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In recent years, the widespread adoption of Machine Learning (ML) at the core of complex IT systems

has driven researchers to investigate the security and reliability of ML techniques. A very specific kind of

threats concerns the adversary mechanisms through which an attacker could induce a classification algorithm

to provide the desired output. Such strategies, known as Adversarial Machine Learning (AML), have a

twofold purpose: to calculate a perturbation to be applied to the classifier’s input such that the outcome is

subverted, while maintaining the underlying intent of the original data. Although any manipulation that

accomplishes these goals is theoretically acceptable, in real scenarios perturbations must correspond to a

set of permissible manipulations of the input, which is rarely considered in the literature. In this paper, we

present AdverSPAM, an AML technique designed to fool the spam account detection system of an Online

Social Network (OSN). The proposed black-box evasion attack is formulated as an optimization problem that

computes the adversarial sample while maintaining two important properties of the feature space, namely

statistical correlation and semantic dependency. Although being demonstrated in an OSN security scenario,

such an approach might be applied in other context where the aim is to perturb data described by mutually

related features. Experiments conducted on a public dataset show the effectiveness of AdverSPAM compared

to five state-of-the-art competitors, even in the presence of adversarial defense mechanisms.

Additional Key Words and Phrases: adversarial machine learning, spammer detection, online social networks,

evasion attacks
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1 INTRODUCTION
The need to provide people with more and more sophisticated smart services has recently fostered

a renewed interest in the topics of Artificial Intelligence (AI) and Machine Learning (ML). At the

same time, it has now been widely accepted that the fallibility of intelligent systems can lead to
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2 Concone, et al.

diffuse, and potentially serious, errors. This is especially true in certain critical scenarios, where

the misbehavior of AI and ML can threaten the security of a cyber system. For instance, intelligent

algorithms are commonly adopted to analyze large amounts of data and recognize anomalous

behaviors, such as network intrusions, cyber-attacks, slander campaigns, or spam activities. In all

these cases, a failure will quickly propagate from the cyber space to the real world. The issue is

even more severe when the malfunctioning of ML algorithms is induced by attackers exploiting

automated Adversarial Machine Learning (AML) strategies, whose applications are as broad as ML

itself.

AML [8] techniques aim to exploit the same optimization mechanism at the core of ML with

an opposite intent: to let the model be sure, with high confidence, about an erroneous prediction.

Adversarial samples are defined as “those that change the verdicts of Machine Learning systems

but not those of humans” [10]. To be more specific, adversarial attacks can be characterized on the

basis of different traits, the most general of which is whether they aim to directly alter the input

data, or the corresponding feature values. In the simplest scenario, we can assume that the classifier

operates directly on the input data; thus, the adversary calculates a perturbation to be added to the

input in order to obtain an adversarial sample. In the case of image analysis, for instance, this would

result in modifying individual pixel values directly. Most works consider AML in this scenario

since it is straightforward for a human to verify the appearance of a certain image and assess the

correctness of the classifier.

When ML algorithms operate on complex feature sets that indirectly represent the input, and

have no meaning to a human, it is burdensome to find out how to manipulate the feature values

while also preserving the nature of the input. In these cases, two alternatives exist. In the easiest

one, the features are independent; thus the single feature value can be modified without impacting

the others. Otherwise, if the features are dependent, i.e., if they capture aspects that influence

each other, only a subset of all possible manipulations ensures that such an interconnection is not

broken, and of these, the most effective must be identified.

In this paper, we consider this last setting in the context of a ML system aimed to detect and

block spam accounts in Online Social Networks (OSNs).

The high availability of OSNs, that is, the fact that they can be easily accessed at any time from

anywhere, is the key factor in their success and, at the same time, the main reason for the interest

of malicious entities. Since spammers may adopt different strategies to achieve their goal, ML

algorithms are usually trained on a wide set of features capable of capturing various aspects, such

as information concerning the properties of the account, the history of shared content, and the

degree to which a user is connected to the rest of the network. While such a comprehensive set of

characteristics allows to identify different types of threats, large feature sets may also extend the

attack surface of ML systems, making them more easily deceived.

From an AML point of view, features describing the user of an OSN are closely interrelated (e.g.,

adding or deleting a message containing a URL would impact multiple feature values at the same

time) and the steps required to fool a classifier cannot be made on a trial-and-error basis. In this

context, accomplishing an attack means finding a way for the adversary to automatically alter

the feature vector describing a spammer so that it is recognized as genuine, without impairing the

malicious behavior.

In order to achieve this goal, we propose AdverSPAM1
, an evasion adversarial attack against OSN

spam account detection systems that allows to find the optimal perturbation to deceive the target

model, while preserving the inter-relationships among the features describing the user behavior.

The main contributions of this work are summarized as follows.

1
https://github.com/agiammanco94/AdverSPAM
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• We propose a novel AML strategy that explicitly preserves the statistical correlation among

the features of the input space. This is achieved by formulating the attack as an optimization

problem in which the search for the adversarial sample is constrained by the maintenance of

the correlation coefficients observed in the original data.

• To the best of our knowledge, this is also the first work in which the adversarial perturbation

is chosen while preserving the semantic dependency that occurs when multiple features

are computed from the same data. Without this constraint, the algorithm would produce

perturbations that are numerically admissible, but not obtainable through real (legitimate)

account manipulations.

• AdverSPAM allows to deceive unknown classifiers by forging an adversarial sample that

has minimum distance from the original sample (so as to preserve the input nature), while

showing characteristics that are referable to the desired class samples (so as to maximize the

probability of deceiving different target models).

• In order to make the results easily reproducible, the experimental analysis was carried out

using a public dataset of spammer and genuine Twitter accounts. Experiments involved four

distinct surrogate models, twelve possible target models, and the performance of AdverSPAM
were compared with five different state-of-the-art attacks. Such a robust evaluation is essential

to guarantee the generalisation capacity of the AML technique. Moreover, we present a

concrete case aimed at exploring the manipulations to be applied to a real OSN account in

order to carry out the attack suggested by AdverSPAM.

• The evaluation of AdverSPAM also includes the analysis of its robustness to three adversar-

ial defense mechanisms, namely, two state-of-the-art approaches and a confidence-based

technique we designed to counter the specificities of our attack.

The remainder of the paper is organized as follows. Section 2 provides the essential background

to understand the core aspects of an AML strategy. Relevant related works are discussed in Section 3,

where a categorization based on the adversary attributes and the application domain explored is also

given. The proposed methodology is thoroughly presented in Section 4 by introducing the attack

scenario, the threat model, and the algorithms that constitute AdverSPAM. Experimental analysis

is illustrated in Section 5, which includes a description of the experimental setup, a preliminary

assessment of the attack followed by a comparative analysis with five baselines, a concrete case

study with a real example of the modifications made by AdverSPAM, and the evaluation of three

mitigation strategies. Discussion on advantages and limitations of the approach is provided in

Section 6, while conclusions follow in Section 7.

2 BACKGROUND ON ADVERSARIAL MACHINE LEARNING
Supervised learning algorithms consist of a mapping L : L(𝑥) = 𝑦, whose aim is to assign the

independent variables 𝑥 with the dependent variables 𝑦 according to the observed ground truth

labels 𝑦. In order to learn the best mapping from inputs to predictions, the classifier has to be

trained on a set of measurements; generally, the aim of such a procedure is to find a model L which

is an acceptable approximation of the training data labels. This is pursued by minimising a loss
function, ℓ (·), between the real 𝑦 and the predicted 𝑦 label:

𝑚𝑖𝑛
𝜃

ℓ (𝜃, 𝑥,𝑦) + 𝜆(𝜃 ) , (1)

where 𝜃 is the set of L’s adjustable parameters, and 𝜆 is a regularization term which is typically

employed to counter overfitting, i.e., the inability of the learnt model to generalize on new instances

of the data.
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4 Concone, et al.

Adversarial Machine Learning stems from the observation that the same optimization procedure

can be used by an adversary for leading a learning algorithm to a wrong prediction. The strategy is

to forge an adversarial sample 𝑥 = 𝑥 +𝛿 , where the value of the perturbation 𝛿 is found by subverting

Eq. 1:

𝑚𝑎𝑥
�̃�

ℓ (𝜃, 𝑥,𝑦) . (2)

Indeed, the goal of the adversary is to find the perturbation that maximises the error between the

ground truth and the predicted labels. Since the creation of 𝑥 starts from following the positive

direction of the loss function, depending on the magnitude of 𝛿 it may happen that 𝑥 succeeds in

escaping L’s decision boundary, so altering the final predicted label 𝑦. Thus, the value of 𝛿 should

be large enough to allow the decision boundary to be crossed. However, it also have to be small

enough not to completely alter the sense of the input 𝑥 . Both of these requirements are addressed

in the method we propose.

In the most favorable scenario, the attacker possesses perfect knowledge of all the four elements

that define the model, namely the training data, D, the corresponding feature representation, F ,
the target learning model, T , and its parameters, 𝜃 . When the 4-uple (D, F , T , 𝜃 ) is known, the
attack is called white-box. Otherwise, if knowledge of some components of the domain is missing,

the conducted attacks are known as gray-box.
A situation in which the adversary does not know any parameters is called black-box attack.

However, even in this case, the attacker must know something about the aim of the classifier

and the features that are commonly used in the domain under analysis. A particular class of

black box attacks, named model based, exploits the transferability property [51] of adversarial

samples: a surrogate model mimicking the unknown target algorithm is leveraged to synthesize

adversarial samples that will transfer to the target black box [41]. Reasons for such a property

include orthogonality of the models’ gradient directions, the alignment of their decision boundaries

as well as geometric correlations between different regions of such boundaries [48], and magnitude

of input gradients [29].

Let T be the target learning algorithm that the adversary wants to evade, and S the local

surrogate model available to the adversary, the corrupted version of sample 𝑥 , i.e. 𝑥 , built by adding

perturbation 𝛿 computed from S, is said to transfer towards model T if:{
S(𝑥) ≠ 𝑦∗ ≠ T (𝑥)
S(𝑥) = 𝑦∗ = T (𝑥)

, (3)

where 𝑦∗ is the adversary’s desired output label.

In order to measure the distance between the original and the corrupted input samples, several

metrics based on the Hölder norm 𝐿𝑝 are commonly adopted [1]. The 𝐿𝑝 norm between two samples

𝑥 and 𝑥 , is defined as:

𝐿𝑝 (𝑥, 𝑥) = | |𝑥 − 𝑥 | |𝑝 =
𝑝

√√√
𝑑∑︁
𝑖=1

( |𝑥𝑖 − 𝑥𝑖 |𝑝 ) , (4)

where 𝑝 ∈ Z, 𝑥 and 𝑥 are two vectors of 𝑑 components with 𝑑 ∈ N, and subscript 𝑖 denotes the i-th

component [11]. Starting from defining 0
0 = 0, the 𝐿0 norm is computed as:

𝐿0 (𝑥, 𝑥) =
𝑑∑︁
𝑖=1

( |𝑥𝑖 − 𝑥𝑖 |0), (5)

which provides a measure of how many single components are different in the two samples

compared. The 𝐿2 norm computes the euclidean distance between samples in order to measure
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their offset in the feature space:

𝐿2 (𝑥, 𝑥) =

√√√
𝑑∑︁
𝑖=1

( |𝑥𝑖 − 𝑥𝑖 |2) . (6)

Another type of widely used 𝐿𝑝 norm for adversarial attacks is the 𝐿∞ norm, which computes the

maximum drift between the original and perturbed components of the input and is defined as:

𝐿∞ (𝑥, 𝑥) =𝑚𝑎𝑥
𝑖
|𝑥𝑖 , 𝑥𝑖 |. (7)

Using different metrics for determining the imperceptibility of an adversarial perturbation has

a strong effect on the attack’s outcome. By minimising 𝐿2, for instance, it is possible to forge

adversarial samples where multiple features have been slightly perturbed, thus performing a dense
attack. On the other hand, focusing on 𝐿0 permits to modify only a limited set of features, which

results in a sparse attack [59].

3 RELATEDWORK
Over the past two decades, ML has become one of the core pillars of information technology and

has acquired a central role in our daily lives. In this sense, the scientific community has invested

a considerable effort in defining learning-based pattern classifiers that, so far, show impressive

performance in several application domains. More recently, it has been shown that adversarial

perturbations, carefully created in both training and testing phases, can easily subvert predictions

made by ML algorithms. The vulnerability of ML to forged adversarial patterns, along with the

design of appropriate countermeasures, is addressed in a quite novel research area, known as

Adversarial Machine Learning.

The effectiveness of AML is frequently demonstrated on computer vision scenarios [71], in which

it is easier to visually assess the validity of an adversarial sample. In fact, the imperceptibility of the

perturbed input is a desired property of any AML attack [33]. Among the most popular approaches

in AML, the Fast Gradient Sign Method (FGSM) [33] paved the way for many studies exploring

evasion strategies against image classifiers. In [51], the FGSM is used for creating adversarial

images on the MNIST dataset, and testing their effectiveness against classifiers hosted on Google

and Amazon. A thorough analysis of this property, known as transferability, is provided in [29],

where the root causes of this phenomenon are connected with the magnitude of the loss’ gradient,

implying that strongly regularized learning algorithms are more robust to attacks. DeepFool (DF)
attack [47] introduced the idea of reasoning on the particular structure of the decision boundary to

evade, testing approaches against well known convolutional neural network architectures. Carlini
and Wagner (C&W) approach [11] focuses on the formulation of the adversarial evasion as an

optimization problem, where the cost function tends to maximize the confidence of the attacked

classifier about the misclassification; such approach, originally tested against image classifiers,

has become a milestone for testing the efficiency of novel evasion strategies. The attack proposed

in [15] is one of the first effective methods for evading unknown classifiers, where the adversary has

the capability to query such models for reasoning on the provided label. AML may also regard the

perturbation of audio signals in speech recognition systems. The goal of [57] is to let such a system

transcribe a prefixed target sentence by perturbing only those frequencies that are un-listenable by

humans. A stochastic compression technique is proposed in [5] for creating more robust models for

speech recognition in smart home devices. Attacks are simulated through Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD), aiming at the execution of unwanted commands by

the intelligent assistants deployed in the house. When the target model is unknown and its only

observable output is composed of classes probabilities, authors of [67] propose a technique based
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6 Concone, et al.

on the computation of the gradient in a limited set of selected coordinates, with the momentum

iterative method for creating the audio adversarial sample.

Other application scenarios include cybersecurity domains in which ML plays a dominant role in

threat detection. Malware detection systems, for instance, can be attacked by adversaries through

the manipulation of different sections of the source code [27]. In [54], the authors formalize a novel

problem-space attack with the aim of automatically generating realistic and inconspicuous evasive

adversarial applications for Android devices. Malware can also spread through the infection of PDF

files; a comprehensive analysis of PDF-based AML attacks is provided in [43]. On the same topic,

a methodology designed to evade structural PDF malware detection systems is presented in [44].

Similarly, Adobe Flash files may be perturbed by acting both on structural features which do not alter

the functionalities, and content features through the addition of specific ActionScript commands.

In this context, authors of [45] use a bisect line search algorithm for finding the most efficient

step along the loss gradient direction for producing the adversarial sample. Windows malware

are targeted in [26], where a genetic algorithm is used for generating adversarial executables,

in which only a small set of functionality-preserving manipulations have been applied, such as

header fields changes, slack space filling, or shifting the content before the start of a program

section. Attackers may insert malicious code in users’ browser, which will be activated upon visit

of webpages and usually imply the gathering of sensible data contained in cookies. By targeting

specific aspects of HTML and JavaScript syntaxes, authors of [66] leverage Soft Q-learning for

creating adversarial samples able to evade cross-site scripting detectors. Considering the robustness

of ML models deployed in this scenario, authors of [28] propose a method for learning uniformly

distributed feature weights, which have been shown to strengthen the resistance of the model

towards adversarial attacks, since adversaries have to perturb a larger number of features in order

to succeed in their intent. Intrusion Detection Systems (IDSs) are also frequently considered as

targets of AML attacks. In [3], the Jacobian-based Saliency Map Attack is leveraged in order to raise

false alarms for short-circuit faults and other sensible threats. Authors of [2] use several approaches

for creating adversarial traffic vectors for camouflaging malicious network flows, such approaches

include Generative Adversarial Networks and genetic algorithms. It has been observed that features

of network traffic present several statistical correlations, and the approach in [53] addresses such

aspect by proposing a black-box attack that leverages the Mahalanobis distance between traffic

vectors.

Other relevant scenarios include electronic healthcare [32], biometric authentication [6], recom-
mender systems [64], graph-based ML [14, 80], mobile edge computing [77, 79], wireless network
security [39, 60], and spam detection [23]. With regard to the last topic, it is worth highlighting

the difference between spam detection, which refers to the identification of unwanted content, and
spam account detection, which instead aims to distinguish spammers, be they human or bots, from

genuine users.
Over the years, spam detection has evolved from naive systems capable of recognizing common

spammy words [20], to more reliable algorithms that consider wide sets of interconnected features.

This led to the definition of more sophisticated attack strategies. The authors of [59], for instance,

propose a sparse evasion attack based on 𝐿1 norm aiming at adding or removing specific terms

for letting a Support Vector Machine recognize spam emails as genuine. Similarly, by performing

several other manipulations such as synonym replacement, ham word injection and spam word

spacing, adversaries can fool a Bayesian model trained to detect spam emails [37]. In [76] the

impact of feature selection on evasion attacks is evaluated; in particular, it has been observed that

a drastic decrease in the number of features easily allow adversaries to fool the ML spam detectors

by altering only few words in emails.
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Table 1. Distance norms and threat models of relevant attacks at the state-of-the-art. Abbreviations:
(I)ntegrity/(A)vailability, (T)argeted/(U)ntargeted; (W)hite-/(G)ray-/(B)lack-box; (E)vasion/(P)oisoning.

Domain Ref. Norm Threat Model

Image Processing

[33] 𝐿∞ I, U W E
[29] 𝐿∞ I, A, U B P
[51] 𝐿1 I, U W, B E
[47] 𝐿2 I, U W E
[11] 𝐿0, 𝐿2, 𝐿∞ I, T W E
[15] 𝐿2 I, U B E
[71] 𝐿2 I, U W E

Malware Detection

[27] 𝐿0 I, T W, B E
[54] 𝐿0 I, T W E
[44] 𝐿0 I, T B E
[45] 𝐿1 I, T W E
[28] 𝐿1 I, T W E
[26] 𝐿1 I, T B E

Intrusion Detection
[2] 𝐿0 I, T B E
[3] 𝐿0 I, T G E
[53] 𝐿2 I, U B E

Speech Recognition
[57] 𝐿𝜛 I, T W E
[5] 𝐿∞ I, T, U B, W E
[67] 𝐿∞ I, T G E

Spam Email Detection
[37] 𝐿0 I, U W E
[59] 𝐿1, 𝐿2 I, T W E
[76] 𝐿1 I, T W E

Other

[32] 𝐿0 I, U W E
[6] 𝐿1 I, T B E
[64] 𝐿0 A, T G P
[66] 𝐿0 I, T B E
[80] 𝐿0 A, I, T B E, P
[14] 𝐿0 I, U W E
[79] 𝐿0 I, T B E
[77] 𝐿0 I, T W E
[60] 𝐿† A, U B P
[39] 𝐿2 I, U B E

Spam account detection exploiting ML algorithms has also been discussed in a number of

works [19, 22]. State-of-the art solutions usually exploit feature sets that are aimed to capture

different attributes of a spammer, such as its connection with the rest of the social network, or

data/metadata associated with the content shared [18]. These characteristics can be analyzed

by means of a variety of models that typically include Neural Networks (NNs), Support Vector

Machines (SVMs), and Random Forests (RFs), where the last one proved to be the most proper

classifier when dealing with large feature sets [70]. Spam account detection in OSNs clearly has

unique traits compared to other application domains because of the many ways a user can operate

within social networks, hiding its malicious behavior, and thus achieving its disturbance objective.

However, the study of the literature has revealed that the only intersections between AML and

OSNs analysis regards fake news and social bots detection systems [21]. Thus, to the best of our

knowledge, this could be one of the first papers addressing OSNs’ account manipulation through

AML.

A summary of the related work is reported in Table 1, which highlights the characteristics of

each approach according to the properties discussed in Section 2.
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8 Concone, et al.

4 METHODOLOGY
4.1 Scenario
OSNs are protected by intelligent systems that are able to identify and block malicious accounts.

Usually, the detection algorithms exploit heterogeneous features to describe the different behaviors

that spammers may adopt [18]; these can be logically organized into four categories, according to

their aims [31]:

• Metadata-based features describe the general characteristics of the account, such as its

creation date, the geographic location, or the average tweet time. These features can be

obtained very easily and can be quite effective in recognizing clear malicious behaviors.

• Content-based features are useful to evaluate the quality of the content shared by an

account. In order to be effective, spammers need to reach a large number of users; thus,

their messages frequently include mentions, hashtags, and URLs. Spam account detection

algorithms may look for these elements in order to determine whether an account is genuine

or not.

• Interaction-based features allow to model the friendship network of the account under

analysis. Neighborhood information can be very useful to distinguish influential accounts

(characterized by many followers and generally by almost no followings), listener accounts

(few followers and many followings), isolated accounts, or even sub-networks that could be

used for orchestrated attacks.

• Community-based features are able to capture the characteristics of account groups that

have similar interests, physical locations, professions or other relevant social aspects. The

general idea is that the behavior of an account can be inferred by observing those of the

community to which it belongs [31], e.g., an account with a good reputation network is

unlikely to be a spammer.

In order to bypass the detection systems, the attacker should make the feature vector describing

a spammer resemble that of a genuine user. This goal can be achieved through trial and error

strategies, however deceiving the OSN can take a long time, during which actions (e.g., banning

or blacklisting) can be taken against the spammer. Altering metadata-based features, for instance,

would require a shift in the account habits, which is very complicated to achieve. Content-based
features may be altered by forging ad hoc content in order to re-balance those feature values

that might suggest a malicious behavior, e.g., creating new “clean” tweets, or removing those that

clearly refer to a spam campaign. These alterations may be implemented manually or automatically,

depending on the nature of the user. In either case, a large number of changes are required for

the features to undergo a significant change. Interaction- and community-based features can also

be modified by creating new connections within the social network, which is usually done by

purchasing followers or followings [72] from third-party providers, by creating fake accounts, or

by exchanging followers with other users.

4.2 AML Attack Strategy and Threat Model
The proposed attack strategy (see Figure 1) follows the general structure of black-box adversarial

attacks [51] while capturing the peculiarities of the scenario just described.

The attacker (Darth) aims to perform an integrity violation of the defense mechanism of the

OSN (i.e. Spam Account Detector) so as to be mis-classified as a genuine user, although showing a

typical spammer behavior. The attack specificity is targeted since the intent is to hide the spammer

behavior to the smart detector.

Even though in a black-box scenario the target model T is not known to Darth, we can make a

common assumption [29] by supposing the adversary knows the feature representation X of the

, Vol. 1, No. 1, Article . Publication date: July .



AdverSPAM: Adversarial SPam Account Manipulation in Online Social Networks 9
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Fig. 1. The proposed AML strategy in OSN security scenario.

data. The model T can be queried by Darth, while meeting time constraints and consecutive query

limits, in order to collect a training dataset DS for a local surrogate model S, which mimics the

functioning of the target (unknown) ML system; this configures our approach as a query-limited

setting black-box attack [34]. In particular, DS can be obtained by following a strategy known

as mimicry attack [28, 50], according to which a group of satellite agents is exploited to create a

balanced set of spam and genuine accounts. Since Darth knowsS, he can build a perturbation vector
𝛿 to be added to the original feature vector 𝑥 so that the perturbed feature vector 𝑥 is classified by

S as genuine. Finally, by exploiting the transferability property, Darth may obtain that 𝑥 eludes

even the unknown model T .
The computation of 𝛿 must satisfy some constraints; indeed, in the scenario considered here,

some features may be mutually dependent and therefore not all 𝛿 values are valid. Some works,

addressing other application scenarios [53], have proposed the generation of perturbations capable

of preserving the statistical correlation between features; this means that a change in a given

feature value should propagate proportionally to the others. However, such a numerical dependency,
although being able to highlight the hidden relationships between feature values, is not really

able to describe the semantic dependencies of the elements of the feature set. More specifically,

we define two features to be semantically dependent if their computations require one or more

common raw data.

The remainder of the section describes the proposed attack algorithm. For the sake of clarity, the

adopted notations and abbreviations are listed in Table 2.

4.3 AdverSPAM Algorithm
The requirements discussed so far translate into ensuring the fulfilment of three constraints, namely

(i) allowing the computation of an adversarial sample, 𝑥 , beyond the decision boundary of the

surrogate model, S, while maintaining the (ii) the statistical correlation and (iii) the semantic depen-
dency of the features. In order to better explain the meaning of these constraints, we complement

the description with figures that illustrate a simplified classification example in which only two

features are employed (see Figure 2).

Given the problem of associating an observation {𝑥1, . . . , 𝑥𝜅 } with a class from the binary set

Ω = {𝜔−, 𝜔+}, the goal of the attacker is to take an original sample, 𝑥 ∈ X, that lies in the region𝜔+

and project it into 𝜔− so obtaining a perturbed sample 𝑥 . Since low-complexity surrogate models
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Table 2. Notations used in the paper.

Symbol Description

L A general learning model.

S Surrogate model.

T Target model.

𝜃 Set of L’s adjustable parameters.

ℓ (𝜃, 𝑥, 𝑦) Loss function of L.
X Set of input samples.

𝑥 Original sample.

˜X Set of perturbed samples.

�̃� Adversarial sample.

�̂� Predicted label.

𝛿 Adversarial perturbation.

𝐿𝑝 (�̃�, 𝑥 ) 𝑝-norm between original and perturbed samples.

𝑑𝑏S Decision boundary for S.
𝛼𝑖 𝑖-th coefficient of 𝑑𝑏S .
𝛽 Intercept of 𝑑𝑏S .
R 𝑗,𝑖 Linear regression between 𝑥 𝑗 , 𝑥𝑖 .

𝑚 𝑗,𝑖 Slope of R 𝑗,𝑖 .

𝑞 𝑗,𝑖 Intercept of R 𝑗,𝑖 .

𝑧 (�̃�, 𝑥 ) Cost function for �̃� .

𝜆 Controlling factor for 𝑧 (�̃�, 𝑥 ) .

!!
!"

(a)

!!
!"

(b)

!!
!"

(c)

!!
!"

(d)

!!
!"

(e)

Fig. 2. Simplified example of binary classification with only two features. (a) The decision boundary 𝑑𝑏S
(blue line) separates spammers (circles) from genuine users (triangles). The goal of the attack is to project one
chosen spammer sample (red) into the opposite region by crossing the decision boundary. (b) The adversarial
sample must be generated within a certain distance (dashed blue line) from the decision boundary, which
depends on a parameter𝜓 . (c) The regression line (black) provides a good approximation of the correlation
between the spammer samples. (d) In order to preserve the nature of the input, the feasible region (yellow area)
for the adversarial sample is further constrained by a margin around the regression line. (e) The adversarial
sample (green triangle) is finally computed by solving the optimization problem within the feasible region.

have been shown to transfer attacks more effectively [29], we assume S to be any model based on

a linear decision function:

𝑑𝑏S :

∑︁
𝑖

𝛼𝑖 𝑥𝑖 + 𝛽 = 0, (8)

where 𝛼𝑖 and 𝛽 are the learned coefficients and intercept, respectively. Therefore, crossing the

decision boundary 𝑑𝑏S means performing a search in one of the two regions (see Figure 2a)

delimited by Eq. 8. To be more specific, every perturbed sample 𝑥 must satisfy one of the following

conditions: {∑
𝑖 𝛼𝑖 𝑥𝑖 + 𝛽 > 0 if 𝜔− is above 𝑑𝑏S,∑
𝑖 𝛼𝑖 𝑥𝑖 + 𝛽 < 0 otherwise.

(9)
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Algorithm 1 Crossing the Decision Boundary

Input:
S: Surrogate model to attack;

X: The set of input samples for S.
Output:

𝑑𝑏𝑐 : The decision boundary constraint;

𝑑𝑏𝜓 : The constraint on the parallel to 𝑑𝑏S .
1: 𝑑𝑏S ← S.getDecisionBoundary()
2: [𝛼𝑖 , 𝛽 ] ← 𝑑𝑏S .getParameters()

3: 𝑥 ← X.getRandomSample()

4: �̂� ← S.predict(𝑥 )
5: 𝜓 ← getOffset(𝑑𝑏S )
6: if test(𝑥, [𝛼𝑖 , 𝛽 ] ) ≥ 0 then
7: if �̂� ∈ 𝜔− then
8: 𝑑𝑏𝑐 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 > 0”

9: 𝑑𝑏𝜓 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 −𝜓 < 0”

10: else
11: 𝑑𝑏𝑐 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 < 0”

12: 𝑑𝑏𝑐 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 +𝜓 > 0”

13: else if test(𝑥, [𝛼𝑖 , 𝛽 ] ) < 0 then
14: if �̂� ∈ 𝜔− then
15: 𝑑𝑏𝑐 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 +𝜓 < 0”

16: 𝑑𝑏𝜓 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 +𝜓 > 0”

17: else
18: 𝑑𝑏𝑐 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 −𝜓 > 0”

19: 𝑑𝑏𝜓 ← “

∑
𝑖 𝛼𝑖 �̃�𝑖 + 𝛽 −𝜓 < 0”

20: return 𝑑𝑏𝑐 , 𝑑𝑏𝜓

It is also useful to choose 𝑥 on the basis of its distance from the decision boundary. In fact, the farther

𝑥 is from 𝑑𝑏S , the greater the probability of evasion success on the target model. On the other hand,

points that are too far from the decision boundary would exhibit characteristics too dissimilar from

𝑥 , resulting in the attack being meaningless. Thus, we chose to regulate the maximum allowed

distance from the decision boundary (Figure 2b) through a parameter𝜓 , whose sign depends on

the position of 𝜔− with respect to the 𝑑𝑏S :{∑
𝑖 𝛼𝑖 𝑥𝑖 + 𝛽 −𝜓 < 0 if 𝜔− is above 𝑑𝑏S,∑
𝑖 𝛼𝑖 𝑥𝑖 + 𝛽 +𝜓 > 0 otherwise.

(10)

The procedure that implements this last constraint is described by Algorithm 1.

The search in the region beyond the decision boundary is further driven by the need to ensure

that the statistical correlation and the semantic dependency of the features originally extracted from

𝑥 are preserved in the forged adversarial sample 𝑥 . These two properties are defined as follows.

Definition 1. Statistical Correlation: two features are statistically correlated if having a strong
linear relationship with each other.

Definition 2. Semantic Dependency: two features are semantically dependent if their computations
require one or more common raw data.

InAdverSPAM, the statistical correlation among features is leveraged by considering the regression

line fitting the data. In particular, since the aim of the adversary is to preserve the core properties

of the spammers, only the samples of the positive class 𝜔+ are considered (see Figure 2c). Formally,
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Algorithm 2Maintaining Correlations and Dependencies

Input:
X: The set of input samples for S.

Output:
˜C: List of constraints.

1: C ← []
2: for all 𝑥 ∈ X do
3: for all 𝑖 ∈ F do
4: for all 𝑗 ∈ F do
5: 𝑠𝑑 ←checkSemanticDependence(𝑖, 𝑗 )
6: if 𝑖 ≠ 𝑗 and 𝑠𝑑 == 𝑇𝑟𝑢𝑒 then
7: R𝜔+

𝑗,𝑖
← getRegressionLine(X, 𝑗, 𝑖 )

8: [𝑚𝜔+
𝑗,𝑖

, 𝑞𝜔
+

𝑗,𝑖
] ← R𝜔+

𝑗,𝑖
.getParameters()

9: 𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 = sqrt(∑𝑥 ∈X (R𝜔
+

𝑗,𝑖
(𝑥𝑖 ) − 𝑥 𝑗 )2 )

10: C.add(“�̃� 𝑗 ≤ 𝑚𝜔+
𝑗,𝑖

�̃�𝑖 + 𝑞𝜔
+

𝑗,𝑖
+ (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 )”)

11: C.add(“�̃� 𝑗 ≥ 𝑚𝜔+
𝑗,𝑖

�̃�𝑖 + 𝑞𝜔
+

𝑗,𝑖
− (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 )”)

12: return C

the regression line regarding features 𝑗 and 𝑖 for all samples 𝑥 ∈ 𝜔+, is defined by:

R𝜔+
𝑗,𝑖 (𝑥𝑖 ) =𝑚𝜔+

𝑗,𝑖 𝑥𝑖 + 𝑞𝜔
+

𝑗,𝑖 , (11)

where𝑚𝜔+
𝑗,𝑖

and 𝑞𝜔
+

𝑗,𝑖
represent its slope and intercept, respectively. In order to maintain the statistical

correlation between the features, it is therefore necessary that the manipulated sample does not

deviate too far from R𝜔+
𝑗,𝑖
. Hence, 𝑥 must lie within a certain margin from this line (see Figure 2d),

that we compute as the squared root of the Residual Sum of Squares (RSS) of the regression model:

𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 =

√︄∑︁
𝑥∈X
(R𝜔+

𝑗,𝑖
(𝑥𝑖 ) − 𝑥 𝑗 )2, (12)

where the squared root is adopted for dimensional homogeneity. When RSS is approximately 0, the

regression line is a good predictor of the data, resulting in a particularly tight margin of allowable

displacement; conversely, a high value of RSS means R𝜔+
𝑗,𝑖

is an unreliable model of the data, thus

leading to a wide margin of possible perturbations. In other words, this margin actually outlines

the minimum and maximum perturbations permitted on the 𝑗-th feature of 𝑥 :{
𝑥 𝑗 ≤ 𝑚𝜔+

𝑗,𝑖
𝑥𝑖 + 𝑞𝜔

+
𝑗,𝑖
+ (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 )

𝑥 𝑗 ≥ 𝑚𝜔+
𝑗,𝑖

𝑥𝑖 + 𝑞𝜔
+

𝑗,𝑖
− (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 ).

(13)

Furthermore, we adopt the notation 𝑠𝑑 (𝑖, 𝑗) to indicate whether a semantic dependency between

the features 𝑖 and 𝑗 exists. As stated in Definition 2, such a relationship occurs when multiple

features capture similar traits of the account, so requiring the same information (e.g., the number of

followers, or the amount of posted URLs) to be computed. Therefore, the maintenance of statistical
correlation is strictly related to the existence of semantic dependency:{

𝑥 𝑗 ≤ 𝑚𝜔+
𝑗,𝑖

𝑥𝑖 + 𝑞𝜔
+

𝑗,𝑖
+ (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 ) ∀𝑖, 𝑗 𝑠 .𝑡 . 𝑠𝑑 (𝑖, 𝑗) = 𝑡𝑟𝑢𝑒,

𝑥 𝑗 ≥ 𝑚𝜔+
𝑗,𝑖

𝑥𝑖 + 𝑞𝜔
+

𝑗,𝑖
− (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 ) ∀𝑖, 𝑗 𝑠 .𝑡 . 𝑠𝑑 (𝑖, 𝑗) = 𝑡𝑟𝑢𝑒.

(14)

Conversely, features that are not in a direct cause-effect relationship can be manipulated inde-

pendently of each other. The steps required to compute these last constraints are described in

Algorithm 2.
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Fig. 3. The objective function conjugating the minimisation of the distance imposed over the adversarial
samples and the maximization of the evasion capability against unknown classifiers.

Once the feasible region has been defined (Figure 2e), the attack proceeds by determining the best
adversarial sample within it. This corresponds to finding a set of new feature values which pursues

a twofold purpose. Firstly, the overall distance of the adversarial sample 𝑥 from the input 𝑥 has to

be limited, in order to ensure that the (malicious) nature of 𝑥 is not actually altered. Secondly, the

adversarial sample has to be transferable, that is, 𝑥 has to be general enough to evade the unknown

target classifiers. We modeled these two aspects as a weighted sum [25] of two objectives controlled

by a factor 𝜆 ∈ [0, 1]:
𝑧 (𝑥, 𝑥) : 𝜆𝐿2 (𝑥, 𝑥) + (1 − 𝜆)𝐿2 (𝑥, 𝑥𝜓⊥ ), (15)

where 𝑥𝜓⊥ is the projection of the input sample 𝑥 over the parallel to the decision boundary.

In order to understand the meaning of this objective function, let us consider Figure 3. If the

need of the adversary is to evade the local surrogate model with the minimum effort possible, then,

setting 𝜆 = 1 allows to only perform the minimization of the euclidean distance between the input

and the adversarial sample. Conversely, when the adversary wants to deceive unknown black-box

models, since their decision boundaries may greatly differ from the one of the local surrogate, a

reasonable amount of additional distance has to be imposed over the adversarial sample; this can

be achieved by setting 𝜆 = 0. Any other value of 𝜆 ∈ [0, 1] will constitute a trade-off between such

two opposing situations. Hence, AdverSPAM calculates the final adversarial sample by solving the

following optimization problem:

𝑥 =𝑚𝑖𝑛
�̃�

𝜆𝐿2 (𝑥, 𝑥) + (1 − 𝜆)𝐿2 (𝑥, 𝑥𝜓⊥ ),

𝑠 .𝑡 .

(as reported in Eq. 9):

∑︁
𝑖

𝛼𝑖 𝑥𝑖 + 𝛽 > 0 or
∑︁
𝑖

𝛼𝑖 𝑥𝑖 + 𝛽 < 0

(as reported in Eq. 10):

∑︁
𝑖

𝛼𝑖 𝑥𝑖 + 𝛽 −𝜓 < 0 or
∑︁
𝑖

𝛼𝑖 𝑥𝑖 + 𝛽 +𝜓 > 0 (16)

(as reported in Eq. 14): 𝑥 𝑗 ≤ 𝑚𝜔+
𝑗,𝑖 𝑥𝑖 + 𝑞𝜔

+
𝑗,𝑖 + (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 ) ∀𝑖, 𝑗 𝑠 .𝑡 . 𝑠𝑑 (𝑖, 𝑗) = 𝑡𝑟𝑢𝑒

𝑥 𝑗 ≥ 𝑚𝜔+
𝑗,𝑖 𝑥𝑖 + 𝑞𝜔

+
𝑗,𝑖 − (𝑚𝑎𝑟𝑔𝑖𝑛 𝑗,𝑖 ) ∀𝑖, 𝑗 𝑠 .𝑡 . 𝑠𝑑 (𝑖, 𝑗) = 𝑡𝑟𝑢𝑒

𝑥 ∈ [0, 1]𝑛

The entire procedure is described by Algorithm 3, which exploits the other two algorithms

discussed in this section. In our implementation, the problem was solved using COBYLA [56],

which operates iteratively by generating local linear approximations of the objective function and

constraints. The solution 𝑥 is searched in [0, 1]𝑛 , which represents the range of admissible values

for the feature set of 𝑛 elements that will be described in the next section.
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Algorithm 3 AdverSPAM

Input:
S: Surrogate model to attack;

X: The set of input samples for S;
Output:

˜X: The set of adversarial samples.

1:
˜X ← []

2: 𝑑𝑏𝑐 , 𝑑𝑏𝜓 ← Algorithm1(S, X)
3: for all 𝑥 ∈ X do
4: C ← []
5: C.append(𝑑𝑏𝑐 )
6: C.append(𝑑𝑏𝜓 )
7: C.append(Algorithm2(X) )
8: 𝑧 ← getCostFunction(�̃�, 𝑥 )
9: �̃� ← solveoptimizationProblem(′𝑚𝑖𝑛′, 𝑥, 𝑧, C)
10:

˜X.append(�̃� )
11: return ˜X

5 EXPERIMENTAL ANALYSIS
The effectiveness of the proposed technique

2
has been evaluated in different steps. The first part of

this section describes the experimental setup, the metrics adopted for the assessment, as well as

the tuning of AdverSPAM internal parameters. Then, comparisons with five state-of-the-art attack

techniques are presented, discussing both the performance obtained and the quality of the forged

adversarial samples. The section continues with the introduction of a concrete case study aimed at

exploring the manipulations that should be applied to a real OSN account in order to accomplish the

considered attacks. The results of adopting three mitigation strategies follow; finally, advantages

and limitations of AdverSPAM are outlined.

5.1 Experimental Setup
The choice of the classifiers to adopt as target and surrogate models was driven by the analysis of

the literature in the field of AML. A preliminary consideration concerned whether to select ML or

Deep Learning methods. When low-dimensional features spaces are considered, it has been shown

that classical ML algorithms can produce superior results, which also tend to be better interpretable,

than those based on deep neural networks [35]. Conversely, the latter are recommended especially

in domains characterized by large, high-dimensional data, such as image, video, and audio data

processing [24]. Hence, we focused on five classifiers that are the most commonly chosen for

the final assessment of adversarial attacks [7, 63], namely: Neural Network (NN), Support Vector

Machine (SVM), Logistic Regression (LR), Ridge Regression (RR), and Random Forest (RF). All the

considered models has been examined as possible targets, while only SVM (with linear kernel)

and LR were chosen as surrogates since they satisfy the requirement of linear decision boundary

needed in AdverSPAM.

Moreover, since the attack transferability strongly depends on the complexity of the target

model [29], our assessment considers high-complexity (H) and low-complexity (L) variants. The

complexity of a ML model is measured by the number of hyperparameters it has. In general, a

model characterized by a large set of hyperparameters (high degree of complexity) may be able

to capture more variations in the data, but it will also be more difficult to train and may be more

prone to overfitting. Conversely, a low complexity model may be easier to train, but may not be

able to capture all the relevant information in the data.

2
https://github.com/agiammanco94/AdverSPAM
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Table 3. The list of features used to model the accounts.

Category Acronym Description

Metadata

RR Retweet Ratio

AR Automated Tweet Ratio

TSD Tweet Time Standard Deviation

TISD Tweet Time Interval Standard Deviation

Content

UUR Unique URL Ratio

UMR Unique Mention Ratio

CHS Content and Hashtag Similarity Ratio

UR URL Ratio

MR Mention Ratio

HTR Hashtag Ratio

AUR Automated Tweet URL Ratio

ATS Automated Tweet Similarity

Interaction

FR Follower Ratio

MFFFR Mean Follower’s Followings to Follower Ratio

FBR Follower-based Reputation

R Reputation

CC Clustering Coefficient

Community
CBR Community-based Reputation

CBCC Community-based Cluster Coefficient

In order to properly tune the parameters of the classifiers, we performed a 10-fold Cross-Validation

with the objective of letting all the models achieve a f-score of about 90%. To this aim, a public

dataset [31] consisting of 10.000 genuine users and 1.000 spammers, each described by a set of 19

features (see Table 3), was used. Being this dataset unbalanced, we employed SMOTE augmentation

technique [13] so as to obtain a new dataset of 10.000 users per class. This was split with 80:20 ratio

leading to 16.000 accounts for the training and 4.000 for the test set. The former was further split in

two parts representing the datasets DS and DT (see Figure 1), each containing 4.000 genuine and
4.000 spammer accounts. Finally, DT was also used to perform the adversarial training described

in Section 5.5.1.

A summary of the adopted models and their tuned parameters is provided in Table 4.

5.2 AdverSPAM Assessment
The behavior of AdverSPAM is mainly influenced by two parameters, namely 𝜓 (Eq. 10) and 𝜆

(Eq. 15). Given the definition of𝜓 , we calculate it as the value that guarantees a desired percentage

(𝑟𝑎𝑡𝑖𝑜) of samples of the opposite class 𝜔− lies between the decision boundary and its shift by a

quantity 𝜓 . The higher the 𝑟𝑎𝑡𝑖𝑜 , the greater the probability that the adversarial sample will be

located in a region with a higher density of 𝜔− samples. On the other hand, greater distances from

the decision boundary would lead to an over-distortion of the original sample. For this reason, the

choice of the best𝜓 value was determined on the basis of a set of evaluation metrics.

In particular, being the main goal of the algorithm to create a perturbed sample capable of

deceiving the target model, a good measure of its effectiveness is the percentage of actual spammers
that are misclassified as genuines. This information is provided by the False Negative Rate (𝐹𝑁𝑅),

which is defined as the ratio between false negatives and true positives. Moreover, the 𝐿2 and 𝐿∞
distance norms, defined in Section 2, can be exploited to evaluate the distortion introduced in the

adversarial samples.

Tests were run on four surrogate models while varying both the 𝑟𝑎𝑡𝑖𝑜 and the value of 𝜆, i.e., the

weight of the two components of the objective function. Results are shown in Figure 4, organized
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Table 4. The surrogate and target models used in the experiments, and the corresponding tuned parameters.
For all the models, low (L) and high (H) complexity variants are evaluated. Furthermore, two different SVM
kernels are considered, namely, linear (lnr) and radial basis function (rbf).

Surrogates 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

, 𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

, 𝐿𝑅𝐿
, 𝐿𝑅𝐻

Targets 𝑅𝐹𝐿 , 𝑅𝐹𝐻 , 𝑁𝑁𝐿
, 𝑁𝑁𝐻

, 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

, 𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

, 𝑆𝑉𝑀𝐿
𝑟𝑏𝑓

, 𝑆𝑉𝑀𝐻
𝑟𝑏𝑓

, 𝐿𝑅𝐿
, 𝐿𝑅𝐻

, 𝑅𝑅𝐿
, 𝐿𝑅𝐻

Parameters

𝑅𝐹𝐿 trees = 30; max_depth = 8

𝑅𝐹𝐻 trees = 30; max_depth = no-limit

𝑁𝑁𝐿
learning_rate = 0.01; weight_decay = 0.01; neurons_layers = [50, 50, 2]

𝑁𝑁𝐻
learning_rate = 0.01; weight_decay = 0; neurons_layers = [50, 50, 2]

𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

C = 1

𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

C = 100

𝑆𝑉𝑀𝐿
𝑟𝑏𝑓

C = 1

𝑆𝑉𝑀𝐻
𝑟𝑏𝑓

C = 100

𝐿𝑅𝐿
C = 1

𝐿𝑅𝐻
C = 10

𝑅𝑅𝐿 𝛼 = 10

𝑅𝑅𝐻 𝛼 = 1

as a matrix in which each column refers to a different surrogate. The first row summarizes the

mean 𝐹𝑁𝑅 values obtained on the 12 target models for every pair (𝑟𝑎𝑡𝑖𝑜, 𝜆); highest values are
represented with darker colors. The 3-D plots in the second and third rows reveal how varying the

parameters 𝑟𝑎𝑡𝑖𝑜 and 𝜆 impacts on the values of 𝐿2 and 𝐿∞. As a general trend we can notice that

both the 𝐹𝑁𝑅s and the distance values grow proportionally to 𝑟𝑎𝑡𝑖𝑜 , but inversely to 𝜆. Indeed,

small values of 𝜆 (i.e., 𝜆 ≤ 0.4) cause the objective function to push the adversarial sample away

from the decision boundary, which leads to both a greater transferability and higher peaks in the

distance metrics.

As the considered surrogate model varies, the specific optimal values of the parameters change

accordingly. In particular, by analyzing the last two columns of Figure 4 (i.e., 𝐿𝑅𝐿
and 𝐿𝑅𝐻

models),

it can be noticed that the best 𝐹𝑁𝑅s values are obtained when the 𝑟𝑎𝑡𝑖𝑜 ∈ [0.2, 1] and 𝜆 ∈ [0, 0.4].
Considering the 𝐿2 and 𝐿∞ values measured in these ranges, a good trade-off between success rate

and perturbation degree is reached by choosing 𝑟𝑎𝑡𝑖𝑜 = 0.2 and 𝜆 = 0.4. The same assessment

can be made for the 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

and 𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

models, resulting in 𝑟𝑎𝑡𝑖𝑜 = 1 and 𝜆 = 0.2. The obtained

𝑟𝑎𝑡𝑖𝑜 values correspond to𝜓 equals to 1.91, 5.44, 3.78, and 5.47 for 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

, 𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

, 𝐿𝑅𝐿
, and 𝐿𝑅𝐻

,

respectively.

Further experiments were carried out in order to evaluate the capability ofAdverSPAM to preserve

the statistical correlations of the features. In literature, statistical correlation is expressed in terms

of linear correlation between pairs of features; an indicator typically used in this regard is the

Pearson’s coefficient [4, 38, 40, 69]. In order to assess what type of correlation exists between

the 19 features considered, some preliminary tests were carried out on the original dataset by

representing all the pairs of features in a two-dimensional space and fitting them with polynomials
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Fig. 4. AdverSPAM tuning. Mean 𝐹𝑁𝑅s over the 12 targets (top row), and 𝐿2 (middle) and 𝐿∞ (bottom)
distances measured while varying the parameters 𝑟𝑎𝑡𝑖𝑜 and 𝜆 for every surrogate model (columns).

Table 5. Average and variance of theMean Square Deviation (MSD) computed by different degree polynomials
fitted on the features of the spammer class.

metric

degree

I II III IV

avg(MSD) .032 .029 .028 .027

var(MSD) .002 .002 .002 .002

of degree from 1 to 4. For each pair, the Mean Square Deviation (MSD) of the points w.r.t. the fitting

polynomials was calculated as an indicator of approximation quality. The results shown in Table 5

indicate that polynomials of a higher degree correspond to a smaller fitting error, which is intrinsic

in the fact that the higher the degree the greater the freedom in fitting the data. Thus, we also

calculated the variance of the deviations, which should decrease if a certain curve was actually

able to better follow the distribution of the data. The results, instead, indicate that the variance

is stable as the degree of the polynomial changes; thus, we can conclude that linear dependency

fairly accurately represents the distribution of the data.
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Table 6. Correlation matrix. For each feature, the following 5 values (columns) are shown: Pearson correlation
coefficients (blue) measured on the samples of the spammer class before the attack is launched; variations of
these values (red) after creating the adversarial samples with 𝑆𝑉𝑀𝐿

𝑙𝑛𝑟
, 𝑆𝑉𝑀𝐻

𝑙𝑛𝑟
, 𝐿𝑅𝐿 , and 𝐿𝑅𝐻 , respectively.

initial correlation 0 1 variations 0 1

RR AR TSD TISD UUR UMR CHS UR MR HTR AUR ATS FR MFFFR FBR R CC CBR CBCC

RR

AR

TSD

TISD

UUR

UMR

CHS

UR

MR

HTR

AUR

ATS

FR

MFFFR

FBR

R

CC

CBR

CBCC

The correlation matrix of the feature set before and after the adversarial attack was performed is

shown in Table 6, where, for each pair of features, the following 5 values (columns) are reported:

original Pearson correlation coefficients (blue); variations of these coefficients (red) after creating

the adversarial samples with 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

, 𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

, 𝐿𝑅𝐿
, and 𝐿𝑅𝐻

, respectively. As a general rule, the

stronger the correlation between the features, the smaller the changes in Pearson’s coefficients

caused by the attack should be. Thus, if correlations are maintained, light-red colored cells are

expected in correspondence with dark-blue ones, and vice versa; this trend is clearly visible for

almost any feature in Table 6. Moreover, because of the constraint in Eq. 14, features that are not

semantically dependent on each other are more likely to be strongly modified. This is particularly

evident when looking at FBR (Follower-based Reputation), which belongs to the interaction category
(see Table 3). Features ranging from RR to ATS are not semantically dependent with FBR because

they belong to different categories; moreover, they are lowly correlated with FBR as indicated by

the corresponding Pearson coefficients. Hence, these features are good candidates for manipulation.

This is indeed confirmed by the results, which show greater variations (darker red values) in the

rows from RR to ATS, regardless of the surrogate model used.

5.3 Comparing AdverSPAM with the baselines
State-of-the-art AML attacks can be classified into two main categories, namely white-box and

black-box [30, 58]. In order to cover both classes, we decided to compare AdverSPAM with gradient-

based white-box attacks (i.e., 𝐹𝐺𝑆𝑀 , 𝐷𝐹 , and 𝐶&𝑊 ), and decision-based black-box attacks (i.e.,

𝐶ℎ𝑒𝑛𝑔 and 𝑃𝑒𝑛𝑔). While 𝐹𝐺𝑆𝑀 , 𝐷𝐹 , and 𝐶&𝑊 attacks are widely adopted in the literature for the

comparative analyzes [5, 17, 27, 36, 49, 52, 73, 75, 78], the other two methods are less known but no

less important. In particular, to the best of our knowledge, 𝑃𝑒𝑛𝑔 is the only technique that addresses

the problem of statistical correlation between features, just like AdverSPAM. Thus, comparative

analysis is based on the following baselines:

• Fast Gradient Sign Method (FGSM) [33], where the adversarial perturbation is computed

considering the sign of the targeted classifier loss function’s gradient, and projecting the

adversarial sample on a sphere of radius 𝜖𝐹𝐺𝑆𝑀 around the input sample.

• DeepFool (DF) [47], where the adversarial sample is shifted along the direction of the gradient

of the target model loss w.r.t. the input, until the decision boundary is crossed. The obtained

perturbation is then scaled by a factor (1 + 𝜂𝐷𝐹 ), which is useful for getting adversarial

samples farther from the decision boundary.

• Carlini and Wagner 𝐿2 (C&W) [11], where an optimization problem is formulated with a loss

function leveraging the representation in the logits layer (the layer prior to the final softmax
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Table 7. The chosen parameters for the adopted algorithms.

FGSM DF C&W

Model

Parameter

𝜖𝐹𝐺𝑆𝑀 𝜂𝐷𝐹 𝑐𝐶&𝑊

𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

0.37 0.35 0.5

𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

0.42 0.75 0.5

𝐿𝑅𝐿
0.45 0.5 0.85

𝐿𝑅𝐻
0.45 0.2 0.95

layer, containing the probabilities that a sample belongs to a specific class) as a measure of

attack success. The properties of such a loss function depend on a regularization parameter

𝑐𝐶&𝑊 > 0, which controls the confidence that the adversarial sample belongs to the opposite

class. When the attacked model is not a Neural Network, the equivalent of the logits layer is

represented by the class memberships probability.

• Cheng et al. method (Cheng) [15], where the model to attack is considered as a black box,

whose decision boundary is estimated by considering the vector connecting the input sample

to a sample belonging to the desired class. The adversarial perturbation is computed taking

incremental steps along such direction until the decision boundary is crossed; then, a gradient

descent procedure is followed in order to consider the direction minimizing the euclidean

distance between the input and the adversarial sample.

• Peng et al. method (Peng) [53], which is an extension of the Cheng method where the

optimal direction on which to project the adversarial sample is searched by minimizing the

Mahalanobis distance, thus preserving the statistical correlations between features.

The methods just introduced require a calibration phase to tune the corresponding parameters.

Similarly to the analysis described in Section 5.2, we computed them by maximizing the 𝐹𝑁𝑅s of

the target models, while minimizing the distance metrics. The chosen values are listed in Table 7,

in which Cheng and Peng methods are omitted because their functioning parameters are indicated

in the respective original works.

Table 8 reports the transfer matrices of the six attacks launched against twelve targets (columns),

while using the surrogates previously discussed. For each subtable, the last column and row indicate

the average transfer rate of the attacks and the average 𝐹𝑁𝑅 against every target, respectively.

A first consideration can be made about the performance achieved using 𝑆𝑉𝑀s and 𝐿𝑅s. Indeed,

basing the attacks on logistic regression models, regardless of their complexity, results in a stronger

transferability capacity than 𝑆𝑉𝑀s, as revealed by the values highlighted in green. This corrobo-

rates the thesis that simpler sources of adversarial samples are preferable for transferring against

unknown models [29], as they are less specialized and thus less prone to drive the perturbations

toward regions which will not translate in miss-classification against black boxes.

By analyzing Table 8 by columns, it is also possible to observe some dependency between the

measured 𝐹𝑁𝑅s and the complexity of the target models. In particular, high-complexity targets

seem to be less resistant to transferred adversarial samples, as pointed out by the average values

highlighted in pink. For instance, when the surrogate is 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

, the average 𝐹𝑁𝑅s against 𝑁𝑁 𝐿

and 𝑁𝑁𝐻
are 0.48 and 0.81, respectively. This could depend on the learned decision curve of higher

complexity targets, which is highly fitted (very close) to the input data; thus, a small perturbation

on the input sample is often sufficient to cross the decision boundary. The same consideration
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Table 8. Transfer matrices (𝐹𝑁𝑅 values) of five attack strategies compared with AdverSPAM exploiting four
different surrogate models, namely low and high complexity SVMs (a) and LRs (b). Each attack is carried out
against 12 target models (columns).

𝑁
𝑁

𝐿

𝑁
𝑁

𝐻

𝑅
𝐹
𝐿

𝑅
𝐹
𝐻

𝑆
𝑉
𝑀

𝐿 𝑙𝑛
𝑟

𝑆
𝑉
𝑀

𝐻 𝑙𝑛
𝑟

𝑆
𝑉
𝑀

𝐿 𝑟
𝑏
𝑓

𝑆
𝑉
𝑀

𝐻 𝑟
𝑏
𝑓

𝐿
𝑅
𝐿

𝐿
𝑅
𝐻

𝑅
𝑅
𝐿

𝑅
𝑅
𝐻

av
er
ag
e

SV
M

L ln
r

AdverSPAM 1 1 .81 .81 1 1 1 1 1 1 1 1 .97

FGSM .56 1 1 1 .99 1 .19 .99 .68 1 .92 1 .86

DF 1 .98 .74 .74 1 .99 1 1 1 1 1 1 .95

C&W .27 .69 .03 .03 .73 .73 .10 .73 .42 .73 .71 .72 .49

Cheng .02 .73 .43 .43 1 .98 0 1 0 .99 1 1 .63

Peng .03 .48 .37 .37 .63 .58 0 .63 0 .63 .25 .57 .38

average .48 .81 .56 .56 .89 .88 .38 .89 .52 .89 .81 .88

SV
M

H ln
r

AdverSPAM 1 1 .91 .91 1 1 .98 1 1 1 1 1 .98

FGSM .76 1 1 1 1 1 .35 1 .94 1 .99 1 .92

DF 1 .99 .93 .93 1 1 .98 1 1 1 1 1 .99

C&W .19 .36 .03 .03 .29 .68 .10 .34 .18 .36 .26 .66 .29

Cheng 0 .51 .48 .48 .88 .93 0 .95 0 .55 .54 1 .53

Peng 0 0 .06 .06 0 .02 0 .05 0 0 0 0 .02

average .49 .64 .57 .57 .70 .77 .40 .72 .52 .65 .63 .78

(a)
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𝐿
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𝑅
𝐻
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𝑅
𝐿

𝑅
𝑅
𝐻
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LR
L

AdverSPAM 1 .99 .91 .91 .99 .99 1 .99 1 1 1 1 .98

FGSM 1 1 1 1 .80 1 .95 .72 1 1 1 1 .96

DF 1 .99 .99 .99 1 .99 1 .99 1 1 1 .99 1

C&W .88 .97 .42 .42 .93 .99 .98 .90 .99 .99 .99 .99 .87

Cheng .80 .95 .68 .68 .99 .99 .33 .99 .99 .99 .99 .99 .86

Peng .23 .23 .15 .15 .23 .23 0 .23 .23 .23 .23 .23 .20

average .82 .86 .69 .69 .82 .87 .71 .80 .87 .87 .87 .87

LR
H

AdverSPAM 1 1 .90 .90 .99 .99 1 .99 1 1 1 1 .98

FGSM .99 1 1 1 .86 1 .96 .78 1 1 1 1 .97

DF 1 1 1 1 1 1 1 1 1 1 1 1 1

C&W .91 .97 .44 .44 .96 .98 .97 .91 .99 .99 .99 .99 .88

Cheng .26 .99 .59 .59 1 1 0 1 .02 1 1 1 .70

Peng .40 .41 .23 .23 .44 .43 0 .44 .44 .44 .44 .44 .36

average .76 .90 .69 .69 .88 .90 .66 .85 .74 .91 .91 .91

(b)

applies to almost all surrogates and targets, except for a few cases where the performance of the

low- and high-complexity versions are equivalent. Among these are the 𝐹𝑁𝑅s measured against

Random Forest (RF), which are quite low (in average) for all attacks.

Nevertheless, the transfer capacity of AdverSPAM over RF is about 80% for 𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

and 90%

considering all other surrogates. These values are better than all competitors except FGSM and

DF. The reason is that RF does not use a differentiable learning function, but rather relies on a set

of decision trees that establish the class of a sample based on the values assumed by individual

features. Thus, if a group of features is altered significantly (i.e., exceeds the threshold value learned

by the tree), the probability of misclassification is very high. This is the case of FGSM and DF, that
apply to each feature a perturbation equal to 𝜖𝐹𝐺𝑆𝑀 and proportional to 𝜂𝐷𝐹 , respectively. Then,

the altered feature values differ greatly from the original ones (defined in [0, 1]), so producing a
high transfer rate.

By observing the results of the C&W attack, it can be noticed that this is quite effective when

the surrogate is 𝐿𝑅, while it frequently fails in the case of 𝑆𝑉𝑀s. This can be explained because

the decision boundaries learned from Logistic models are farther from the 𝜔+ samples than those

computed by 𝑆𝑉𝑀s; this results in higher 𝐿2 values and thus greater transferability of the samples.

The low performances of both Cheng and Peng methods depend on the idea at their basis: in

order to moderately perturb the input, they generate adversarial samples that slightly cross the

decision boundary. This impacts on transferability as the examples will fail to evade the target

model whenever its decision boundary is different from that of the surrogate.

Actually, 𝐹𝑁𝑅s alone are not good predictors of the attack’s performance as excessively altered

samples could still lead to high transfer rates. To better investigate this aspect, we measured the

quality of the manipulated samples in terms of their distance from the original ones. The results

shown in Figure 5 summarize the average 𝐿2 and 𝐿∞ values calculated for the six attacks, while

varying the underlying surrogate model.

By considering the results of Figure 5 and Table 8 together, we can see that the two methods

having 𝐹𝑁𝑅s comparable with AdverSPAM are characterized by 𝐿2 values that are always worse

than our attack (as in the case of FGSM), or highly variable depending on the surrogate used (DF ).
On the contrary, AdverSPAM exhibits fairly controlled 𝐿2 variations for every surrogate; this is due

to the intrinsic nature of our algorithm that adjusts the maximum allowed distance of the adversarial

samples through the𝜓 parameter, which is automatically tuned on the specific surrogate.
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Fig. 5. The average 𝐿2 and 𝐿∞ distances calculated for the six attacks while varying the surrogate models.

As regards 𝐿∞, the values measured on DF and Cheng are comparable with AdverSPAM, and in

some cases higher (i.e., worse); conversely, the distances obtained by applying FGSM, Peng, and
C&W attacks are generally lower. These differences depend on how each approach defines the

search region for the adversarial sample. For instance, the 𝐿∞ distances observed for FGSM and DF
are very similar to the values of 𝜖𝐹𝐺𝑆𝑀 and 𝜂𝐷𝐹 . The same considerations apply to C&W and Cheng
approaches, whereas a more thorough evaluation is required for Peng, which exhibits the lowest

𝐿∞ among all the baselines and is the only method explicitly accounting for feature correlation

maintenance.

In order to further examine this aspect, a final comparative analysis was carried out between

AdverSPAM and Peng to measure their ability to preserve the statistical correlation between features.

As indicator, we chose the Frobenius norm:

| |𝐴 − 𝐵 | |𝐹 =

√︄∑︁
𝑖

∑︁
𝑗

|𝑎𝑖, 𝑗 − 𝑏𝑖, 𝑗 |2, (17)

where 𝐴 and 𝐵 are the Pearson correlation matrices of the features in the actual spammers and in

the generated adversarial samples, respectively. Furthermore, in order to highlight the contribution

of the semantic dependency, the AdverSPAM analysis is differentiated by whether statistical corre-
lation alone, or both properties are considered. Table 9 summarizes the obtained results, where

higher Frobenius values correspond to stronger changes in the correlations among features of the

adversarial samples. We can observe that AdverSPAM exhibits a lower average correlation distance

w.r.t. Peng (1.45 vs 3.23); this also holds for the single chosen surrogate models. Moreover, when

the semantic dependencies are considered, the distortion is even lower (0.85).

In conclusion, AdverSPAM provides better average 𝐹𝑁𝑅 values than the considered baselines,

which translates to higher success rates on most of the tested target models. When the performances

are equivalent to the competitors, the analysis of distancemetrics suggests that AdverSPAMperturbs

the samples less drastically, which is a desired property for any AML strategy. Finally, maintaining

statistical correlation and semantic dependency helps to keep the core properties of the feature set

unchanged before and after the attack.
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Table 9. Comparing the correlation distances induced by AdverSPAM and Peng methods. The best values
are shown in bold, whereas the second best values in italics. In the header of the table, a single s stands for
statistical correlation preservation, whereas ss signals both statistical and semantic maintainment.

Surrogate

Attack

AdverSPAM (s) AdverSPAM (ss) Peng (s)

𝑆𝑉𝑀𝐿
𝑙𝑛𝑟

1.28 0.49 3.59

𝑆𝑉𝑀𝐻
𝑙𝑛𝑟

2.15 1.11 2.57

𝐿𝑅𝐿 1.27 0.91 3.06

𝐿𝑅𝐻 1.08 0.89 3.71

average 1.45 0.85 3.23

Table 10. Example of features describing a spammer account. Original values (first row) and variations
produced by AdverSPAM and the five baselines. Stronger differences are highlighted with darker colors.

Features

Metedata Content Interaction Community
RR AR TSD TISD UUR UMR CHS UR MR HTR AUR ATS FR MFFFR FBR R CC CBR CBCC

Original 0 0 0 0 0 0 0 .5 1 0 0 0 .04 0 .75 .03 0 .44 .08

AdverSPAM .04 .05 .02 0 .04 .04 .01 .44 .84 0 0 .03 0 0 .2 .02 0 .39 0

FGSM .45 .45 .45 0 .45 .45 .45 .05 .55 0 0 .45 0 0 .3 0 0 0 0

DF 1 1 1 0 1 1 .67 0 1 0 0 1 0 0 0 0 0 0 0

C&W 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .03 0 0 0

Cheng .03 .04 .01 0 .03 .03 .01 .45 1 0 0 .02 0 0 .31 .02 0 .4 0

Peng .04 .22 .15 0 .03 .28 0 .45 1 .01 0 .03 0 0 .34 0 0 .39 0

5.4 Impact of AdverSpam: a concrete case study
AdverSPAM belongs to that category of adversarial attacks that aim to perturb the input of the

target model, without directly addressing the so-called inverse feature-mapping problem [43], i.e.,

how to modify the original data given the perturbed feature vector. Hence, the attacker must find

on his own the set of actions to manipulate the input (the OSN account in our case) in order to

obtain the feature vector suggested by AdverSPAM. This can be achieved by relying either on a

manual or an automatic strategy.

The former, also known as opportunistic [81], consists in performing a certain action (e.g.,

add/remove data), measuring the resulting feature values, and reiterating until the desired values

are reached. As an example, let us consider Table 10 which reports the changes made by AdverSpam

and its competitors to the feature vector describing one of the spammers available in the dataset.

The AdverSPAM row indicates that the most perturbed features are the Mention Ratio (𝑀𝑅) and

the Follower-based Reputation (𝐹𝐵𝑅), while the other values are quite close to the original ones. The

feature𝑀𝑅, which is defined as:

𝑀𝑅(𝑎𝑐𝑐𝑜𝑢𝑛𝑡) = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑜𝑠𝑡𝑠
, (18)

is quite simple to alter. Since the modification suggested by AdverSPAM is to lower𝑀𝑅 to 0.84, the

attacker could replace tweets containing a mention with others that have the same content, but

not the mention. As the number of posts do not change, the other content-based features are not

influenced by this action. However, altering the tweets may change some metadata-based features

that capture the tweet time, such as 𝑇𝑆𝐷 and 𝑇 𝐼𝑆𝐷 ; then, tweet replacement should follow the

same posting frequency that characterized the original account. Please note that the attacker could
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also use an existing account only to get 𝑥 from AdverSPAM, and then create a new account that is

described by that perturbed feature vector.

A similar strategy can be adopted to alter the 𝐹𝐵𝑅 of an account, which is defined as the average

of the reputation of its followers [31]:

𝐹𝐵𝑅(𝑎𝑐𝑐𝑜𝑢𝑛𝑡) =
∑

𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟 )
|𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 | . (19)

Then, in order to change 𝐹𝐵𝑅 from 0.75 to 0.2, the attacker could i) reduce the overall reputation of

its followers (numerator), or ii) increase the number of followers (denominator). The reputation

of the followers can be modified by replacing a subset of 𝑛 followers with others having a lower

reputation; this allows to keep the number of followers unaltered, which is essential to not impact

on the other interaction-based features. Such a modification is quite simple to achieve by exploiting

black markets, where followers having specific characteristics can be bought [61, 62]. Conversely,

increasing the number of followers is somewhat more complicated as it should be done while

guaranteeing that the new followers have a similar reputation to those already existing, so that the

numerator of Eq. 19 does not change, nor do other related features such as𝑀𝐹𝐹𝐹𝑅 or 𝑅.

It is worth noting that attacks modifying the feature vectors in a more extensive way are difficult

to manage with an opportunistic strategy, because the more values are changed the more constraints

must be met while altering the account. In these cases, automatic strategies can help in finding the

optimal set of actions that lead to the desired feature values. A common approach, for instance, is

to model a numerical optimization algorithm which follows the negative gradient of the objective

function [55]. However, it is not possible to directly apply gradient descent-based techniques when

the feature space is not invertible, nor differentiable. A more general strategy consists in modeling

the inverse mapping problem as a game. In [9], for instance, Monte Carlo Tree Search (MCTS) is

adopted to generate a chain of mutations to be applied on malware with the goal of bypassing the

target API-based classifier. In our scenario, the possible mutations could be those provided by the

Twitter’s API to post and remove tweets, or to control the followers and followings of an account.

5.5 Mitigation Strategies
As a final evaluation of AdverSPAM, we tested its ability to accomplish the attack when a defense

mechanism is available. The remainder of this section discusses the results obtained by considering

three mitigation strategies, namely, Adversarial Training, Magnet, and a confidence-based defense

we designed to counter the specificities of AdverSPAM.

5.5.1 Adversarial Training.
Adversarial Training (AT) [33] is one of the most widely adopted [12, 16, 17, 52, 65, 73–75, 78]

defenses against adversarial attacks because of its effectiveness and theoretical simplicity. The

idea is to enable the target model to identify adversarial samples by incorporating them into the

training process. The creation of AT samples is commonly based on the Projected Gradient Descent

(PGD) attack [42], which is an iterative variant of FGSM. We applied this approach to strengthen

the target models and test whether their robustness to adversarial attacks is improved.

Since the maximum perturbation amount that PGD can apply to a sample depends on a parameter

𝜖𝑃𝐺𝐷 , the assessment was repeated while varying 𝜖𝑃𝐺𝐷 in [0.005, 0.1], with step 0.005. Results are

shown in Figure 6a, where the different curves indicate the average FNRs achieved by AdverSPAM

and the five baselines (see Section 5.3 for references) when AT is performed.

In terms of the reference FNRs, i.e., those measured without using any defense, the three best

performing attacks are AdverSPAM, DF and FGSM (see the figure legend). After applying AT, FGSM
is heavily penalized since, like PGD, exploits the gradient of the loss function; thus, the samples
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Fig. 6. Average FNRs achieved by each attack when (a) Adversarial Training, (b) Magnet, and (c) Confidence-
Based defenses are used. The legend also reports the reference FNRs (indicated between square brackets)
achieved by the attacks without using any mitigation technique.

generated by PGD are very similar to those created by FGSM. On the other hand, the performances

of AdverSPAM and DF do not change significantly. This may be because the samples generated by

PGD are very different from those created by the two attacks, and therefore the AT -based defense

cannot exploit them to recognize the adversarial samples. As regards the other baselines, all trends

are decreasing as the perturbations increase. Similarly to FGSM, this may depend on the fact that

PGD samples are alike to those generated by C&W, Cheng, and Peng.

It is worth noting that, since PGD needs to access the gradient of the loss function of the model

being attacked, 𝑅𝐹 and 𝑅𝑅 classifiers are not eligible for this type of attack. In order to face this

limitation, we tested two other defense techniques which can be applied to all the adopted target

models; the results are discussed in the following subsections.

5.5.2 Magnet.
Magnet [46] aims to detect adversarial samples by leveraging autoencoders, i.e., neural networks

trained for learning and reproducing the exact same distribution of the data while minimizing the

reconstruction error of the inputs in the training set. In particular, Magnet pre-trains an autoencoder

over the distribution of the ground truth samples; then, when a new sample is proposed to the

target model, this is fed into the autoencoder in order to compute its reconstruction error, which

roughly represents its similarity to the data distribution observed during the training phase. If the

reconstruction error exceeds a prefixed input threshold 𝜎𝑚𝑎𝑔, the input sample is recognized as

an out-of-distribution sample and will be rejected; this prevents adversarial samples from being

evaluated by the target model. We implemented Magnet according to the specifications provided

in [46], and we explored 𝜎𝑚𝑎𝑔 ∈ [0.05, 0.5] with step 0.025.

Figure 6b shows that higher values of FNR are obtained as 𝜎𝑚𝑎𝑔 increases; this means that if the

threshold is set too high, the defense mechanism will not be able to reject any input and therefore

its effect is null. In fact, for 𝜎𝑚𝑎𝑔 > 0.3, all attacks reach the reference FNRs. On the other hand,

choosing a value of 𝜎𝑚𝑎𝑔 too restrictive, although it guarantees to cope with the adversarial attacks,

might be impractical in a real scenario as it would result in a high number of non adversarial data

rejection.

5.5.3 Confidence-Based Defense.
As a third defense mechanism, we focused on one of the characteristics that most differentiates

AdverSPAM from other baselines, namely the fact that perturbed samples are chosen as close as

possible to the decision boundary. However, some target classifiers could implement a mechanism
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Fig. 7. Kernel Density Estimation (KDE) of the AdverSPAM samples compared to the ground genuines and
spammers, computed for the first (a) second (b) and third (c) principal components describing the feature
space.

to check the confidence of their prediction: the higher the distance of the predicted sample from

the learned decision boundary, the greater the confidence in the prediction. According to these

considerations, the proposed Confidence-Based Defense (CBD) aims to reject the “genuine” class

predictions of the target model when the confidence lies below a fixed threshold 𝜎𝑐𝑜𝑛𝑓 .

Results shown in Figure 6c indicate that as the confidence threshold increases, the effectiveness

of the attacks decreases. For AdverSPAM, FGSM, DF and C&W it is possible to identify a cutoff

when 𝜎𝑐𝑜𝑛𝑓 is about 0.75. Since Cheng and Peng produce samples that lie close to the targeted

decision boundary, the confidence in the prediction of such adversarial samples is relatively low,

and a moderate cutoff threshold is sufficient for defending against these attacks. Finally, as in the

case of Magnet, choosing high 𝜎𝑐𝑜𝑛𝑓 values could result in high rejection rate. Therefore, good

trade-off values could be those in the range 𝜎𝑐𝑜𝑛𝑓 ∈ [0.8, 0.9], where adversarial samples may be

effectively filtered out while non discarding non adversarial data.

6 ADVERSPAM: ADVANTAGES AND LIMITATIONS
The experimental analysis presented so far allowed to measure the performances of AdverSPAM

and compare them with some significant baselines. The results showed the effectiveness of the

proposed approach in attacking different target models while applying perturbations that preserve

both statistical correlation and semantic dependence between features.

Besides these results, a further aspect to consider is whether the perturbation of one or more

features could impair the malicious behavior of spam accounts. In order to make it easier to visualize

the properties of the feature space, Principal Component Analysis (PCA) [68] was used to reduce

its dimensionality. Experiments were conducted by considering the three principal components

that characterize the set of feature vectors; then, the Kernel Density Estimation (KDE) of each

component was computed in order to evaluate the distributions representing both the original

samples (genuines and spammers) and those generated by AdverSPAM.

By observing Figure 7, it is possible to appreciate how the densities of the genuine samples

(green) strongly differ from the others. Conversely, the density estimation of the spammers (red)

and AdverSPAM (blue) samples are highly similar, apart from a slight shift introduced by the

adversarial perturbations. Such analysis confirms the capability of AdverSPAM in generating

adversarial samples that, while preserving the key characteristics of the spam accounts, are able to

evade unknown classifiers.
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Although experimentally proved to be a promising adversarial attack, our approach exhibits

some intrinsic limitations. The first is related to the need for choosing a surrogate model with a

linear decision boundary. Such requirement is closely tied to the necessity of formulating the attack

by considering linear constraints, which makes AdverSPAM particularly efficient.

Adapting AdverSPAM to different scenarios, or even different feature sets, may be computation-

ally burdensome, as the number of constraints in our optimization problem increases according to

the number of features pairs standing in a semantic dependence relationship. Moreover, operating

in scenarios where there are no significant statistical correlations would tamper the effectiveness

of our approach. Furthermore, if the relationships between features are non-linear, AdverSPAM

would require a change in its constraints and a different statistical indicator from the Pearson’s

Correlation coefficient. For instance, the accuracy of the best-fitting second-order polynomial can

be used in the case of quadratic correlations between data.

We studied the robustness of AdverSPAM against three different adversarial defenses, however,

another interesting approach a defender may follow is the one outlined in [27], where an analysis

of the sequence of consecutive requests originated from the same source is conducted. Such a

countermeasure could inhibit the attack when an offline surrogate model cannot be built, and it is

therefore necessary to query the online target model directly. In this extreme case, the iterative

nature of the optimization solver would imply making multiple queries to the target model, which

would result in a straightforward attack detection.

7 CONCLUSIONS
In this work, we presented an AML algorithm designed to deceive OSNs spammer detection

systems. The strategy attack is formulated as an optimization problem whose constraints capture

the essence of AML, i.e., finding the optimal perturbation to fool the target model, while preserving

the inter-relationships among the features that describe the user behavior.

OSNs security in the context of AML has barely been investigated in the literature; to the best of

our knowledge, this paper is probably the first addressing the spam account manipulation problem.

The proposed algorithm explicitly imposes the maintenance of the statistical correlation and the

semantic dependency of related features. By neglecting this aspect, the attack would produce

numerically admissible perturbations, which could not actually be implemented by the attacker.

The effectiveness of AdverSPAM was assessed by considering Twitter as case study, although the

attack can be easily applied to any other AML scenario where preserving the consistency of the

feature space is mandatory.

Experimental analysis was conducted on a well-known public dataset of spammer and genuine

accounts. Experiments involved the assessment of the method by testing four distinct surrogate

models and twelve possible target models, as well as an overall evaluation of the performance of

AdverSPAM as compared to five state-of-the-art attacks.

Results revealed how AdverSPAM is a solid competitor in terms of transferability, with 𝐹𝑁𝑅

indicators that outperformed all the baselines on 10 out of 12 considered target (black-box) models.

With regard to the forged adversarial features, AdverSPAM exhibited the lowest distortion degree

introduced in data, thanks to the formulation of constraints explicitly accounting for the main-

tenance of features dependencies. Moreover, we tested the effectiveness of AdverSPAM against

three different adversarial defenses, proving the robustness of our approach to state-of-the-art

mitigations.

As part of our future work, we plan to test AdverSPAM effectiveness on multiple public datasets,

and evaluate its ability to be more widely applicable to different scenarios characterized by similar

AML requirements, such as Network Intrusion Detection. We also plan to extend the constraint on
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the decision boundary of the surrogate classifier to include also non-linear classifiers, and test their

efficiency as sources of adversarial samples.
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