. Stavros, and A. Liotta, “Impact of
Transmission Power Control in multi-hop networks,” Future Generation
Computer Systems, vol. 75, pp. 94–107, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X16303910

[7] V. N. Medeiros, P. C. G. de Brito, B. Silvestre, and V. da CM Borges,
“Rall: Routing-aware of path length, link quality and traffic load for
wireless sensor networks,” in Proceedings of the Symposium on Applied
Computing, 2017, pp. 594–601.

[8] J. Brown, U. Roedig, C. A. Boano, and K. Römer, “Estimating packet
reception rate in noisy environments,” in 39th Annual IEEE Conference
on Local Computer Networks Workshops, 2014, pp. 583–591.

[9] W. Liu, Y. Xia, R. Luo, and S. Hu, “Lightweight, Fluctuation Insensitive
Multi-Parameter Fusion Link Quality Estimation for Wireless Sensor
Networks,” IEEE Access, vol. 8, pp. 28 496–28 511, 2020.

[10] T. Attia, M. Heusse, B. Tourancheau, and A. Duda, “Experimental
Characterization of LoRaWAN Link Quality,” in 2019 IEEE Global
Communications Conference (GLOBECOM), 2019, pp. 1–6.

[11] M. Chincoli and A. Liotta, “Self-Learning Power Control in Wireless
Sensor Networks,” Sensors, vol. 18, no. 2, 2018. [Online]. Available:
https://www.mdpi.com/1424-8220/18/2/375

[12] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “A Lightweight
Network Discovery Algorithm for Resource-constrained IoT Devices,”
in 2019 International Conference on Computing, Networking and
Communications (ICNC), Feb 2019, pp. 355–359.

[13] A. Augello, R. D’Antoni, S. Gaglio, G. Lo Re, G. Martorella, and
D. Peri, “Verification of Symbolic Distributed Protocols for Networked
Embedded Devices,” in 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1, 2020,
pp. 1177–1180.

[14] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “High-level programming
and symbolic reasoning on IoT resource constrained devices,” Lecture
Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, vol. 150, pp. 58–63, 2015.

[15] A. Yaqoob, M. A. Ashraf, F. Ferooz, A. H. Butt, and Y. D. Khan, “WSN
Operating Systems for Internet of Things (IoT): A Survey,” in 2019
International Conference on Innovative Computing (ICIC). IEEE, 2019,
pp. 1–7.

[16] K. Lehniger, S. Weidling, and M. Schölzel, “Heuristic for page-based
incremental reprogramming of wireless sensor nodes,” in 2018 IEEE
21st International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). IEEE, 2018, pp. 61–66.

[17] K. Grunert, “Overview of JavaScript Engines for Resource-Constrained
Microcontrollers,” in 2020 5th International Conference on Smart and
Sustainable Technologies (SpliTech), 2020, pp. 1–7.

[18] N. Reijers and C.-S. Shih, “Improved ahead-of-time compilation of stack-
based JVM bytecode on resource-constrained devices,” ACM Transactions
on Sensor Networks (TOSN), vol. 15, no. 3, pp. 1–44, 2019.

[19] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “DC4CD: A Platform
for Distributed Computing on Constrained Devices,” ACM Trans. Embed.
Comput. Syst., vol. 17, no. 1, pp. 27:1–27:25, Dec. 2017. [Online].
Available: http://doi.acm.org/10.1145/3105923

[20] D. M. Hanna, B. Jones, L. Lorenz, and S. Porthun, “An embedded
Forth core with floating point and branch prediction,” in 2013 IEEE 56th
International Midwest Symposium on Circuits and Systems (MWSCAS).
IEEE, 2013, pp. 1055–1058.

[21] J. S. Furter and P. C. Hauser, “Interactive control of purpose built
analytical instruments with Forth on microcontrollers - A tutorial,”
Analytica Chimica Acta, vol. 1058, pp. 18–28, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0003267018313278

[22] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “A Fast and Interactive
Approach to Application Development on Wireless Sensor and Actuator
Networks,” in Emerging Technology and Factory Automation (ETFA),
2014 IEEE, Sept 2014, pp. 1–8.

[23] L. Sang, A. Arora, and H. Zhang, “On Link Asymmetry and
One-Way Estimation in Wireless Sensor Networks,” ACM Trans.
Sen. Netw., vol. 6, no. 2, Mar. 2010. [Online]. Available:
https://doi.org/10.1145/1689239.1689242

[24] Y. Hong, “On computing the distribution function for the Poisson
binomial distribution,” Computational Statistics & Data Analysis, vol. 59,
pp. 41–51, Mar 2013.


