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Abstract—Federated Learning (FL) allows training machine
learning models on a dataset distributed amongst multiple clients
without disclosing sensitive data. Each FL client, however, might
have a different data distribution, with a detrimental effect on
the performance of the trained model. In this paper, we present
a dynamic clustering algorithm (DCFL) that allows the server to
cluster FL clients based on their model updates, letting the server
adapt to changes in the data distribution and supporting the
addition of new clients. Moreover, we propose a novel distance
metric to estimate the distance between model updates by different
clients. We evaluate our approach in a wide range of experimental
settings, comparing it against the standard FedAvg algorithm
and divisive clustering on the EMNIST dataset. Our approach
outperforms the baselines, yielding higher accuracy and lower
variance for the participating clients.

Index Terms—Federated Learning; Differential Privacy;
Dishomogeneous data distribution; Dynamic clustering

I. INTRODUCTION AND RELATED WORKS

Federated Learning (FL) is a machine learning technique that
trains an algorithm across multiple decentralized clients holding
local data samples without exchanging sensitive data [1]. Local
models are trained on local data samples, and only parameters
(either model weights or computed gradients) are exchanged.
FL, over the course of multiple communication rounds, can
train a global model without collecting private data from the
users producing the training data. Compared to traditional
paradigms where all the data are available to a central entity
training the model, FL preserves user privacy.

Nonetheless, private data can still be leaked: model parame-
ters can disclose information on the presence of specific entries
in the training data. Inference attacks can detect whether a
specific user participated in the FL scheme and whether the
targeted user trained the model with some specific records
using nothing but the updates [2].

To protect the federated clients from disclosure of their
private data, local Differential Privacy (DP) has been proposed
as a solution [3]. DP mechanisms add random noise to the
results of computation performed on the data that needs
to be protected from disclosure [4]. In the case of FL,
this computation corresponds to the client updates. Before
transmitting the locally trained models, clients perform norm
clipping to the gradient and add Gaussian or Laplacian noise,
so that privacy is preserved even if the server aggregating

model updates is compromised [5]. Clearly, there are some
trade-offs between the privacy gains and the reduction in model
accuracy due to the noisier updates [6].

FL is gaining popularity in human activity recognition [7]
and mobile crowdsensing applications [8], [9] as it allows
to perform learning tasks without centrally collecting the
user data. In these contexts, data collected by various par-
ticipating clients can have dishomogeneous quality [10] and
might have different statistical properties for each client [11],
potentially worsening the trained model performance or prevent
convergence altogether [12]. Moreover, in some cases, the
data might be distributed in a severely non-Independently and
Identically distributed (IID) way. In these non-IID cases, some
users might prefer to abstain from participating to the FL
scheme. Indeed, if the user data distribution differs from the
majority, the user would not have any benefit by participating
in a FL scheme [13] and their presence might harm the
overall performance of the trained model. This issue can be
mitigated adopting weighting schemes more sophisticated than
the commonly used FedAvg [14], as to reduce the variance
of the model accuracy achieved on the local datasets by the
federated clients [15]. This objective is sometimes achieved
through the use of a root dataset in the aggregating server: the
root dataset can be used to obtain useful information about the
quality of the received model updates and to optimize the next
training round [16].

This approach can mitigate the issues caused by non-IID
data with label distribution skew, meaning that each client
is assumed to hold similar types of local training data but
not every client holds data relative to every class. This type
of non-IID distribution is common in IoT scenarios [17].
Nevertheless, even if all clients can achieve similar model
performances, training a single model with non-IID data can
still prevent the clients from obtaining an optimal model [18],
especially in the case of full overlapping attribute skew
where the feature distribution varies across clients, and label
preference skew where different client might associate different
labels to the same feature values. This last type of non-
IID distribution is particularly common in crowdsourced data
labeling scenarios [12].

To address this issue multiple models can be trained for
subsets of the federated clients. For instance, when the global
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model perform poorly on the local datasets of a subset of
clients compared to the others, a distinct model to be trained
separately can be instantiated for these clients [19].

Similar loss values for all the clients in a cluster, however,
do not guarantee a correct clustering: a standard FL model
reaches a stationary point when the magnitude of the average
model update tends to zero. Yet, if the data distributions of
the clients are different, the model updates of each client
might be non-negligible even if they cancel out. The global
model could be an equally poor fit for all clients, making it
impossible to determine an effective clustering structure by
only analyzing the loss. Cosine similarities between clients
updates conveys richer information about how each client’s
ideal model differs from the global one, allowing to more
accurately determine how to cluster clients [18]. Such an
approach entails iteratively bipartitioning one of the existing
clusters whenever the associated model is close to a stationary
point but the maximum update module is still high. In the
case of noisy updates, as in the case of DP, this bipartitioning
approach can perform incorrect cluster assignments [20] and
cannot recover from its mistake in the following iterations.
Cosine similarity can also be used to cluster clients in a single
step using an agglomerative clustering technique [17], but
retains most of the aforementioned issues.

Another downside of this approach is that many communica-
tion rounds are needed to achieve a correct clustering structure.
For this reason, agglomerative clustering has been proposed for
FL [21]. After some initial training with a single global model
the distances between clients updates are used for clustering.

The agglomerative clustering approach, however, requires
the participation of all the federated clients to be successful,
does not support the inclusion of additional clients after the
clustering phase, and cannot handle data distribution shifts.
FlexCFL [22] has been proposed to overcome these issues,
supporting newcomer clients and cluster migrations. The
assignment of a client to a cluster is performed according
to the cosine between their update to a global model and
the direction of the clusters models. Even so, this technique
requires prior knowledge on the number of clusters, which
cannot change during training.

In this work, we present an original model update distance
measure and an alternative aggregation algorithm for clustering
FL clients with non-IID data. Our Dynamic Clustered Feder-
ated Learning (DCFL) approach can handle the inclusion of
additional clients during training, cluster migration, client data
distribution shifts, and remains effective even under the noisy
conditions typical of differential privacy. The remainder of the
paper is organized as follows: in Section II we present the
proposed client clustering algorithm, in Section III we provide
experimental results. Finally, Section IV concludes the paper
discussing improvement areas and future development plans.

II. PROPOSED APPROACH

A. Distance measure

The euclidean distance between vector endpoints does not
take into account whether these vectors are converging to the

same point or getting further away. This makes the euclidean
distance unsuitable to cluster update vectors that may be
computed starting from different models. Cosine distance,
on the other hand, only considers the angle between local
models from a given reference point, ignoring all other spatial
relationships, such as the positions of the global models of the
clusters.

A C

B
D

Fig. 1. Example of a possible arrangement of update vectors

In order to address for these issues, we introduce a novel
distance measure based on both a divergence measure and the
euclidean distance of the models. To illustrate this distance
measure we make use of the notation in Fig. 1. The divergence
measure is given by Eq. 1 and accounts for both the magnitude
and the angle between the vectors considering their position
in space.

ω =
|AB| cosα+ |CD| cosβ

|AB|+ |CD| (1)

This measure lies in the [-1,1] interval. In accordance with
intuition, the highest divergence value, 1, is given by α =
β = 0. This occurs when the two vectors lie on the same line
and point outward. Symmetrically, when the two vectors lie
on the same line and point toward each other, α = β = π
and the divergence measure is −1. The divergence is 0 when
AB ∥ CD and the vectors are not getting further apart.

This divergence measure is used to scale the euclidean
distance of the end points so that, given a fixed |BD|, if
two vectors are pointing toward each other they are considered
closer than if they are getting further apart. Moreover, it is
desirable that the distance between two parallel vectors with
the same length is not scaled, and still corresponds to their
euclidean distance. Finally, the distance measure is given by
Eq. 2

d(A⃗B, C⃗D) = |BD| · e2ω = |BD|e2
|AB| cosα+|CD| cos β

|AB|+|CD| (2)

If |BD| = 0, meaning that the two vectors have the same end
point, α and β are not meaningfully defined. The divergence
index, however, is always in the [-1,1] interval, and thus in this
special case the distance is just zero. This distance measure
assigns distance equal to zero to all the vectors with the same
end point, regardless of their origin.

Another special case is when the update vectors have the
same starting point. This is a common occurrence since when
two clients belonging to the same cluster produce their update
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vectors, these have the same origin. If the update vectors
also have the same length, our divergence measure ω behaves
similarly to the cosine distance DC which, given two vectors
at an angle γ, is 1− cos γ . Without loss of generality, in the
following we consider the example in Fig. 2 with |AB| =
|AC| = l:

A

B

C

Fig. 2. Example of a generic arrangement of update vectors by clients
belonging to the same cluster.

ω =
l(cosα+ cosβ)

2l
= cos(α)

Since △ABC is isosceles cosα = cosβ = sin γ
2 , which

can be expressed in terms of cos γ as

ω =

√
1− cos γ

2

Thus, under these assumptions, DC = 2ω2.
As shown in Fig. 3, all else being equal, the greater the

difference in length between the update vectors, the higher is
the assigned divergence. Indeed, even if the angle between the
vectors is small, if one is longer than the other and they have
the same origin, overall they are getting further apart. Due to
norm clipping typical of differential privacy, the update vectors
will typically have similar lengths.
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|AB| = 1, |AC| = 1
|AB| = 1, |AC| = 2
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|AB| = 1, |AC| = 4

ω

γ

Fig. 3. Divergence ω of two vectors with the same origin varying their angle
and relative length.

Unlike cosine distance, our divergence score can be negative
if the vectors have different origins and are getting closer,
making this measure more suitable than DC for our aims.

B. DCFL algorithm

Given n clients participating to the FL scheme, at any given
communication round each of them produces an update vector
δ⃗ with origin the model received from the FL server and ending
on the model found after a local update step. For each pair
(i, j) of clients then we can compute their distance as d(δ⃗i, δ⃗j).
Once all the pairwise distances have been computed we use
them to determine an appropriate clustering structure C. We
use an affinity propagation algorithm [23] to divide the clients
in clusters without needing a priori knowledge on the optimal
number of clusters.

Due to the possibility of distribution shift and the introduc-
tion of new clients, the clustering structure is subject to change.
Thus, after each communication round is over, when all the
model updates are available, a measure to determine whether
the current clustering structure is still valid is required. Since we
lack any ground truth relative to the correct clustering structure,
an internal validity index is needed. In this work, we adopt
the Dunn index [24], which is the ratio between the minimum
intercluster distance and the maximum intracluster distance. As
shown in Eq. 3 we compute the intercluster distance with single
linkage and the intracluster distance as the maximum distance
between two update vectors produced by clients belonging to
the same cluster.

DI =
min{d(δ⃗a, δ⃗b) : ∀Ci ∈ C {a, b} ⊈ Ci}

max{d(δ⃗a, δ⃗b) : {a, b} ⊆ Ci ∈ C}
(3)

Whenever DI < 1 we have that two pairs of updates (δ⃗a, δ⃗b)
and (δ⃗c, δ⃗d) exist such that the conditions in Eq. 4 are verified.

d(δ⃗a, δ⃗b) < d(δ⃗c, δ⃗d)

∄ Ci ∈ C : {a, b} ⊆ Ci

∃ Ci ∈ C : {c, d} ⊆ Ci

(4)

It is worth noting that in principle it is possible that a = c. In
such a circumstance, δ⃗a is closer to updates from other clusters
than some from its own, meaning that it could probably be
assigned to the other cluster. In general, if DI is below this
threshold we can assume that the clustering is not suitable
for the current data distribution of the clients. Thus, we use
this threshold on the Dunn index to assess whether to perform
new clustering operations. If this condition is verified, then the
latest update vectors are fed as input to the clustering algorithm
to determine a new clustering structure.

Unlike sequential divisive clustering techniques, when a new
clustering structure is produced, the members of any given
cluster might originate from distinct clusters of the previous
structure. Therefore, a new global model for each cluster must
be computed and distributed to all cluster members. Many
possible strategies can be employed to produce a cluster model,
such as majority voting and robust aggregation. Here we decide
to compute these models simply as the average of each member
client model as shown in Eq. 5.

WCi
=

1

|Ci|
∑
j∈Ci

Wj (5)
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Whenever a new client wants to join the FL system, the
server needs to provide it with a suitable model. We assume
that in the current clustering structure exists a cluster Cj such
that its model WCj is a better fit for the new client than the
model obtained by training a separate model from scratch with
local training only, even if the overall data distribution for the
members of the selected cluster could be different from that
of the new client.

Testing all the cluster models on the client local dataset
to find the one which minimizes the loss is unfeasible for
a large number of clusters, since each cluster model would
need to be transmitted. Instead, we assign the new client to an
appropriate cluster by only transmitting two models and one
update. Namely, to assign the newcomer n+ 1-th client to a
cluster, the server first provides the client an average global
model WG =

∑
Cj∈CWCj/|C|. Then, after a round of local

training, we compute the distance of the client update vector
δ⃗n+1 relative to the existing clusters and add the client to the
closest cluster. Finally, the cluster model is transmitted to the
client. This is expressed more formally in Eq. 6

Wn+1 =WCj
: j = argmin

i
d
(
δ⃗Ci

, δ⃗n+1

)
(6)

where δ⃗Ci is a vector with origin on the average global model
WG and pointing to WCi .

A complete high-level overview of our DCFL algorithm is
presented in Algorithm 1.

III. EXPERIMENTAL EVALUATION

In order to assess the performance of DCFL, we test it on
the EMNIST dataset [25]. We simulate a label distribution
skew by assigning samples of each label to clients following a
Dirichlet distribution with α = 1. Moreover, in order to also
achieve attribute and preference skew, the images in the dataset
of each client are rotated by a random angle, different for each
client.

As we are interested in improving the performance of FL
setups under highly dynamic conditions, every ten communi-
cation rounds we introduce a new client with its own unique
data distribution. The training consists in a total of 60 rounds.
Each local update entails one epoch of training on the local
dataset of each client. Moreover, to account for client data
distribution drift, starting from the fifth communication round
and every ten rounds after that a client is randomly selected
and its data distribution is altered by changing the rotation
angle. Differential privacy is also used with δ = 10−5 and
ϵ = 10, and gradient norm clipping, which are commonly used
parameters for relatively high privacy concerns [3].

In Fig. 4 we compare DCFL against the standard FedAvg
algorithm and the divisive clustering proposed in [18] (CFL).
All the algorithms are tested under the same conditions. We can
see that any form of clustering outperforms FedAvg, yielding
higher accuracy and lower variance for the participating
clients. DCFL can also be seen to outperform the competing
clustering algorithm, both in terms of overall final accuracy
and performance during training.

Algorithm 1 DCFL algorithm
Input: an initial set of clients {1, . . . n}
Output: A clustering for the federated clients and a model

for each cluster
1: C0 ← {1, . . . , n} # assign all clients to C0

2: WC0
←WG ← random initialization

3: C = {C0} , Models← {WC0
}

4: for each communication round do
5: if client n+ 1 joins then
6: Wn+1 ←WG

7: δ⃗n+1 ← LOCALUPDATE(n+ 1,WG)
8: k ← FINDCLOSEST(δ⃗n+1, Models)
9: Ck ← Ck ∪ {n+ 1}, Wn+1 ←WCk

10: end if
11: deltas = {}
12: for each cluster Cj ∈ C do
13: for each client i ∈ Cj do
14: δ⃗i ← LOCALUPDATE(i,WCj

)
15: deltas = deltas ∪ {δ⃗i}
16: end for
17: update WCj

with the deltas of the clients in Cj

18: end for
19: update WG

20: compute the distances between update vectors
21: DI ←DUNNINDEX(distances)
22: if |C| == 1 or DI < 1 then
23: C′ ← CLUSTERING(deltas)
24: Models ← GENERATENEWMODELS(C, C′, Models)
25: C ← C′
26: end if
27: end for
28: return C, Models

DCFL CFL

A
cc

ur
ac

y

Training rounds

FedAvg

Fig. 4. Comparison of the performance during training of the competing
approaches. The accuracy on the dataset of each client is shown in gray, the
overall average is shown in black.
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In order to quantitatively assess the difference in performance
we report in Table I the mean and the standard deviation of the
accuracy achieved by the clients at the end of the 60 rounds
and the average of these values during the whole training. We
can see that, in accordance with the results in Fig. 4, our
approach yields a higher accuracy than the alternatives since
the first communication rounds. Moreover, the outcome for
all the clients is far more homogeneous, with half and one
third of the standard deviation of the other two approaches
respectively, confirming the soundness of our approach.

TABLE I
COMPARISON OF THE PROPOSED APPROACH TO BASELINE IN TERMS OF

AVERAGE ACCURACY AND CLIENT VARIANCE.

Technique Final Average
Avg. accuracy Std. dev Avg. accuracy Std. dev

DCFL 0.72 0.04 0.61 0.08
CFL [18] 0.64 0.08 0.50 0.12
FedAvg 0.54 0.12 0.44 0.13

On top of assessing the performance of the DCFL algorithm
in this highly dynamic setting, we are interested in confirming
that it does not harm performance under more static conditions.
To evaluate the impact of the differences in the dynamic
non-IID setting, in Fig. 5 we show multiple combinations of
simulation parameters. Tests were performed in the following
settings:

• No new clients, no drift, no differential privacy;
• New clients, drift, no differential privacy;
• New clients, no drift, differential privacy;
• No new clients, drift, differential privacy.

DCFL is shown to always match if not outperform the
alternative algorithms in all the tested settings.

Static setting No Differential Privacy

A
cc

ur
ac

y

Training rounds

No drift

DCFL CFL FedAvg

A
cc

ur
ac

y

Training rounds

No newcomers

Fig. 5. Difference in accuracy during training of all the approaches varying
the test conditions.

We are also interested in assessing how much of the
performance improvements were due to the dynamic clustering
approach and how much were due to the improved distance
metric. Thus, we repeated the experiments in the dynamic
setting using different distance metrics in place of the proposed
one, namely: the cosine similarity, the euclidean distance, and
our divergence metric. The results of these experiments are
reported in Fig. 6 and Table II. The Euclidean distance gave
the worse results, barely improving over the performance of
vanilla FedAvg. As the training goes on the distance between the
clusters became too large compared to the client updates, and
the clustering structure could change anymore to accommodate
changes in distributions. Using our divergence measure alone
already somewhat improved the final accuracy. This measure,
however, does not depend at all from the actual distance of
the update vectors, only their direction, and thus sometimes
clients that belong to different clusters were mistakenly joined
as can be seen by the frequent drastic changes in accuracy
experienced by the individual clients shown in Fig. 6. Using
the standard cosine distance showed more stability in the
performance experienced by the clients compared to our
divergence measure, but the overall performance was quite
similar and was still outperformed by our distance metric. The
complete distance metric accounts for these shortcomings of
the individual measures and yielded better results.

Complete distance metric Cosine similarity

Divergence only

A
cc

ur
ac

y

Training rounds

Euclidean only

Fig. 6. Performance comparison of DCFL using the proposed distance metric
compared to solely the divergence, the euclidean distance, and the cosine
distance.

IV. CONCLUSIONS

In this work, we have presented DCFL, a federated learning
framework to handle clients with heavily non-IID data dis-
tributions, distribution shifts, noisy updates caused by local
differential privacy, and staggered joining of the clients to
the FL setup. The proposed approach is based on a dynamic
clustering algorithm and a novel metric used to assess the
distance between the model updates provided by the clients.
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TABLE II
PERFORMANCE OF DCFL VARYING THE ADOPTED DISTANCE METRIC

Distance Final Average
Avg. accuracy Std. dev Avg. accuracy Std. dev

Complete 0.72 0.04 0.61 0.08
Divergence 0.61 0.09 0.51 0.12
Cosine 0.60 0.07 0.56 0.09
Euclidean 0.56 0.12 0.52 0.14

We evaluated DCFL on the EMNIST dataset showing its
superiority compared with FedAvg and divisive clustered fed-
erated learning under a wide range of experimental conditions.
Our evaluation also showed the advantages given by our
distance metric compared to the ones commonly used to cluster
federated clients.

Future works will perform tests on other standard datasets
and will address settings where only a portion of the federated
clients participate in each training round. Moreover, the impact
of different privacy budgets will be investigated as well as the
computation and communication overhead of the clustering
scheme.
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