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Abstract—In recent years, the widespread diffusion of smart

pervasive devices able to provide AI-based services has en-

couraged research in the definition of new distributed learning

paradigms. Federated Learning (FL) is one of the most recent

approaches which allows devices to collaborate to train AI-based

models, whereas guarantying privacy and lower communication

costs. Although different studies on FL have been conducted,

a general and modular architecture capable of performing well

in different scenarios is still missing. Following this direction,

this paper proposes a general FL framework whose validity is

assessed by considering a distributed activity recognition scenario

in which users’ personal devices are employed as the basis of

the sensing infrastructure. Experimental analysis was performed

to evaluate the effectiveness of the architecture as compared

with a centralized approach, under different settings. Results

demonstrate the versatility and functionality of the proposed

solution.

Index Terms—Federated Learning, Distributed Computing,

Machine Learning, Human Activity Recognition

I. INTRODUCTION

Over the past decade, the diffusion of smart devices has
driven the design of new Artificial Intelligence (AI) and
Machine Learning (ML) solutions that require more and more
computing power. Although simple machine learning models
can be trained with modest amounts of data, more complex
applications may require up to terabytes, or petabytes of
training data. This results into the need to distribute the AI
workload across multiple machines over the network.

Distributed Learning (DL) was introduced to overcome the
problem raised on both the computational and storage sides
of heavy ML models. The core idea of DL is to distribute
the computation along a cluster of devices capable to perform
part of the learning process, while a single central entity is
responsible for aggregating the output from every participant
so as to obtain a better unified model.

Due to its intrinsic nature, Distributed Human Activity
Recognition (DHAR) represents the ideal scenario where DL
can provide significant improvements to the system perfor-
mance. The benefits brought by the distributed paradigm are
countless, but protecting sensitive data is not one of them. In
fact, given the central role of people in the sensing process,
preserving sensitive information is mandatory and, generally,
security mechanisms are designed ad-hoc to fulfill this re-
quirement. This represents a critical aspect in the designing
of a distributed architecture [1]. To better comprehend the
issue, consider a healthcare application in which ML models

are trained on data produced by user’s wearable device to
track health status, e.g., assess if a hospital’s patient performs
sufficient physical activities during the day. Here, the critical
challenge is that all data must be stored and processed within
the hospital. In real life, it is not possible to share user’s
sensitive data with other organizations due to privacy and
security concerns, thus making difficult to train powerful
models because of the lack of required amount of data [2].

Federated Learning (FL) is a very specific distributed ma-
chine learning paradigm that differs from others in at least
three key points [3]. The first is that, in a FL scenario,
direct raw data communications among parties are not allowed.
Since raw data may have multiple ownerships, this makes
FL approaches intrinsically compliant with the related laws.
Moreover, FL allows to exploit the distributed computing
resources in multiple regions or organizations, rather than a
single server, or a cluster in a single region, belonging to a
single organization. This is crucial to enable the collaboration
among multiple organizations [4]. Finally, additional security
mechanisms can be added if required by the application
scenario [5]. Following these motivations, most of the related
work is focused on exploiting the advantages of FL to realise
“federated versions” of common ML algorithms, each accord-
ing to its own architecture.

This paper presents a modular architecture for FL in which a
set of federated aggregators play an intermediary role between
the more highly distributed nodes and the centralised layer.
Although such a solution could be employed in a wide range
of scenarios just modulating its functional components, we
chose to instantiate it to implement a DHAR scenario in which
it is mandatory to protect sensitive data, i.e., the activities
performed by users. In particular, wearable devices aim to
collect data from embedded sensors, and share them with the
federated aggregators at the upper layer. Then, the federated
aggregator uses raw data to (i) infer the activity performed by
the user and (ii) update local ML models to be shared with
the central entity, the only one responsible for the updating of
the global model. We evaluate performance of our architecture
in such a composite scenario and demonstrate that federated
learning is a good trade-off between privacy, performance and
versatility compared to a centralized learning approach for the
training of the HAR classifier.

The remainder of the paper is organised as follows: Related
work is outlined in Section II. The architecture and its main



modules are described in Section III. Experimental setup and
results are presented in Section IV. Conclusions will follow
in Section V.

II. RELATED WORKS

In recent years, research on Human Activity Recognition
(HAR) is gaining significant attention since several application
scenarios exist in which HAR can be successfully adopted,
e.g., urban mobility management [6], ambient intelligence [7],
[8], and assisted living [9].

HAR is generally achieved by exploiting two different types
of input data, namely visual or sensory.

The common idea behind vision-based HAR is to describe
users by means of silhouettes that allow to extract features
about their movements, from RGB or depth images, and then
perform the activity recognition trough a machine learning
model [10]. Several applications have been proposed following
this methodology, especially in the context of intelligent
environmental systems [11], such as energy management [12],
or smart surveillance [13]. Despite the benefits, vision-based
HAR is quite limited to indoor environments and particularly
heavy in terms of computational burden.

Sensor-based HAR techniques have been then proposed as
a possible alternative. In this context, human activities can
be intuitively considered as sequences of recurrent patterns
in raw data captured from sensors worn by the users, such
as those attached to wearable elastic bands or embedded in
smartphones, smartwatches, etc. Many HAR algorithms have
been presented in the literature and, generally, differ based
on the type (and number) of sensors used, or the features
extracted from the sensor readings. For example, in [14]
authors present a framework for HAR using data captured by
means of triaxial accelerometer and gyroscope sensors em-
bedded into the smartphone. The temporal patterns generated
by these sensors are firstly analysed to model activities via a
30-dimensional feature vector, and then classified according
a machine learning approach. Another interesting example
presented in literature is the one implemented in the Google
Activity Recognition APIs for Android 1. However, this tool
acts as a black box by not providing a way to understand what
features are being used, nor the model used for classification.

All of the approaches discussed above suffer from two
issues stemming from (i) the growing demand for increasingly
powerful smart models and services, and (ii) user concerns
about sharing sensitive data (e.g., the activity performed) with
third parties.

Over the years, the first issue was alleviated by propos-
ing scalable and time-efficient solutions that exploit Cloud
Computing, Fog Computing, or Edge Computing paradigms to
provide HAR services. While Cloud Computing could provide
a feasible solution to move heavy computation towards the
cloud, its applicability in real-time applications is negligible
as data is continuously transferred from/to the cloud. Then,
the remaining Fog Computing and Edge Computing have

1https://developers.google.com/location-context/activity-recognition

been strongly investigated in HAR scenarios. In [15], a fog-
based architecture for complex human activity recognition is
proposed. Here, sensor readings are processed as close as
possible to data source so that it is possible to meet real-
time constraints. In particular, the machine learning model
runs on powerful entities within the network (i.e., Fog entities)
because of the complexity of the activity recognition, i.e., a
combination of K-means clustering, Support Vector Machines,
and Hidden Markov Models.

The idea of distributing heavy computations among inter-
mediate (fog) or remote (cloud) devices alleviates for sure the
growing demand for more powerful services, but it does not
address privacy or security issues. In fact, because both of
their distributed nature and high degree of modularity, edge-
fog-cloud computing systems are particularly prone to cyber
security attacks that can be performed against every element
of the infrastructure [16].

In order to meet the requirements of distributed computing
and privacy preservation, Federated Learning (FL) has been
proposed in 2016 [17]. It enables a large number of edge de-
vices, called clients, storing local data observations to locally
and collaboratively train one single machine learning model
without having to share their raw data. A coordinating server
then aggregates the contributions from all the edge devices
and shares an updated model with the participating clients to
benefit from their learning experience.

Several applications have benefited from the FL paradigm,
ranging from finance [18] and monitoring [19], to health-
care [20] scenarios. Often the healthcare scenario itself heavily
leverages an Activity Recognition process. For this reason,
HAR is assuming a role of great interest to the research
community in the federated learning domain. In [21], the
authors have evaluated a Softmax regression and a deep neural
network for the task of HAR. The results demonstrated the
improvement the FL may bring, allowing to achieve acceptable
accuracy while preserving privacy. In [2], a federated transfer
learning framework, called FedHealth, for wearable healthcare
is discussed. Through federated learning and homomorphic
encryption, FedHealth aggregates the data from different or-
ganizations to build powerful machine learning models with
the users’ privacy well preserved. After the cloud model is
built, FedHealth utilizes transfer learning methods to achieve
personalized model learning for each organization.

According to the literature, Federated Learning exhibits
clear theoretical advantages over classical centralized learning
from a pervasive computing perspective. But little is known
about how these advantages are actually achieved in practice,
and the behavior of such learning approaches [22]. Motivated
by these reasons, we propose a FL architecture to evaluate
how it may work on the HAR task.

III. PROPOSED ARCHITECTURE

The modular architecture we propose is deployed on the
hierarchical topology depicted in Fig. 1.

At the lowest level, sensing devices (SDs) are responsible
for collecting raw data and, if required, performing simple data

https://developers.google.com/location-context/activity-recognition
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Fig. 1: Federated Learning Architecture.

pre-processing. Then, all the data is shared with the entities at
the upper layer through classical network protocols. Since the
system processes rough data within the federation, information
at this layer is not encrypted thus meeting the computing
constraints of the adopted smart devices, if any.

At the intermediate level, Federated Aggregators (FAs)
are designed to perform in-depth analysis on data obtained
previously. In particular, the main goal of an FA is to refine
its inner model, extract local model updates, and share this
information to the upper layer. Other equally important FA’s
tasks are the collection/management of new data, through
which the model is updated, and the actual classification
exploited for the service provisioning. The entities at this
level could be companies that want to collaborate to achieve
a common goal, without sharing their sensitive data.

Information produced by FAs is sent to the Central Entity
(CE) which is responsible for aggregating the local models’
parameters coming from all the underlying devices, and up-
dating the global model by means of its internal parameters.
The results of this analysis are sent back to the FA in order to
update their behaviours, making the whole system consistent.

A. Modules for Federated Leaning
The main modules that constitute the federated aggregators

and the central entity are detailed in Fig. 2.
The CE represents the heart of the whole architecture, since

its main role is to coordinate each FA. In our general view, this
entity is the service provider and is responsible for performing
a preliminary training phase on the data contained in the Start
Dataset. After training, the Federated Classifier is tuned to
fulfill the application specific goals, and the resulting (internal)
parameters are shared with the underlying FAs through the
Model Distributor.

Each FA receives the global model via the Model Receiver,
and forwards this information to its own Federated Classifier.
The Model Receiver may also pass the model obtained from

CE to the Model Sender; this is useful for that kind of
applications that require to calculate some parameters, e.g.,
crossover point or regret [23], to evaluate the participation at
the federated learning.

The classifier used in FA is the same as the one held by the
CE, but it is the one that actually performs the classification.
The prediction then is passed as input to the Actuator, which
is responsible for moving and controlling a mechanism, for
example by activating a service or a functionality in the
sensing device.

It is important to note that FAs are also expected to support
the update of the global model located in the CE. In this regard,
the Data Manager firstly collects new raw data from the
sensing device and, then, extracts the features before sending
them to the Federated Classifier and the Local Dataset for
prediction and storage tasks, respectively.

Finally, apart from the Model Sender and Trainer modules
which operate similarly to their counterparts in the CE, each
FA is equipped with an additional module called Local Update
Manager. This is triggered every time a certain condition is
satisfied, e.g., a considerable amount of new data has been
collected, or a certain amount of time has passed.

B. Human Activity Recognition
A straightforward approach in the federated scenario could

be to exploit users’ personal devices, such as smartwatches and
smartphones, to act as sensing devices. These are able to (i)
collect raw data from embedded sensors while user performs
a particular activity, and (ii) make preliminary elaborations if
they are necessary. A single FA with a higher level of perfor-
mance, e.g., a personal computer, can be used to process and
aggregate data from multiple devices worn by a community
of users. We want to put in evidence that the system may use
information directly captured by users’ smartphones. These
devices would be logically located in the bottom layer of the
architecture, whilst the FA could consist of other types of units.
More generally, given the proposed architecture, FAs can be
any device with enough computing power to perform raw data
analysis and aggregation, such as smart lighting poles, bus
shelters, or any other structure deployed in a smart city.

For instance, we could imagine a Central Entity interested
in offering smart services for automatic customization of SD
settings. The sensing device may be set on silencing mode
if the FA detects that the user is relaxing or sleeping. In
such a composite scenario, we can imagine the CE to be
the service provider, the FA is the user’s smartphone, and
the SD is represented by less powerful devices such as wrist-
worn or smartwatches. Similarly, we can consider a federated
video surveillance scenario in which cameras can be used for
different purposes, e.g., recognising suspicious activity and
sending the images to some local processing unit responsible
for maintaining AI models. In this case, SDs are the cameras
located in the environment, the FAs may be devices at dispo-
sition of the public entities, such as servers or laptops, while
the CE could be the provider that offers the suspicious activity
recognition service.
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Fig. 2: Proposed FL modular architecture.

In the addressed HAR scenario, users may wear smart-
watches while performing their activities, passing heavy data
processing to more powerful FA devices, e.g., the users’
smartphones [15]. Activities to recognise can be traced by the
accelerometer and gyroscope embedded in the smartwatches.
The collected patterns are sent to the FA, and specifically
to the Data Manager module, to extract feature vectors for
each time window. The FA of our case study, i.e., the users’
smartphones, performs activity recognition by means of a
Deep Neural Network (DNN), properly implemented in the
Federated Classifier module. Moreover, the Federated Aggre-
gator stores local model parameters, and any other data which
need to be transferred to the CE. The Central Entity receives
and then aggregates the models’ updates in the Federated
Update Manager via the FedAvg algorithm [24]. Finally, the
improved global model is broadcast back to the FAs thanks to
the Model Distributor.

IV. EXPERIMENTAL EVALUATION

All the experiments were conducted on a public dataset [25]
that includes 6 activities (Walking, Standing, Laying, Sitting,
Walking Upstairs, Walking Downstairs) performed by 30 vol-
unteers aged 19-48. Each activity is described by means of
accelerometer and gyroscope, with both sensors generating
raw data at a constant rate of 50Hz. The signals extracted
from the sensors were pre-processed by applying noise filters
and sampled in fixed-width sliding windows of 2.56 sec and
50% overlap resulting on 128 readings per window. Then, each
activity is modeled as a feature vector containing more than
500 values in time and frequency domains.

In view of using these data in the Federated Learning
scenario, we divided the full dataset in partitions such that
each contains all the activities carried out by a single user
and presents almost the same number of samples. In this
way, we assigned each sensing device its own local dataset

TABLE I: DNN network configuration.

DNN model parameters
No. of layers 6

Activation function ReLU, SoftMax (output layer)
Optimizer SGD

Learning rate 0.001
Momentum 0.8

Training Epochs 20
Batch size 32

to which new data could be added later, thus simulating run-
time behavior. Moreover, data regarding three users were kept
out of the learning pool for testing purposes.

The metrics we employed for the evaluation are Accuracy,
Precision, and Recall. Since this work deals with a multi-
class classification problem, the final score of each metric is
measured as the mean for each class.

Two different types of experiments were conducted to
compare the performance of our federated solution with a
centralized architecture. In particular, we refer to the first
scenario as static, since the number of the sensing devices is
the same for all the FAs, while the second scenario simulate a
dynamic environment in which the number of SDs associated
with each FA change over the time. In both settings, we
considered three FAs that represents a good trade-off in terms
of diversity and efficiency.

Firstly, we looked for the best set of parameters for the
activity recognition procedure, that is the best hyperparameters
for the DNN. To achieve this goal, a 10-fold cross validation
was performed and result in the final configuration shown in
Table I.

Then, regarding the static scenario, the tests were conducted
by simulating a CE whose initial model is trained on its
local data, and subsequently refined by parameters received
from FAs. The results of this analysis are summarized in
Fig. 3. Here, the baseline represents the centralized model and



Fig. 3: Aggregated model’s Accuracy, Precision and Recall test
results in function of the number of users. The distribution of
users per Federated Aggregator is homogeneous.

is depicted as a constant (for all the metrics) since sensing
devices do not share their local data (i.e., the central model
is never updated). It is possible to observe an improvement in
the performance of the federated model already from a small
number of sensing devices. This is due to the fact that as
data availability increases, the model manages to improve its
performance even without ever having direct access to them.

To better understand the reasons for this marked difference,
we present the confusion matrices obtained by the system
when the number of SDs for each FA is 1 (Fig. 4) and 5
(Fig. 5). In particular, each Ci,j cell represents the number of
occurrences in class i that have been classified by the system
as belonging to class j. Darker cells correspond to higher
values, up to a maximum of 1. Therefore, main diagonal values
correspond to true positives, and values outside the diagonal
indicate classification errors. Ideally, we would like to get
a very dark main diagonal, and lighter values in the other
cells, which would indicate a low degree of confusion between
activities.

Fig. 4 shows that the system relying on only one SD per
FA has difficulty in correctly discriminating the activities; for
instance, Sitting is often confused with Standing, and Walking
with Walking Downstairs. Moreover, with this specific con-
figuration, Walking Upstairs is strongly misclassified against
Walking and Walking Downstairs. These difficulties can be
easily explained by the fact that information available on
the CE is not sufficient to well describe these activities. As
expected, increasing the number of sensing devices for the
FAs overcomes the problem. The confusion matrix in Fig. 5
is characterized by a very marked main diagonal, which shows
how the system is able to recognise all activities satisfactorily,
without confusing them with each other.

Other experiments focused on the dynamic case where the
system was evaluated over the time. In particular, for each
timestamp a number of sensing devices (in range [1, 3]) was
added, and randomly distributed in one of the three FAs. As

Fig. 4: Confusion matrix obtained by considering only one
sensing device for each FA.

Fig. 5: Confusion matrix obtained by considering five sensing
device for each FA.

it is possible to observe in Fig. 6, even in this case the results
were highly acceptable already from the first timestamps
in which the number of SDs was low. Nevertheless, the
performance of the system, in its federated version, grows as
the number of the sensing devices increase (and therefore in
the availability of data), presenting satisfactory performance
from quite low numbers, exceeding the threshold of 95% for
all metrics considered as the number of SDs grows.

V. CONCLUSIONS

In this paper, we presented an architecture for recognizing
human activities through users’ smart devices. The recognition
process relies on a Federated Learning architecture where
Sensing Devices, Federated Aggregators, and a Central Entity
cooperate, at three different logic layers, for collecting sensory
data, performing HAR, and improving the overall model.

The experiments were performed on a public dataset and
aim to compare the performance of the proposed solution
against a centralized approach. The outcomes prove that the
FL architecture is able to generate an adequate model for the



Fig. 6: Aggregated model’s Accuracy, Precision and Recall
trends in function of the number of users for each timestamp.
The distribution of users per Federated Aggregator is not
homogeneous.

HAR task, while the centralized version continues to achieve
not satisfactory performance. Our solution constitutes a good
trade-off between privacy, performance and versatility.

As future work, we plan to design a reputation management
mechanism [26] able to mitigate the presence of malicious
entities aiming at compromising the global model by injecting
(intentionally) erroneous data to the Central Entity.
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