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Abstract—In recent years, Online Social Networks (OSNs) have rad-
ically changed the way people communicate. The most widely used
platforms, such as Facebook, Youtube, and Instagram, claim more than
one billion monthly active users each. Beyond these, news-oriented
micro-blogging services, e.g., Twitter, are daily accessed by more than
120 million users sharing contents from all over the world. Unfortunately,
legitimate users of the OSNs are mixed with malicious ones, which are
interested in spreading unwanted, misleading, harmful, or discriminatory
content. Spam detection in OSNs is generally approached by consider-
ing the characteristics of the account under analysis, its connection with
the rest of the network, as well as data and metadata representing the
content shared. However, obtaining all this information can be compu-
tationally expensive, or even unfeasible, on massive networks. Driven
by these motivations, in this paper we propose SpADe, a multi-stage
Spam Account Detection algorithm with reject option, whose purpose
is to exploit less costly features at the early stages, while progressively
extracting more complex information only for those accounts that are dif-
ficult to classify. Experimental evaluation shows the effectiveness of the
proposed algorithm compared to single-stage approaches, which are
much more complex in terms of features processing and classification
time.

Index Terms—Social Network Security, Spam Detection, Artificial Intel-
ligence

1 INTRODUCTION

The widespread diffusion of Online Social Networks (OSNs)
has enabled new forms of communication that allow people
to regularly share almost any kind of information within
a virtual community. Nowadays, a number of OSNs are
available to address the needs of different types of users,
providing them with a variety of services and objectives.
Some aim to create networks of people who know each other
(e.g., Facebook), or to connect people interested in news
coming from all over the world (e.g., Twitter); others are
oriented to professional networking (e.g., LinkedIn), some
offer instant messaging services, such as WhatsApp, Tele-
gram, or Viber, while some others are mainly intended for
sharing multimedia contents, e.g., Instagram and Youtube.

Thanks to their ease of use, popular OSNs claim billions
of active users, most of which are unfortunately not aware
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of the threats coming from the cyber space. This represents
the main reason why malicious users are attracted to the
social networks as much as, or even more than, legitimate
ones.

Research on social network security covers a wide num-
ber of topics, from account hijacking, fraud and impersonation
attacks to malware distribution [1]. Beside them, spam detec-
tion is a well-known, and still open, challenge which affects
social networks as well as any other type of network-based
application [2].

In general terms, spammers are entities (real users or
automated software agents) that repeatedly send unsolicited
messages for various purposes, e.g., supporting commercial,
slandering, or proselytizing campaigns [3]. Even though
several spam detection techniques have been proposed in
the literature, the art of spamming continuously evolves
and new intelligent approaches for identifying spammers
are constantly needed. The behavior of early social bots, for
instance, was quite simplistic as they were just intended to
spread messages to as many users as possible. As soon as
the spam detection algorithms became able to identify the
typical characteristics of these bots, such as the presence of
a biased following/followers ratio (FF) as compared to real
users, the attackers quickly improved their strategy [4]. A
trustworthy FF value, for instance, could be easily forged by
relying on groups of social bots which cooperate to mimic
the interactions among normal OSN users, thus avoiding
the corresponding countermeasures [5].

As a consequence, spam analysis in online social net-
works is generally approached by considering different
levels of information that describe the user as a whole. To
this aim, a variety of features and classification algorithms
exist. Whereas the latter are typically borrowed from those
adopted in other machine learning contexts, the feature ex-
traction process is strictly dependent on the set of informa-
tion that the OSN makes available. This commonly includes
the characteristics of the account, its connection with the
rest of the social network, as well as data and metadata
representing the content shared. However, what is never
considered in the existing works is the effort required to
extract each feature, which deeply impacts on the capability
of the classifier to provide timely results.

Driven by these motivations, in this paper we propose
SpADe, a multi-stage Spam Account Detection technique
with reject option, whose purpose is to exploit less costly
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features at the early stages, while progressively extracting
more complex information only for those accounts that are
more challenging to classify.

SpADe consists of four stages of analysis that progres-
sively combine information about (i) the general character-
istics of the account, (ii) the URLs shared, (iii) the similarity
of the published contents, and (iv) the relationship between
the user and the rest of the social network. Bayes classifiers
are adopted to implement the accept/reject mechanism in
all the stages except the last one, in which decision trees are
exploited to make a decision regardless of the uncertainty
degree. The effectiveness of the approach was proven by
considering as case study the most widely diffused micro-
blogging platform, i.e., Twitter. Nevertheless, it is worth
noting that the features we have chosen, as well as the
classification algorithm, are reasonable for any other OSN.

The major contributions of this work are summarized as
follows.

• The paper presents SpADe, a novel Spam Account
Detection approach that takes into account the ef-
fectiveness of each feature as well as its observation
(collection/processing) cost; at the best of our knowl-
edge, this is the first work in which the two aspects
are considered together.

• The most representative features presented in the
literature were selected and organized into four con-
sistent categories, each of which captures a different
facet of spamming behaviors and is characterized by
a homogeneous observation cost.

• A novel multi-stage classification algorithm with re-
ject option that incrementally exploits set of features
of increasing complexity was designed. This allows
to classify an account as soon as the chosen confi-
dence level is reached, without the need to capture
the whole feature set for every account under analy-
sis.

• SpADe is evaluated both on a dataset of about 40.000
users we retrieved from the Twitter stream during
the last year, and on a popular reference public
dataset of about 11.000 users collected in 2017. Com-
paring the results obtained on datasets of different
sizes, and acquired in different epochs, made it pos-
sible to carry out a robust evaluation of the proposed
method.

The remainder of the paper is organized as follows:
related works are outlined in Section 2. The mathematical
background of the proposed multi-stage classification algo-
rithm is provided in Section 3. Section 4 presents SpADe
and the features exploited at each stage by highlighting their
role in spam detection. Experimental settings and results are
discussed in Section 5. Conclusions follow in Section 6.

2 RELATED WORK

Spam detection is a popular research topic that has been
widely addressed in the last decades. More recently, the
focus has shifted towards the detection of spam campaigns
on Online Social Networks (OSNs), which represent one of
the most fertile grounds for this type of cyber threat [6]. The
main reason is that users of OSNs can share information in

many different ways, and so do spammers, making their
behavior difficult to predict. In this paper, we focus on
Twitter analysis because tweets generally refer to popular
events and are therefore characterized by a high information
content.

This section presents a review of the state of the art by
following the evolution of spam detection systems. Related
works are arranged in categories, which reflect the most
important characteristics of the studies discussed.
Honey-profiles: Early spam detection was mainly based on
statistical analysis of the account activities. This type of sys-
tems required a protected environment in which the spam-
mer could act undisturbed, allowing the detection algorithm
to monitor and learn its behavior. In the Social Honeypot
Project [7], for instance, an automated bot is assigned to
every account to be analyzed in order to capture meaningful
features that may reveal a malicious activity. The authors
of [8] exploited 60 Twitter bots as honeypots to attract a
total of 36,000 accounts, which were analyzed by observing
their activities and relationships with their neighborhood.
In [9], an extensive study on how spammers operate to
target Facebook, Twitter and MySpace is presented. In order
to observe four categories of spammers, called displayers,
braggers, posters and whisperers, large sets of honey profiles
were created with the aim of capturing information about
the accounts they are connected with, and the messages they
received. Then, users were classified by Random Forest ex-
ploiting conventional features, such as following/follower
ratios, URLs, message similarity, account activity and qual-
ity of the neighborhood. Such an analysis also revealed the
possibility of identifying spam campaigns [10] in which
several bots cooperate with the same goal. The use of social
honeypots is also discussed in [11], which also highlights
how these traps can be effective in identifying previously
unknown spamming patterns. The major limitation of these
solutions is that several honeypots must be implemented
in order to make the approaches effective. However, when
dealing with large communities of spammers, this turns out
to be computationally expensive, or even unfeasible.
URLs blacklists: URLs are frequently injected by the spam-
mers into trending topics and related messages. Warning-
Bird [12] aimed at detecting spammers by following the
URLs through all their redirections so as to obtain the
target IP addresses; then, a set of features is computed and
analyzed in order to assign the suspicious label to the corre-
sponding URLs. Results show the good performance of the
system; nevertheless, the effectiveness of WarningBird dra-
matically drops when a obfuscation mechanism is applied to
the URLs, e.g., via the URL shortening services. The authors
of [13] extended the analysis of URLs by considering also
how the links are received by the community, i.e., counting
the actual number of clicks. However, the analysis is limited
to a few different shortening services and the correlation
between URLs and other type features is not considered.
Wide feature sets and ML: In order to identify the distinc-
tive characteristics of a broader set of spamming strategies,
several works proposed a variety of features [3], [14] that
can be exploited as the basis for Machine Learning (ML)
models. The system presented in [15], for instance, leverages
on characteristics that are able to capture the way tweets
are written, as well as the user’s posting frequency, social
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interactions, and influence on the Twitter network. These
features are exploited to train a Support Vector Machine
(SVM) classifier capable of correctly identifying 70% of
spammers and 96% of non-spammers. Even though these re-
sults are notable, the method lacks of considering other rel-
evant aspects that are typical of spammers. In [16], elements
such as the behavioral and content entropy, bait-techniques,
and profile vectors are considered. The corresponding fea-
tures were used to train four different supervised learning
algorithms, namely Decision Tree, Random Forest, Bayes
Networks, and Decorate. Results indicate that such a feature
set allows to achieve good performance with any of the four
algorithms. A different kind of features aimed to model the
interactions between users and their followers is exploited
in [17]. The idea is that spammers can easily alter features
regarding their own behavior, while those based on to
their relationships with the community are more difficult
to change. Nevertheless, complex attacks based on sybil net-
works [18] might seriously reduce the effectiveness of this
kind of features. Sybil account detection is addressed in [19],
where a method called Ianus is proposed to discover fake
accounts according to registration information. The study
moves from the observation that sybil accounts are char-
acterized by different registration patterns than legitimate
ones. Then, sybil detection is solved as a graph inference
problem in which registrations are modeled as nodes, and
strongly connected nodes are more likely to represent sybils.
Another approach to deal with compromised accounts is
discussed in [20]. Malicious changes are distinguished from
legitimate ones through statistical analysis and anomaly
detection techniques. The system, called COMPA, exploits
features capable of capturing recurring temporal patterns
in the account usage, information about the messages (e.g.,
language, topic, the application used to share them), as well
as the presence of URLs/mentions and the connections of
the user with the social graph. Social graphs for spammer
detection are also examined in [21], where Graph Con-
volutional Networks (GCNs) and Markov Random Fields
(MRFs) are combined to detect neighbor message-passing
and capture human insights in user following relations.
The analysis of communities, and in particular of the topics
that spread through them, can make it possible to identify
groups of accounts with abnormal behaviors. POISED [22]
is a system that models the different propagation paths
of benign and malicious messages in order to distinguish
between legitimate and spam accounts. Experimental eval-
uation performed on Twitter data shows the effectiveness of
this approach, even against poisoning and evasion adversarial
attacks. The detection of anomalous topics is addressed
in [23], where a topology-based method to detect coop-
erative and organized spammer groups in micro-blogging
communities is proposed. An anomaly detection problem
is also formulated in [24], where spammers are described
by means of 107 features. This system combines two data
stream clustering [25] algorithms, namely StreamKM++ and
DenStream, that allow to correctly identify the most of the
spammers, with low percentage of false positives. Data
stream clustering is also discussed in [26], where a mod-
ified version of DenStream based on a set of incremental
Bayes classifiers is presented. In this case, the feature set
is designed so as to capture relevant characteristics of both

the user’s behavior and the tweet content. A different ap-
proach is presented in [27], where the acceptance of a user
from other members of the community is considered as an
indicator of its reliability. In particular, the authors propose
an unsupervised spam detection algorithm in which high
peer acceptability values are assigned to users that have
common interests, e.g., users discussing the same topics
and/or sharing the same contents.
Deep learning: Other works proposed the use of Deep
Learning (DL) because of the lower effort required for
feature extraction [31]. In [30], a novel DL technique is
showed to outperform two machine-learning classifiers.
The DL approach considers only users’ tweets and needs
Google’s Word2vec algorithm to learn tweet syntax, while
ML algorithms exploit 9 easy to extract user/account’s
meta-data and text-based features. Word2vec is also used
in [32] to convert tweets into dense vectors, which are
analyzed by means of Recurrent Neural Networks (RNNs).
The limitations of this approach are common to all deep
learning based techniques [33], i.e., the reasons for a certain
output are difficult to understand and there is no standard
theory to guide in the selection of the right DL strategy.
Other learning methods: Approaches based on pure ML
suffer from the constant evolution of the spammers, which
continuously worsens the performance of existing methods.
Incremental learning aims to keep the models up to date
in order to deal with new attack strategies. This aspect
is deeply analyzed in [28], where a model, called Lfun
(Learning from unlabeled tweets), is proposed to include
new unlabeled spam tweets into the classifier training
process. On the same principle operates AdaGraph [34],
an unsupervised graph-based technique that dynamically
builds and updates a graph of behaviors to detect spam in
OSNs. Although the performance of this approach are quite
relevant, it cannot be adopted for massive graphs analysis
because of the cost of collecting community-based features.
Social FingerPrinting [29] combines supervised and unsu-
pervised techniques in order to identify two different types
of automated spammers, namely, those interested in adver-
tising products on e-commerce platforms and promoting
a political candidate during the electoral campaign. The
behavior of each account is encoded as a sequence of char-
acters that represents a sort of digital DNA; then, a similarity
measure between DNA sequences is used to detect genuine
or spamming accounts.

Analysis of the literature reveals that spammers’ behav-
ior can be modeled through a variety of feature sets, capable
of capturing the essence of a tweet, the characteristics of
the account, as well as the interaction between users in the
network. However, all the works described so far do not
explicitly consider the cost of obtaining the features, which
in many cases is prohibitive and can significantly affect
the classifier’s ability to provide timely results. For this
reason, our approach aims to progressively exploit features
of increasing complexity, depending on the the peculiarities
of each spammer. The idea is somehow similar to the pro-
cess of diagnosing a clinical condition through a series of
investigations of increasing cost and complexity [35].

The characteristics of SpADe are summarized in Table 1,
which also provides a comparison with some of the works
discussed in this section.
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TABLE 1: Comparison between SpADe and other relevant spam detection approaches.

SpADe [7] [8] [12] [13] [17] [24] [26] [28] [29] [30]
Honey-profiles ✓ ✓
URLs blacklists ✓ ✓

Wide feature sets and ML ✓ ✓ ✓ ✓
Deep-Learning ✓

Other learning methods ✓ ✓
Multi-stage approach ✓

Number of features 39 10 10 14 15 18 107 12 12 – 9
Effort in detection Low High High Medium Medium High High High Medium Low High

Assessment on private dataset ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Assessment on public dataset ✓ ✓ ✓

Assessment on multiple datasets ✓ ✓ ✓ ✓

3 DECISION UNDER UNCERTAINTY

Bayesian decision theory assumes that decisions are taken
according to the probability of a possible outcome. Given
the problem of associating an observation X with a class
from the finite set Ω = {ω1, ω2, . . . , ωY }, a generic decision
rule would suggest to choose the class that minimizes the
classification error, i.e., the one whose posterior probability
given X is the greatest:

p(ωy|X) > p(ωc|X), c = 1, . . . , Y c ̸= y, (1)

or equivalently, in terms of class-conditional and prior proba-
bilities:

p(X|ωy)πy > p(X|ωc)πc, c = 1, . . . , Y c ̸= y. (2)

Such a decision process can also be seen as splitting the
observation space into a set of regions, Ψ = {ψ1, . . . , ψY },
such that if X ∈ ψy then X is associated with the class ωy .

Because of their probabilistic nature, Bayes decision rules
are not free from errors; hence, assuming that some classifi-
cation errors are more costly than others, it is reasonable to
associate to each decision di, i ∈ {1, . . . , Y }, a loss function
λi,y that quantifies the penalty of classifying as ωi when
the actual class is ωy . The zero-one loss function, for instance,
assigns no loss to a correct decision, and a unit loss to any
error:

λi,y =

{
0 if i = y,

1 if i ̸= y.
(3)

Given the loss function λi,y , the conditional risk associated
with the i-th decision is defined as:

R(di) =
Y∑
y=1

λi,y p(ωy|X). (4)

Considering a simple scenario in which only two classes
exist, i.e., Ω = {ω1, ω2}, and D = {d1, d2}, the decision rule
should suggest to classify X as ω1 if R(d1) < R(d2), as ω2

if R(d2) < R(d1), whereas the choice would be arbitrary if
the two risks are equal. Choosing the lowest conditional risk
allows to minimize the overall risk RT , which is defined as:

RT =

∫
ψi

R(di) p(X) dX =
Y∑
y=1

λi,y

∫
ψi

p(X|ωy)πy dX.

(5)

Based on Eq. (3), such a risk can be rewritten as:

RT =
Y∑

y=1,y ̸=i
λi,y

∫
ψi

p(X|ωy)πy dX

= 1−
∫
ψi

p(X|ωi)πi dX = p(error|X),

(6)

that corresponds to the average probability error.

3.1 Classification with Reject

Unfortunately, the decision rules from Eq. (1) and Eq. (2) do
not directly consider the conditional risk of a wrong deci-
sion, then they always allow to classify an input, whatever
the classification error is. This can sometimes lead to an
excessive misclassification rate; for this reason, if the risk is
too high, the possibility of refusing to decide is introduced.
In this case, given Eq. (6), the decision to classify or reject can
be made according to a threshold ΘR ∈ [0, 1] on the overall
risk RT [36]:

di =

{
classify if max {p(X|ωy)πy} ≥ 1−ΘR,

reject if max {p(X|ωy)πy} < 1−ΘR.
(7)

Rejection, denoted by d0, provides an extra choice within
the decision space D = {d0, d1, . . . , dY }, and corresponds
to define a new region ψR0 within the observation space,
i.e., ΨR = {ψR0 , ψR1 , . . . , ψRY }. When the reject option is
considered, the loss function is also redefined as:

λi,y =


0 if i = y,

1 if i ̸= y, i ̸= 0,

lc if i = 0 (reject),
(8)

where lc ∈ (0, 1) is the value of the loss cost, i.e., the penalty
occurring when the decision d0 is made [35].

The advantages gained from rejecting are demonstrated
by the following theorem.

Lemma 1. Given a classification problem with Y classes, if the
reject threshold ΘR ≥ 1− 1

Y , then the decision to reject is never
made.

Proof. Since the probabilities of all the Y outcomes sum to
1:

Y∑
y=1

p(X|ωy)πy = 1, (9)
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Fig. 1: Bayes decision rules and the corresponding errors for a two-class classification problem (a) without reject, (b) with
reject option and threshold ΘR = 0, (c) with ΘR in (0, 0.5), and (d) with ΘR = 0.5.

the highest joint probability cannot be lower than 1/Y :

max{p(X|ωy)πy} ≥ 1

Y
. (10)

As a consequence, the reject condition defined in Eq. 7:

max{p(X|ωy)πy} < 1−ΘR, (11)

is verified for any ΘR < 1− 1
Y , i.e., ΘR ∈ [0, 1− 1

Y ).

Theorem 2. Given 0 ≤ ΘR < 1 − 1
Y , the average probability

error of a classifier that includes the reject option, p(errorR|X),
is not higher than the error p(error|X) made by a classifier in
which the reject option is not available:

p(errorR|X) ≤ p(error|X).

Proof. The proof is given for a binary classification problem
and can be easily extended to a multi-class scenario. Each
region within the observation space can be defined as:

ψi = {X : p(X|ωi)πi > p(X|ωj)πj ∀i ̸= j}. (12)

According to Eq. 7, the reject option impacts on the obser-
vation space by redefining the regions as:

ψRi = ψi ∩ {X : p(X|ωi)πi ≥ 1−ΘR},
ψR0 = ψi ∩ {X : p(X|ωi)πi < 1−ΘR}.

(13)

Following Eq. 6, the average probability error in a system
with reject depends on these regions and can be expressed
as:

p(errorR|X) =

∫
ψR

i

p(X|ωj)πj dX. (14)

Then, the difference between p(error|X) and p(errorR|X)
is:

∆ =

∫
ψi

p(X|ωj)πj dX −
∫
ψR

i

p(X|ωj)πj dX

=

∫
ψi−ψR

i

p(X|ωj)πj dX.
(15)

Now, let us evaluate the relationship between ∆ and ΘR.
Case ΘR = 0: according to Eq. (7), a zero threshold causes
any observation X to be rejected; thus, ψRi = ∅ ∀i > 0, and
the integral over ψi results in ∆ = p(error|X).
Case ΘR = 0.5: according to Lemma 1, if ΘR ≥ 0.5 the
rejection is never performed. Then, ψi = ψRi ∀i > 0, and
∆ = 0.

Case 0 < ΘR < 0.5: rejection can be chosen and ψR0 =
ψi − ψRi . As a consequence, ∆ depends on ψR0 , that is the
reduction of the error is proportional to the size of the reject
region.

The outcomes of the properties demonstrated so far can
be also observed by comparing the plots in Fig. 1, in which
the easiest case of a two-class problem is illustrated for the
sake of clarity.

The first plot (Fig. 1a) refers to the classifier without
reject; here, two decision regions exist, namely ψ1 and
ψ2, and the classification errors for the classes ω1 and ω2

correspond to the violet and grey areas respectively, as
defined by Eq. 6. The other three plots show the effect of
introducing the reject option. For instance, if a threshold
ΘR = 0 is considered (Fig. 1b), every observation is rejected;
as a consequence, since the classification is not performed,
all the errors are null and only the reject region ψR0 exists. As
the threshold value increases (Fig. 1c), the errors are reduced
by an amount that depends on the size of the reject region.
However, when ΘR = 0.5, the region ψR0 is null (Fig. 1d)
and the errors, due to the wrong classification of ω1 and
ω2, are the same as Fig. 1a. The same holds for any value
ΘR > 0.5, as proved in Lemma 1.

3.2 Multi-Stage Classification with Reject

Given that proper threshold values are demonstrated to
reduce the classification error, a new problem has to be
faced: how to deal with the observations that are rejected.

A multi-stage classifier can be designed to address this
issue by introducing s stages, s ∈ {1, ..., S}, each of which
applies the Bayes decision rule to a partial observation
vector xs ⊆ X . As one would expect, the decision at the
stage s must take into account the reject decisions made at
the previous stages. Such a sequence of decisions can be
seen as a first-order Markov chain [37], where the decision
at the stage s is dependent only on the stage s − 1. Thus,
starting from Eq. (4), the conditional risk for the multi-stage
classifier is defined as:

R(dis) =
Y∑
y=1

λi,y p(ωy|xs)R(d0s−1), (16)
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TABLE 2: The set of features aimed to describe the general
characteristics of the account, the URLs and the contents
shared by the user, as well as the properties of its neighbor-
hood.

ID Meaning Reference

A
cc

ou
nt

f1 Follower Count [15], [24], [39]
f2 Friend Count [15], [24], [39]
f3 Tweet Count [24]
f4 Account Age [14], [15], [24]
f5 Favorites Count [24]
f6 List Count [39]
f7 Hashtag Count in description [24], [39]

U
R

L

f8 URL Ratio [15], [17]
f9 Unique URL Ratio [17]
f10 Average Tweets with URLs [15], [39]
f11 Duplicate URLs Ratio [14], [16]
f12 Spam URL Ratio [40]
f13 Same Redirection URL Ratio [16], [40]
f14 Blacklisted URL Ratio [40]

C
on

te
nt

f15 Hashtag Ratio [15], [17]
f16 Mention Ratio [14], [17]
f17 Unique Mention Ratio [16], [17]
f18 Retweet Ratio [14], [17], [39]
f19 Reply Statuses Ratio [15]
f20 Spam Tweet Ratio [14]
f21 Automated tweet ratio/Tweet sources [16]
f22 Average of length of tweets [14], [39]
f23 Number of unique mention [16]
f24 Variance in Tweet Intervals (VaTi) [16], [17]
f25 Variance in n. of tweets per time unit (VaTw) [16], [17]
f26 Ratio of VaTi and VaTw (TiTw) [16]
f27 Number of tweets per day [14]
f28 Max time between consecutive tweets [14]
f29 Mean time between consecutive tweets [14]
f30 Near-duplicates [16]

N
ei

gh
bo

rh
oo

d

f31 Following to Followers Ratio [16]
f32 Follower to Following Ratio [14], [39]
f33 Follower ratio [14], [17], [24]
f34 Mean Followers Following to Follower Ratio [17]
f35 Reputation [17]
f36 Clustering Coefficient [17]
f37 Follower based Reputation [17]
f38 Community-based Reputation [17]
f39 Community-based Clustering Coefficient [17]

where R(d0s−1) is the conditional risk of the previous stage,
and λi,y is the loss defined in Eq. 8.

In the scenario addressed here, such a loss strictly de-
pends on the cost ϕ of making an observation xs. As a
consequence, the multi-stage loss function can be obtained
from Eq.(8) as:

λsi,y =


0 if i = y,

1 if i ̸= y, i ̸= 0,

ϕ(xs+1) if i = 0 (reject).
(17)

Such a multi-stage classification process brings advantages
in terms of recognition performance because a decision is
made only when the inputs are certain enough, and moving
to the next stage is too costly. Moreover, an optimal multi-
stage classifier will exhibit the following property [38]:
ϕ(xs−1) ≤ ϕ(xs) ≤ ϕ(xs+1).

4 SPADE OVERVIEW

A common assumption of machine learning models is that a
collection D of heterogeneous data can be described by a fi-
nite set of features f = {f1, f2, ..., fN}. The cost of Observing

TABLE 3: Classifiers employed to analyze the features listed
in Table 2, namely, Random Forest (RF), Decision Tree (DT),
Support-Vector Machine (SVM), Bayesian Network (BN), k-
Nearest Neighbors (k-NN), and Other.

Reference RF DT SVM BN k-NN Other
[17] ✓ ✓ ✓
[24] ✓
[14] ✓ ✓ ✓ ✓ ✓ ✓
[15] ✓
[16] ✓ ✓ ✓ ✓
[39] ✓ ✓ ✓ ✓ ✓
[40] ✓

each feature value fn depends on two quantities, namely,
the time required to Collect the subset of data dn ⊆ D
from which fn can be computed, and the complexity of the
algorithms that actually Process dn in order to produce the
feature value fn:

TO(fn) = TC(fn) + TP (fn), ∀n ∈ [1, N ]. (18)

However, it is frequent that some groups of features fG ⊆
f may be computed from the same subset of data, while
also exploiting algorithms that have similar complexities.
Therefore, groups of homogeneous features can be selected
by imposing some constraints on the values of TC and TP :

fG = {fn : τ1 ≤ TC(fn) ≤ τ2 ∧ ϵ1 ≤ TP (fn) ≤ ϵ2}, (19)

where τ and ϵ define a range of collection and processing
times, respectively. In SpADe, f consists of 39 features
(Table 2) that have been deeply analyzed in the literature
and are demonstrated to be effective in capturing the char-
acteristics of different spam behaviors. The criteria in Eq. 19
were applied in order to split f in homogeneous groups;
as a result, four groups were identified. In particular, the
properties of the account are observed at the first stage
(x1 = fA), then URLs information is included (x2 = fU ),
content is evaluated at the third stage (x3 = fC ), and finally
neighborhood is visited (x4 = fN ).

An analysis of the works in which the features adopted
were firstly described (see Table 3) revealed that Bayesian
Network (BN) and Random Forest (RF) are the most fre-
quently chosen algorithms for their classification. The for-
mer is particularly suitable to evaluate the rejection due
to its probabilistic nature, while the latter is proved to
be one of the most proper classifiers when dealing with
large feature sets [28], [41]. These considerations led us
to make SpADe exploit Bayes classifiers to implement the
accept/reject mechanism of the first three stages, while the
last-stage relies on Random Forest.

Given the methodological framework presented in the
previous Section, classification performed at every stage s is
based on a cumulative feature vector Fs that includes all the
observation made so far, i.e., Fs =

⋃
x1,...,s. An overview of

the multi-stage classification process is provided in Fig. 2.
As long as the classification confidence does not reach the
desired acceptance threshold, the process is repeated by
choosing the rejecting option; however, at the last stage,
when no further examinations are possible, a decision is
made regardless of the achieved confidence. Multi-stage
classification also results in a higher processing speed since
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Fig. 2: Overview of the features and algorithms used in the
four stages of analysis that characterize SpADe.

the average number of features per stage is substantially
lower than that required in a single-stage [42].

4.1 Feature Extraction
The following subsections describe the feature extraction
processes that characterize each stage. A quantitative eval-
uation of the observation costs of the four feature sets is
presented in Section 5.2, while other possible configurations
are discussed in Section 5.3.

4.1.1 Stage 1: Account Analysis
Account analysis is the easiest to perform because the re-
lated features (top block in Table 2) can be easily extracted
from public Twitter profiles. The features f1 and f2 capture
the tendency of spammers to have a low number of follow-
ers and friend; f3 and f4, together, allow to detect accounts
that, despite having been recently created, have produced a
large number of tweets, which could indicate an automated
spamming behavior. Finally, features f5, f6, and f7 contain
important statistics about the presence of predatory elements,
such as favorites and hashtags. Although these features are
extremely easy to compute, they can be altered just as easily,
e.g., by buying followers in the so-called social media’s
black market. Thus, it is reasonable to exploit the set fA to
perform an early classification (at the first stage) only if the
risk associated with a given observation is low; otherwise, it
would be more convenient to extract more complex features
at the next stages.

4.1.2 Stage 2: URLs Analysis
Tweets containing links to external websites are more likely
to be re-tweeted, which is the primary goal of most spam-
mers, i.e., to quickly reach as many people as possible. In
order to evaluate the quality and the quantity of URLs
shared by a user, we choose to rely on the 7 features
reported in the second block of Table 2. The most intuitive
element to observe in the user’s timeline is the amount of
URLs shared; in the simplest case, if every tweet contains
an URL, then the probability the user is a spammer is
very high. This aspect is captured by means of the features
f8, f9, f10, f11. Aside from sharing a large number of URLs,
some types of spamming activities are aimed to promote
specific URLs, such as those related to commercial products

or untrusted/malicious websites. The features f12, f13, f14
have been introduced to examine this kind of behavior;
while f12 traces all URLs that contain spam-related key-
words, such as those regarding money gain and adult con-
tents [43], the feature f13 counts URLs that point to the same
IP/domain, and f14 tests URLs for malicious contents by
relying on third-party services, such as Google’Safe Browsing.

Since the computation of this set of features requires to
retrieve all the user’s tweets, the observation cost is clearly
higher than the one measured at the first stage. More-
over, f14 requires external safe-browsing services, whose
analysis-response time is not predictable.

4.1.3 Stage 3: Content Analysis
A straightforward characteristic of spammers is their ten-
dency to repeatedly share same information, or similar in-
formation that implies the same content. In order to capture
different aspects of content-based spamming, we selected
the 16 features listed in the third block of Table 2.

The subset from f15 to f23 is intended to point out
the differences between real tweets and those forged by
automated spammers. The latter, for instance, are inclined
to abuse popular hashtags so that their tweets can be more
easily found; thus, the ratio of hashtags used in the tweets to
the total number of tweets (f15) is higher for spammers than
trusted users. The same considerations apply to mentions,
retweets, replies, and so on.

The analysis of timing is also important to evaluate if
contents are shared by following regular (artificial) patterns.
We address this aspect by means of the features f24 to f29.
For instance, the variance in the time taken by an account
to post tweets (f24), as well as the variance in the number
of tweets (f25) are two useful parameters to distinguish
between bots and legitimate users, which are expected to
tweet stochastically [16].

A further analysis is aimed to process the user’s time-
line in order to detect tweets that are not exact copies of
each other, but differ in a few characters. The feature f30,
that highlights the presence of near-duplicates contents, is
computed through an effective clustering approach based
on the combination of two algorithms, namely MinHash
and Locality-Sensitive Hashing (LSH) [44], [45]. The output
of the near-duplicates detection is a collection of clusters
containing similar tweets. Thus, the feature f30 is actually
computed on this output and consists of a set of values
representing the size and the number of clusters obtained
from each timeline.

4.1.4 Stage 4: Neighborhood Analysis
The last, most computationally expensive, stage of analysis
concerns the evaluation of the user as a member of a
community. As observed in [46], [47], it is quite difficult for
a spammer to alter, or even influence, the behavior of its
neighborhood, especially when composed of genuine users.

The most relevant characteristics to look at for perform-
ing neighborhood analyses are reported in the last block
of Table 2. Some of them, i.e., f31 − f34, describe the
degree of interaction between users and their followers, or
friends. The features f35 and f36 measure, respectively, the
probability that two users become followers of each others
(this value is expected to be high for genuine users that
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Fig. 3: Data collection procedure. A initial set of static keywords is used to query the Twitter stream; then, topic detection is
performed to find out new terms emerging from the topics and to update the queries. Tweets are analyzed to retrieve the
corresponding metadata and authors. For each author, the timeline and the neighbors are explored. Then, the procedure is
repeated for follower and following accounts extracted in the previous step.

usually send requests to accounts they actually know), and
the level of trust existing between two nodes, which, in the
OSNs domain, depends on how close the connected nodes
are, e.g., based on common friendships. The remaining
two features, f38 and f39, provide an evaluation of the
account according to the community it belongs to. The
former calculates the average reputation of the community
in terms of reciprocity rate, i.e., the fraction of the users who
follow back in response to followings. The latter studies the
degree to which accounts tend to cluster together within
the community. For both features the lower the value they
provide, the more likely it is that the account is a spammer.

In order to obtain community-based features it is neces-
sary to explore both the target user and all the accounts in
its neighborhood. Hence, these features should be computed
for a small number of users only, if previous classification
stages have not led to a decision.

5 EXPERIMENTAL RESULTS

After describing the data collection process, the following
sections present a set of experiments aimed at tuning the
system parameters and evaluating the classification perfor-
mance. Then, comparative analysis are provided in order
to assess the performance of SpADe with respect to some
relevant related works.

5.1 Data Collection

Experiments have been carried out on two different
datasets, whose characteristics are summarized in Table 4.
The former is a reference public dataset, named 1KS-
10KN [48], which consists of 11k accounts and more than
1 million tweets crawled by means of the Twitter APIs in
the period April-July 2010. The dataset contains also a set of
features regarding the accounts and their timelines, as well
as information about the URLs contained in the tweets. As
its name suggests, 1KS-10KN is characterized by a ratio of
spammers to genuine of 1:10, i.e., 1000 accounts are labeled
as spammer and the remaining 10.000 as genuine. More details
about the dataset and the features provided can be found
in [46].

TABLE 4: Datasets used in the experimental assessment.

1KS-10KN [48] our-dataset
Collection period April to July 2010 June to December 2020

Number of accounts 11.000 40.000
Number of tweets 1.000.000 8.000.000

Features on account ✓ ✓
Features on URL ✓ ✓

Features on content ✓ ✓
Features on neighbors ✓ ✓

The second dataset was collected by carrying out the
procedure summarized in Fig. 3. Data collection starts
by querying the Twitter stream through a set of static
keywords, which will be successively refined. Initial key-
words include elements that are generally used by spam-
mers to reach as many users as possible. In particular,
we chose a set of common spammy words [43] (such as
“earn money”, “free money”, “no credit check”, “viagra”,
“enlargement pill”, “legal bud”, etc.), and a list of trending
topics/hashtags that were obtained from a preliminary API
request. Tweets matching the queries are analysed by a
topic detection algorithm [49], [50] with the aim of putting
together similar tweets and finding out important terms
emerging from them, such as keywords that characterize
newly discovered topics or recently popular hashtags and
mentions. Hence, the initial set of keywords is progressively
updated by including these terms or deleting those unused.
Such a strategy allows to acquire a large volume of data
while keeping the focus on relevant topics. As a results,
between June and December 2020 we collected 8 million
tweets and 40 thousands accounts, which were processed
to compute all the features required by SpADe. For each
tweet we retrieved both the associated metadata (e.g., tweet
ID, date of creation, and so on) and the author’s ID, which
is essential for obtaining account-related information. Then,
for each account, the tweets in the timeline and the set of
followers and followings were acquired. Finally, timeline
and neighbors extractions were performed even on follow-
ers and followings accounts so as to capture information
needed for computing the neighborhood-based features.

A semi-automatic labeling procedure [44] was adopted
to assign ground-truth to collected data. The scheme con-
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sists of three phases. The first two automatically ascribe
labels to “easy” users based on the analysis of the URLs and
the similarity of the content shared: if URLs are malicious
(e.g., blacklisted) or the timelines contain many repeated
elements, users are labelled as spammers. Otherwise, man-
ual annotation is required. In this case, the third phase
aims to minimize label assignment effort by creating groups
of similar users, perform manual annotation of just a few
samples per group, and then extend the label to the whole
set. The entire process is detailed in [44].

5.2 Observation Cost Evaluation

Quantifying the effort needed to observe the four categories
of features outlined in Table 2 is crucial to implement the
reject mechanism. According to Eq. 18 and Eq. 19, the
observation time of every group fG is determined by the
time required to collect and to processes the relative raw data.

The former amount depends on the capability of the
observer to query the data source, e.g., by means of the
available APIs. For instance, if the analyses are performed
by the social media company itself, the collection time is
negligible since all the data needed to calculate the features
are available immediately. However, in the more general
case, potential beneficiaries of SpADe include organizations
involved in countering cybercrimes (e.g., cyberbullying or
other phenomena conveyed by OSNs), marketing and ad-
vertising companies interested in distinguishing real and
fake accounts, government agencies working in the field
of cybersecurity (e.g., for discovering data flows that could
trigger devious political campaigns and misinformation),
and even academic researchers, from both the fields of
computer and social sciences, that being external to the
OSN would need a certain amount of time to collect data
to be processed. In general terms, this time for a group
of homogeneous features, i.e., TC(fG), can be defined as
a function of four parameters, namely the number of data
to collect (d), the maximum number of data that can be
retrieved from a single API call (maxd), the maximum
number of API calls allowed within a certain time window
(maxc), and the duration of the time window itself (∆t).

The second component of the observation time, i.e.,
the processing time TP , depends on the complexity of the
algorithms chosen to actually calculate the feature values.
For instance, the core processing tasks performed in SpADe
involve timeline browsing (TL), verification of blacklisted URLs
(BL), near duplicate clustering (ND), analysis of tweets’ con-
tents (TC), community detection (CD) and browsing (CB), and
neighborhood browsing (NB).

The observation times of the URL-, Content-, and
Neighborhood-based features discussed so far were as-
sessed through an experimental analysis conducted by
means of the two datasets presented in Section 5.1. Tests
were run on a multi-core server equipped with 4 Intel Xeon
at 2.00 GHz and results are summarized in Fig. 4. Please
note that the evaluation of TO(fA) is omitted since fA is
obtained directly from raw account information. The TC and
TP bars exhibit similar trends on both datasets; in particular,
it can be observed that neighborhood-based features (fN )
are the most expensive to obtain, both in terms of collection
(striped) and processing (solid) times. The groups fU and

fU fC fN

10 1

100

101

Ti
m

e 
(m

)

TP (1KS-10KN)
TP (our-dataset)

TC (1KS-10KN)
TC (our-dataset)

Fig. 4: Time to collect and process URL-, Content-, and
Neighborhood-based features. Processing of fU involves the
tasks TL and BL, while TL, ND and TC are performed to
compute fC . The features in fN are obtained through the
tasks CD, CB and NB.

fC are characterized by the same collection time since URLs
are embedded in the tweets; however, processing content-
based features takes more because of the computational
complexity of near-duplicates analysis. Overall, results con-
firm an increasing trend in costs when moving from URL- to
neighborhood-based features. It is worth noting that even in
the specific case of the OSN data owner, though the collec-
tion time is negligible, the processing time is progressively
higher.

These outcomes can be exploited to quantify the effort
required to move from one stage to another. According to
Eq. 17, the loss ϕ(xs) of the multi-stage classifier at the stage
s is strictly related to the cost of making the observation xs.
For instance, at the second stage of SpADe, x2 corresponds
to the set F2 = {fA, fU}. Thus, by averaging and normaliz-
ing the results shown in Fig. 4, the following loss values are
chosen: ϕ(Fs) ≈ {0, 10−2, 10−1, 1}. It is worth noting that
the loss of the last stage is about 1, since the maximum cost
is reached when all the features are considered together.

5.3 Stages Order Selection
The performance of a multi-stage classifier depends heavily
on the order in which the features are employed. Using
the most effective features in the early stages could in fact
reduce the error, but may in some cases increase the overall
complexity of the system.

One way to find the optimal sequence is by testing
all possible permutations and determine the best trade-
off between cost and error. However, if the number of
features is large enough, this process may be impractical.
As introduced in Section 4, and further discussed in the
previous Section 5.2, the 39 features adopted in SpADe are
grouped into four categories according to their semantics
and observation costs. This design choice actually allowed
us to reduce the search space from 39! to just 4!.

A different approach is suggested in [51], where the
problem of establishing a good order of the features to
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stage si, with i ∈ [1, 39].
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Fig. 6: Stacked bars representing the usage (%) of the groups of features defined in SpADe at the generic stage si of
CASCARO, with i ∈ [1, 39].

adopt in a multi-stage system is addressed. In particular,
CASCARO is a method based on a variant of the Monte
Carlo Tree Search (MCTS), in which the problem of variable
ordering is treated as a search problem in a tree of depth
D+1, where D is the number of features. Each path in the tree
is associated with a reward that depends on Λ, a parameter
representing the penalty in case of misclassification. In order
to demonstrate the effectiveness of the feature order used in
SpADe, we applied the CASCARO procedure to a system
with 39 stages (one for each feature).

Results of the tests performed with Λ ∈ [1, 20] are illus-
trated in Fig. 5 and Fig. 6. The former shows the percentage
the feature fn was chosen by CASCARO at the generic
stage si; thus, the darker the cell, the higher the usage of
that feature. As it can be observed, simplest features (e.g.,
account-based ones, with n = [1, 7]) are usually chosen in
the initial stages, while as the value of n increases, the choice
of the corresponding features is postponed to later stages.

In order to further analyze this aspect, the individual
features used in the CASCARO experiment were correlated
with the groups employed in SpADe. Fig. 6 shows how
many times the i-th stage processed by CASCARO has used
features belonging to one of the four groups in SpADe. The
different colors highlight the existence of some patterns that,
with a few minor exceptions, well match the distributions
of the features we considered in SpADe. In particular, in
the early stages of CASCARO account-related features are
regularly selected; then, from stage 9 to 15 features ascrib-

able to the URL group are chosen more frequently. Stages
16 to 29 extensively rely on content-based features, while at
the remaining stages neighborhood information is preferred.
These groups, regardless of the inner order in which the
features are picked, correspond to those that are the core of
our method. Thus, these results confirm the validity of the
order adopted in the four stages.

5.4 Reject Threshold Evaluation

Choosing the proper threshold ΘsR at each stage is essential
to balance the reject and classification rates, on which the
performance of the spam detection system actually depends.
On the one hand, low thresholds may increase the system
accuracy as the decision to classify is made only when
the outcome is almost certain; however, rigid thresholds
could cause also inputs that would have been classified
correctly at the current stage to be discarded. Conversely,
high threshold values could lead the system to never reject,
even when the outcome is uncertain. We present here a set
of experiments aimed to find the proper threshold value for
each classification stage.

In order to measure the performance of the classifier as a
function of the fraction r of accounts rejected at each stage,
we adopted the evaluation metrics proposed in [52]. Given a
certain value of r, the classification of A accounts produces
as output four distinct sets (see Fig. 7):

• aAN : accounts Accurately classified and Not rejected;
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Fig. 7: According to the confidence value and the the re-
ject ratio r, the accounts analysed at each stage can be
Accurately classified, Misclassified, Rejected, or Not re-
jected. As a results, four sets can be identified: aAN , aMN ,
aAR, and aMR.

• aMN : accounts Misclassified and Not rejected;
• aAR: accounts Accurately classified and Rejected;
• aMR: accounts Misclassified and Rejected.

According to these quantities, two performance mea-
sures, namely non-rejected accuracy (NA) and classification
quality (CQ), are defined:

NA =
∥aAN∥
|A|

, (20)

CQ =
∥aAN + aMR∥

|A|
, (21)

The non-rejected accuracy measures the ability of the system
to properly classify samples, accounts in our case, that are
not rejected; the values of non-rejected accuracy (NA) can be
used as rough indicators of the effectiveness of both the
classifier and the features, evaluated on the “most evident”
inputs, i.e., those that are not rejected. A more in-depth
analysis of the reject region can be carried out through the
classification quality (CQ) index, which assesses the perfor-
mance of the classifier on the set of non-rejected accounts,
and the reject policy on the set of misclassified accounts.

Fig. 8 shows the values of the two metrics computed
on our dataset while varying the fraction of rejected inputs
from r = 0 (no reject) to r = 1 (reject all). By observing
the results of the first stage, Fig. 8a, we can notice that the
more inputs are rejected the higher the non-rejected accuracy.
The reason is that most of the inputs are uncertain because
of the weakness of the features adopted. Hence, in order to
achieve a proper level of accuracy it is necessary to impose
a very high reject threshold. For instance, a threshold that
guarantees a non-rejected accuracy of 90% would discard
about 90% of the observed accounts (or accept only 10%
of them). The same figure also provides a general measure
of the effectiveness of the account-based feature set, which
would lead to an accuracy of 60% without the reject option
(r = 0).

Given a target reject ratio of 0.9, the classification quality
observed at this first stage is quite low; in fact, striving
for high accuracy in the non-reject region inevitably leads
to reject also some “good” samples that could have been

classified correctly. With respect to Eq. 21, this means that
the number of aAN and aMR decreases as the reject ratio
increases.

The performances observed at the second stage are more
promising, as summarized in Fig. 8b. Here, in order to
achieve the same target accuracy of 90%, only half of the
analyzed accounts need to be rejected (r = 0.5). Even
when no sample is rejected (r = 0), the features adopted
at this stage are more accurate than the previous ones;
this proves the usefulness of including URL information in
the classification process. Moreover, also the classification
quality increases, confirming that a proper threshold allows
to obtain a satisfying number of correctly classified samples
(aAN ), but also an adequate number of misclassified and
correctly rejected samples (aMR).

This trend is confirmed at the third stage, in which the
reject ratio that maximizes the accuracy (r = 0.3) coincides
with the maximum classification quality, as depicted in
Fig. 8c. It is worth noting that results shown in each column
of the figure refer to the subset of samples rejected at the
previous stage; thus, choosing a threshold that allows to
achieve an accuracy of 90% at the third stage, for instance,
would cause to reject only 30% of the accounts rejected at the
second stage, which in turn are only half of those rejected
at the second stage, which were 90% of those rejected at the
first stage.

The reject ratios are strictly dependent on the reject
thresholds chosen at each stage; thus, other tested were
performed in order to highlight the relationship between
the two values. We can observe from Fig. 8 that the lowest
reject ratios for a target accuracy of 90% are 0.9, 0.5 and 0.3 at
stage-1, stage-2, and stage-3 respectively. Then, Fig. 9 shows
that these ratios can be obtained by choosing the thresholds
Θ1
R = 0.03, Θ2

R = 0.15, and Θ3
R = 0.02. Moreover, the

same figure points out that as the system moves to the
next stages, the reject thresholds decrease; this indicates a
progressively reduced uncertainty because of an increasing
feature significance.

5.5 Classification Performance

Once the observation costs were estimated and the clas-
sifier was tuned with the proper threshold values, a 10-
fold cross validation was performed in order to assess
the performances of SpADe in terms of overall accuracy,
F-score, and percentage of classified accounts. Tests were
repeated multiple times on a balanced subset of the dataset,
randomly selecting the same number of spammers and
genuine accounts.

Results, summarized in Table 5, indicate that the idea of
progressively rejecting uncertain accounts allows the system
to achieve an adequate (above 90%) classification rate at
every stage. The F-Score values also highlights the ability
of the system to drastically reduce the number of false
positives and false negatives. Furthermore, it is possible to
note that, stage by stage, the reject rate decreases as the
feature sets become more and more significant. This last
result suggests that even the effort required to process the
features is progressively reduced; for instance, the neighbor-
hood features are computed at stage four for only 17% of the
initial set of accounts.
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Fig. 8: Non-rejected accuracy and classification quality achieved at the first (a), second (b), and third (c) classification stage.
Stage 4 is omitted as no reject option is allowed. Results shown in each column refer to the subset of samples rejected at
the previous stage.
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Fig. 9: Relationships between reject ratios and reject thresh-
olds measured at the three classification stages.

Since the performance evaluation might be biased by the
ratio n:m between spammers (n) and genuine accounts (m),
other tests were performed by considering different versions
of the dataset with ratios 1:2, 1:5, and 1:10, which are
increasingly more representative of the real social networks.

Table 6 shows that the system performances do not
change significantly as different ratios are considered.
Slightly better results are obtained when the proportion
between spammers and genuine accounts is moderately
unbalanced (e.g., 1:2); however, the average accuracy and
f-score achieved in the 1:10 scenario are still above 90%.
Also the percentages of inputs discarded at each stage
are comparable, so confirming the quality of the rejection
strategy.

The choice of the feature sets to adopt in each of the four
stages was also supported by an experimental evaluation.

For each permutation of the four sets fA, fU , fC , and
fN , a multi-stage system was defined and tuned by fol-
lowing the procedure described in Section 5.4. The perfor-
mances of the 24 variations of the multi-stage system were
measured in terms of their classification cost:

Φ =
S∑
s=1

asc
|A|

ϕ(Fs), (22)

TABLE 5: Accuracy and F-Score achieved by SpADe, ac-
counts (%) rejected at the n-th stage, and total percentage
of accounts classified after the n-th stage).

Accuracy F-Score Rejected Classified
(current %) (overall %)

Stage 1 0.90 0.91 91 9
Stage 2 0.92 0.93 69 37
Stage 3 0.91 0.95 27 83
Stage 4 0.95 0.96 - 100

where asc = ||aAN || + ||aMN || is the number of account
classified at each stage s by means of the cumulative feature
vector Fs. It is worth noting that the value of Φ is maximum
in a single-stage system, as all data are required at once in
order to perform the classification.

Table 7 reports the percentages of accounts classified at
each stage by imposing a target accuracy of 90%, where each
row indicates a different sequence of feature sets and the
overall observation cost of the resulting multi-stage classi-
fier. The first sequence of features is the one we adopted in
SpADe, which exhibits the lowest value of Φ. The last six
rows show the highest percentage of accounts classified at
the first stage, which demonstrates the effectiveness of the
community-based features. However, these configurations
also yield the highest observation costs, which reflects the
effort required to compute the set fN on a great number of
accounts.

The costs of the other combinations we tested depend
on how discriminative the feature sets are and the order
in which they are used in the processing chain. In any
case, it can be seen that none of the systems reaches the
maximum complexity, stressing again the benefits of the
proposed method over traditional approaches.

5.6 Comparison with state-of-the-art ML approaches

The last set of experiments aims to compare SpADe with
three “single-stage” machine learning techniques without
reject option, namely Random Forest (RF), Decision Trees (DT),
and Bayesian Networks (BN). This choice is motivated by the
results summarised in Table 3, which show that these algo-
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TABLE 6: Accuracy, F-Score, and rejected accounts (%) measured while varying the ratio between spammers and genuine
accounts.

1:2 1:5 1:10
Accuracy F-Score Rejected (%) Accuracy F-Score Rejected (%) Accuracy F-Score Rejected (%)

Stage 1 0.90 0.89 93 0.91 0.89 94 0.89 0.88 87
Stage 2 0.89 0.91 65 0.92 0.90 70 0.91 0.88 68
Stage 3 0.91 0.94 28 0.90 0.92 27 0.93 0.91 24
Stage 4 0.92 0.93 - 0.93 0.92 - 0.95 0.92 -

TABLE 7: Observation costs of different configurations of
the multi-stage system, obtained by varying the order in
which the four feature sets are used.

%Classified@Accuracy0.9
Feature sets order Stage 1 Stage 2 Stage 3 Stage 4 Φ

fA, fU , fC , fN 9 28 46 17 0.216
fA, fU , fN , fC 9 28 47 16 0.486
fA, fC , fU , fN 9 14 53 24 0.255
fA, fC , fN , fU 9 14 77 0 0.786
fA, fN , fU , fC 9 80 8 2 0.807
fA, fN , fC , fU 9 80 10 1 0.815
fU , fA, fC , fN 18 1 60 21 0.272
fU , fA, fN , fC 18 1 81 1 0.809
fU , fC , fA, fN 18 20 24 38 0.399
fU , fC , fN , fA 18 20 62 0 0.638
fU , fN , fA, fC 18 72 7 3 0.724
fU , fN , fC , fA 18 72 7 3 0.729
fC , fA, fU , fN 73 1 3 24 0.312
fC , fA, fN , fU 73 0 27 0 0.343
fC , fU , fA, fN 73 2 3 22 0.292
fC , fU , fN , fA 73 2 25 0 0.325
fC , fN , fA, fU 73 24 0 3 0.316
fC , fN , fU , fA 73 24 2 0 0.316
fN , fA, fU , fC 89 1 2 8 0.898
fN , fA, fC , fU 89 1 7 3 0.897
fN , fU , fA, fC 89 2 0 9 0.899
fN , fU , fC , fA 89 2 1 7 0.891
fN , fC , fA, fU 89 8 0 3 0.898
fN , fC , fU , fA 89 8 3 0 0.898

rithms are the most frequently employed in spam detection
scenarios.

The main difference between our algorithm and those
presented in the literature is undoubtedly the characteri-
zation of the observation cost. Hence, in addition to the
accuracy and F-Score values, the comparative evaluations
have to consider the complexity as defined in Eq. 22. Results
of the comparison with RF, DT, and BN are reported in
Table 8. Although these techniques are generally applied in
balanced scenarios, we have selected a subset of our dataset
in order to test their validity also with a spammer-genuine
ratio of 1:10. Moreover, in order to make a fair comparison in
terms of observation cost, we also considered a non-optimal
configuration of SpADe based on the sequence of groups
{fN , fU , fC , fA}. We refer to this system as SpADe∗, which
is characterized by an observation cost similar to that of the
baselines.

All methods achieve fairly comparable performances in
terms of accuracy and F-Score, but the classification cost of
SpADe is extremely lower. The slight deterioration in the
performance of SpADe∗ compared to the optimal configu-
ration are mainly due to the fact that, although the SpADe
reject option was tuned on a target accuracy of 90%, the last
stage has no chance to reject and thus will be more prone to
misclassification errors. Then, a higher probability of error

TABLE 8: Comparison between the least (SpADe) and the
most costly (SpADe∗) versions of the system, Random
Forest (RF), Decision Trees (DT), and Bayesian Networks
(BN) classifiers.

1:1 1:10
Accuracy F-Score Φ Accuracy F-Score Φ

SpADe 0.92 0.94 0.21 0.91 0.90 0.19
RF 0.93 0.92 1 0.92 0.89 1
DT 0.90 0.90 1 0.91 0.87 1
BN 0.89 0.88 1 0.87 0.83 1

SpADe∗ 0.89 0.90 0.89 0.87 0.84 0.87

TABLE 9: Comparison between the least (SpADe) and the
most costly (SpADe∗) versions of the system, Random
Forest (RF), Decision Trees (DT), and Bayesian Networks
(BN) classifiers exploiting the features from [17].

1:1 1:10
Accuracy F-Score Φ Accuracy F-Score Φ

SpADe 0.90 0.91 0.20 0.89 0.87 0.18
RF 0.85 0.86 1 0.84 0.81 1
DT 0.83 0.85 1 0.80 0.82 1
BN 0.77 0.79 1 0.75 0.71 1

SpADe∗ 0.84 0.85 0.88 0.81 0.80 0.85

subsists if poorly discriminative features are used at the last
stage, such as fA in the case considered.

The effectiveness and generality of SpADe were further
assessed by setting up a new four-stage classification system
that exploits a different set of features, namely the four
categories of features described in [17]: metadata, content,
interaction, and network. Also for this system, tested on the
public 1KS-10KN dataset [48], we tuned the reject capability
by computing the observation cost for the new feature sets,
as well as the thresholds to be chosen at each stage in order
to achieve 90% of accuracy.

Results, reported in Table 9, show that SpADe still
outperforms the considered competitors. Moreover, it is
possible to note that the performances of RF, DT, and BN
are lower than those measured while using the proposed
feature set; this suggests that the features from [17] are prob-
ably less general in describing the spammers’ behaviors. The
costly version of the system, SpADe∗, is characterized by a
reduced detection accuracy that is very similar to RF and
DT, and still superior to BN. These trends are almost the
same regardless of the imbalance ratio, although the overall
results are slightly worse in the 1:10 case.

In order to better understand the different performance
of the methods considered as baselines, a final set of ex-
periments was carried out to assess the contribution that
different groups of features may have in such a “single-
stage” classification process.

To this aim, the four groups fA, fU , fC , and fN were
considered both individually and combined with each other,
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Fig. 10: Accuracy (coloured marks) and observation costs (grey bars) of RF, DT, and BN measured while considering
different groups of features computed on the balanced versions of our dataset (left) and the public 1KS-10KN dataset [48]
(right).

so making the cost of observing the feature subsets progres-
sively higher. The leftmost plot in Fig. 10 shows that the
accuracy of RF, DT, and BN increases as multiple groups are
considered together, up to the best case - when the whole
feature set is taken as input of the baselines. The curves
indicate a very similar trend for the three classifiers, with
RF providing slightly better performance regardless of the
chosen feature group. The observation costs measured in the
different cases provide further insights into the relationship
between accuracy and efficiency of the classifiers.

The same procedure was repeated for the groups used
in the experiments in Table 9, namely fm, f c, f i, and fn.
Even in this case, we can observe a general trend indicating
an improvement in performance as the observation cost
increases, even though accuracy values are slightly lower
than those observed in the private dataset.

These outcomes indicate that all features contribute to
classification, i.e., they are not redundant, although the use
of certain groups (e.g., fC and fN , or f i and fn) impacts
on the performance more than others. This is also consistent
with the other findings discussed in this Section, from which
results the convenience of postponing the observation of
expensive features to later stages, when fewer samples are
evaluated.

6 CONCLUSIONS

In this paper we faced the problem of identifying spam
accounts in social networks from a different perspective.
Related works are generally oriented towards proposing
new features capable of capturing the behavior of spam-
mers, as well as new classifiers tuned on increasingly larger
feature sets. However, feature acquisition and processing
may be very costly in OSNs with millions of users. For
this reason, we presented a multi-stage spam account de-
tection technique with reject option, whose purpose is to
initially exploit the features that are easier to compute, while
progressively extracting more complex information only for
those accounts that have not yet been classified.

The proposed system has been validated both on a
dataset we retrieved from the Twitter stream, and on a
reference public dataset. The performances have been also
compared with single-stage state-of-the-art techniques that

do not include the reject option, namely Random Forest,
Decision Trees, and Bayesian Networks. The results high-
lighted the effectiveness of the multi-stage approach which
achieves high accuracy in distinguishing between spammers
and genuine accounts, while maintaining extremely low the
overall complexity. These two characteristics are mainly due
to the analysis, stage by stage, of increasingly significant
features and to the ability of this system to classify the
accounts only when it is quite confident of the outcome.
Moreover, we observed that the accuracy of the multi-stage
algorithm is comparable to that of a single-stage classifier
that uses all the features at once; nevertheless, our approach
allows to detect a spammer sooner, which also results in a
lower complexity of the classification process.

The current approach equally weighs the misclassifica-
tion of spammers and genuine accounts. However, while
false positives could erroneously block honest users, unde-
tected spammers could compromise the trustworthiness of
the whole social network. As future work, this issue can
be addressed by evaluating the effectiveness of a different
loss function, which should be capable of assigning different
penalties for an incorrect classification.

The solution proposed could be integrated in a more
complex system in which the last classification stage is
performed by entities that have knowledge of the prob-
lem, namely experts [53]. In fact, it happens more and
more frequently that, especially in critical systems, machine
learning algorithms are assisted by human experts that are
able to better untangle uncertain situations. This kind of
approaches must face a number of relevant open challenges,
the most crucial of which is finding the right balance be-
tween classification accuracy and human overwork. These
aspects will also be studied in future research.

REFERENCES

[1] S. Rathore, P. K. Sharma, V. Loia, Y.-S. Jeong, and J. H. Park, “So-
cial network security: Issues, challenges, threats, and solutions,”
Information Sciences, vol. 421, pp. 43 – 69, 2017.

[2] R. P. Barnwal, N. Ghosh, S. K. Ghosh, and S. K. Das, “Publish
or drop traffic event alerts? quality-aware decision making in
participatory sensing-based vehicular cps,” ACM Trans. Cyber-
Phys. Syst., vol. 4, no. 1, Nov. 2019.



15

[3] R. Kaur, S. Singh, and H. Kumar, “Rise of spam and compromised
accounts in online social networks: A state-of-the-art review of
different combating approaches,” Journal of Network and Computer
Applications, vol. 112, pp. 53 – 88, 2018.

[4] G. Lingam, R. R. Rout, D. Somayajulu, and S. K. Das, “Social bot-
net community detection: A novel approach based on behavioral
similarity in twitter network using deep learning,” in Proceedings
of the 15th ACM Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 708–718.

[5] J. Zhang, R. Zhang, Y. Zhang, and G. Yan, “The rise of social
botnets: Attacks and countermeasures,” IEEE Transactions on De-
pendable and Secure Computing, vol. 15, no. 6, pp. 1068–1082, 2018.

[6] F. Concone, A. De Paola, G. Lo Re, and M. Morana, “Twitter anal-
ysis for real-time malware discovery,” in 2017 AEIT International
Annual Conference, 2017, pp. 1–6.

[7] K. Lee, J. Caverlee, and S. Webb, “The social honeypot project:
Protecting online communities from spammers,” in Proceedings of
the 19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: ACM, 2010, pp. 1139–1140.

[8] K. Lee, B. D. Eoff, and J. Caverlee, “Seven months with the devils:
A long-term study of content polluters on twitter.” in ICWSM,
2011, pp. 185–192.

[9] G. Stringhini, C. Kruegel, and G. Vigna, “Detecting spammers
on social networks,” in Proceedings of the 26th Annual Computer
Security Applications Conference, ser. ACSAC ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 1–9.

[10] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna, “The un-
derground economy of spam: A botmaster’s perspective of co-
ordinating large-scale spam campaigns,” in Proceedings of the 4th
USENIX Conference on Large-Scale Exploits and Emergent Threats, ser.
LEET’11. USA: USENIX Association, 2011, p. 4.

[11] K. Lee, J. Caverlee, and S. Webb, “Uncovering social spammers:
Social honeypots + machine learning,” in Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 435–442.

[12] S. Lee and J. Kim, “Warningbird: A near real-time detection
system for suspicious urls in twitter stream,” IEEE Transactions on
Dependable and Secure Computing, vol. 10, no. 3, pp. 183–195, May
2013.

[13] C. Cao and J. Caverlee, “Behavioral detection of spam url sharing:
Posting patterns versus click patterns,” in 2014 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2014), 2014, pp. 138–141.

[14] W. Herzallah, H. Faris, and O. Adwan, “Feature engineering for
detecting spammers on twitter: Modelling and analysis,” Journal
of Information Science, vol. 44, no. 2, pp. 230–247, 2018.

[15] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detect-
ing spammers on twitter,” in In Collaboration, Electronic messaging,
Anti-Abuse and Spam Conference (CEAS, 2010.

[16] A. A. Amleshwaram, N. Reddy, S. Yadav, G. Gu, and C. Yang,
“Cats: Characterizing automation of twitter spammers,” in 2013
Fifth International Conference on Communication Systems and Net-
works (COMSNETS), 2013, pp. 1–10.

[17] M. Fazil and M. Abulaish, “A hybrid approach for detecting
automated spammers in twitter,” IEEE Transactions on Information
Forensics and Security, pp. 1–1, 2018.

[18] F. Concone, F. De Vita, A. Pratap, D. Bruneo, G. Lo Re, and S. K.
Das, “A fog-assisted system to defend against sybils in vehicular
crowdsourcing,” Pervasive and Mobile Computing, vol. 83, p. 101612,
2022.

[19] D. Yuan, Y. Miao, N. Z. Gong, Z. Yang, Q. Li, D. Song, Q. Wang,
and X. Liang, “Detecting fake accounts in online social networks at
the time of registrations,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’19.
New York, NY, USA: Association for Computing Machinery, 2019,
p. 1423–1438.

[20] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “COMPA:
Detecting Compromised Accounts on Social Networks.” in Pro-
ceedings of the 20th Symposium on Network and Distributed System
Security, San Diego, CA, 2013.

[21] Y. Wu, D. Lian, Y. Xu, L. Wu, and E. Chen, “Graph convolutional
networks with markov random field reasoning for social spammer
detection,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, no. 01, pp. 1054–1061, Apr. 2020.
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sures for classification systems with rejection,” Pattern Recognition,
vol. 63, pp. 437–450, 2017.

[53] M. U. S. Khan, M. Ali, A. Abbas, S. U. Khan, and A. Y. Zomaya,
“Segregating spammers and unsolicited bloggers from genuine
experts on twitter,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 4, pp. 551–560, 2018.


	Introduction
	Related work
	Decision under Uncertainty
	Classification with Reject
	Multi-Stage Classification with Reject

	SpADe Overview
	Feature Extraction
	Stage 1: Account Analysis
	Stage 2: URLs Analysis
	Stage 3: Content Analysis
	Stage 4: Neighborhood Analysis


	Experimental Results
	Data Collection
	Observation Cost Evaluation
	Stages Order Selection
	Reject Threshold Evaluation
	Classification Performance
	Comparison with state-of-the-art ML approaches

	Conclusions
	References

