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2 Concone, et al.

diffuse, and potentially serious, errors. This is especially true in certain critical scenarios, where
the misbehavior of Al and ML can threaten the security of a cyber system. For instance, intelligent
algorithms are commonly adopted to analyze large amounts of data and recognize anomalous
behaviors, such as network intrusions, cyber-attacks, slander campaigns, or spam activities. In all
these cases, a failure will quickly propagate from the cyber space to the real world. The issue is
even more severe when the malfunctioning of ML algorithms is induced by attackers exploiting
automated Adversarial Machine Learning (AML) strategies, whose applications are as broad as ML
itself.

AML [8] techniques aim to exploit the same optimization mechanism
an opposite intent: to let the model be sure, with high confidence, abo
Adversarial samples are defined as “those that change the verdicts o

e core of ML with
erroneous prediction.
ine Learning systems
aracterized on the
alter the input

data, or the corresponding feature values. In the simplest sce \ the classifier
operates directly on the input data; thus, the adversary c ded to the
input in order to obtain an adversarial sample. In the ¢ this would
result in modifying individual pixel values directly. sider AML in this scenario
since it is straightforward for a human to verify the app a certain image and assess the
correctness of the classifier.

When ML algorithms operate on comp, eat irectly represent the input, and
have no meaning to a human, it is burden et 0 nipulate the feature values
while also preserving the nature of the inpuf:] e o alternatives exist. In the easiest
one, the features are independent; thus the si be modified without impacting
the others. Otherwise, if the fe , i.e., if they capture aspects that influence

The hlgh avallabllzty 0 at is, the fact that they can be easily accessed at any time from
ir success and, at the same time, the main reason for the interest

ected to the rest of the network. While such a comprehensive set of
tify different types of threats, large feature sets may also extend the
s, making them more easily deceived.

From an AML p ot view, features describing the user of an OSN are closely interrelated (e.g.,
adding or deleting a'message containing a URL would impact multiple feature values at the same
time) and the steps required to fool a classifier cannot be made on a trial-and-error basis. In this
context, accomplishing an attack means finding a way for the adversary to automatically alter
the feature vector describing a spammer so that it is recognized as genuine, without impairing the
malicious behavior.

In order to achieve this goal, we propose AdverSPAM!, an evasion adversarial attack against OSN
spam account detection systems that allows to find the optimal perturbation to deceive the target
model, while preserving the inter-relationships among the features describing the user behavior.
The main contributions of this work are summarized as follows.

attack surface '@

!https://github.com/agiammanco94/AdverSPAM
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AdverSPAM: Adversarial SPam Account Manipulation in Online Social Networks 3

e We propose a novel AML strategy that explicitly preserves the statistical correlation among
the features of the input space. This is achieved by formulating the attack as an optimization
problem in which the search for the adversarial sample is constrained by the maintenance of
the correlation coefficients observed in the original data.

e To the best of our knowledge, this is also the first work in which the adversarial perturbation
is chosen while preserving the semantic dependency that occurs when multiple features
are computed from the same data. Without this constraint, the algorithm would produce
perturbations that are numerically admissible, but not obtainable through real (legitimate)
account manipulations.

o AdverSPAM allows to deceive unknown classifiers by forging ersarial sample that
has minimum distance from the original sample (so as to pres input nature), while
showing characteristics that are referable to the desired clas as to maximize the
probability of deceiving different target models).

e In order to make the results easily reproducible, the
using a public dataset of spammer and genuine Twi

were compared with five different state-of-the-a
to guarantee the generalisation capacity of the ique. Moreover, we present a

applied to a real OSN account in

ial defense mechanisms, namely, two , approaches and a confidence-based
technique we designed to counter the s ‘

The remainder of the papeg gani vs. Section 2 provides the essential background
e elevant related works are discussed in Section 3,

Supervised learn orithms consist of a mapping £ : L(x) = , whose aim is to assign the
independent variables x with the dependent variables §j according to the observed ground truth
labels y. In order to learn the best mapping from inputs to predictions, the classifier has to be
trained on a set of measurements; generally, the aim of such a procedure is to find a model £ which
is an acceptable approximation of the training data labels. This is pursued by minimising a loss
function, £(-), between the real y and the predicted § label:

mé)in 2(0,x,y) + A(0) , (1)

where 0 is the set of L’s adjustable parameters, and A is a regularization term which is typically
employed to counter overfitting, i.e., the inability of the learnt model to generalize on new instances
of the data.
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4 Concone, et al.

Adversarial Machine Learning stems from the observation that the same optimization procedure
can be used by an adversary for leading a learning algorithm to a wrong prediction. The strategy is
to forge an adversarial sample X = x+J, where the value of the perturbation § is found by subverting
Eq. 1:

max £(0,%,y) . (2)
X

Indeed, the goal of the adversary is to find the perturbation that maximises the error between the
ground truth and the predicted labels. Since the creation of X starts from following the positive
direction of the loss function, depending on the magnitude of ¢ it may ha that X succeeds in
escaping L’s decision boundary, so altering the final predicted label 7. T he value of § should
be large enough to allow the decision boundary to be crossed. How: it also have to be small
enough not to completely alter the sense of the input x. Both of t ents are addressed
in the method we propose.

In the most favorable scenario, the attacker possesses perf our elements
that define the model, namely the training data, D, the i tation, F,
the target learning model, 77, and its parameters, 6. nown, the
attack is called white-box. Otherwise, if knowledge o
the conducted attacks are known as gray-box.

A situation in which the adversary does not know an meters is called black-box attack.
However, even in this case, the attacker n about the aim of the classifier
and the features that are commonly use@ lysis. A particular class of
black box attacks, named model based, exploi erabili roperty [51] of adversarial
samples: a surrogate model mimicking the ge ithm is leveraged to synthesize
adversarial samples that will t black box [41]. Reasons for such a property
include orthogonality of the ions, the alignment of their decision boundaries
as well as geometric corre gions of such boundaries [48], and magnitude
of input gradients [29

Let 7 be the targe 1€ adversary wants to evade, and S the local
surrogate model available'to thefad orrupted version of sample x, i.e. X, built by adding

is said to transfer towards model 7 if:

() %y %7 (x) 5

tance between the original and the corrupted input samples, several
metrics based o norm L, are commonly adopted [1]. The L, norm between two samples

x and x, is defined

Lp(%,x) = |lx = %l =

d
Zaxi —&lP), )

where p € Z, x and x are two vectors of d components with d € N, and subscript i denotes the i-th
component [11]. Starting from defining 0° = 0, the Ly norm is computed as:

d
Lo(%x) = Y (Ixi = &l (5)

i=1
which provides a measure of how many single components are different in the two samples
compared. The L, norm computes the euclidean distance between samples in order to measure
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AdverSPAM: Adversarial SPam Account Manipulation in Online Social Networks 5

their offset in the feature space:

Ly(%,x) = (6)

Another type of widely used L, norm for adversarial attacks is the L., norm, which computes the
maximum drift between the original and perturbed components of the input and is defined as:

Leo(%,x) = max i, %;].

™)

rial perturbation has
it is possible to forge
erforming a dense
attack. On the other hand, focusing on Ly permits to modify onl features, which
results in a sparse attack [59].

Using different metrics for determining the imperceptibility of an ady
a strong effect on the attack’s outcome. By minimising L,, for ins

3 RELATED WORK

information technology and
ntific community has invested
ers that, so far, show impressive
performance in several application doma ) been shown that adversarial
perturbations, carefully created in both training'e esti n easily subvert predictions

made by ML algorithms. The vulnerability adversarial patterns, along with the
design of appropriate countermeasures, is addresse@d uite' novel research area, known as
Adversarial Machine Learning

The effectiveness of AML4d e ted on computer vision scenarios [71], in which

it is easier to visually asse idi ersarial sample. In fact, the imperceptibility of the

‘ 83] paved the way for many studies exploring
evasion strategies agains classifiers. In [51], the FGSM is used for creating adversarial

; d testing their effectiveness against classifiers hosted on Google
of this property, known as transferability, is provided in [29],
menon are connected with the magnitude of the loss’ gradient,
rized learning algorithms are more robust to attacks. DeepFool (DF)
of reasoning on the particular structure of the decision boundary to

classifier about the misclassification; such approach, originally tested against image classifiers,
has become a milestone for testing the efficiency of novel evasion strategies. The attack proposed
in [15] is one of the first effective methods for evading unknown classifiers, where the adversary has
the capability to query such models for reasoning on the provided label. AML may also regard the
perturbation of audio signals in speech recognition systems. The goal of [57] is to let such a system
transcribe a prefixed target sentence by perturbing only those frequencies that are un-listenable by
humans. A stochastic compression technique is proposed in [5] for creating more robust models for
speech recognition in smart home devices. Attacks are simulated through Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent (PGD), aiming at the execution of unwanted commands by
the intelligent assistants deployed in the house. When the target model is unknown and its only
observable output is composed of classes probabilities, authors of [67] propose a technique based
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6 Concone, et al.

on the computation of the gradient in a limited set of selected coordinates, with the momentum
iterative method for creating the audio adversarial sample.

Other application scenarios include cybersecurity domains in which ML plays a dominant role in
threat detection. Malware detection systems, for instance, can be attacked by adversaries through
the manipulation of different sections of the source code [27]. In [54], the authors formalize a novel
problem-space attack with the aim of automatically generating realistic and inconspicuous evasive
adversarial applications for Android devices. Malware can also spread through the infection of PDF
files; a comprehensive analysis of PDF-based AML attacks is provided in [43]. On the same topic,
a methodology designed to evade structural PDF malware detection syste presented in [44].
Similarly, Adobe Flash files may be perturbed by acting both on structural res which do not alter
the functionalities, and content features through the addition of spe tionScript commands.
In this context, authors of [45] use a bisect line search algorith the most efficient
step along the loss gradient direction for producing the advegsarial sampl indows malware
executables,
in which only a small set of functionality-preserving i d, such as
header fields changes, slack space filling, or shiftin ore the start of’a program

section. Attackers may insert malicious code in user will be activated upon visit
of webpages and usually imply the gathering of sensib tained in cookies. By targeting
specific aspects of HTML and JavaScript syntaxes autho 66] leverage Soft Q-learning for

creating adversarial samples able to evade rs. Considering the robustness
of ML models deployed in this scenario, a
distributed feature weights, which have be enothen the resistance of the model
towards adversarial attacks, since adversaries arger number of features in order
to succeed in their intent. Intg s (IDSs) are also frequently considered as
targets of AML attacks. In aliency Map Attack is leveraged in order to raise

false alarms for short-cire

statlstlcal correlations, and the approach in [53] addresses such
attack that leverages the Mahalanobis distance between traffic

ased ML [14, 80], mobile edge computing [77, 79], wireless network
tection [23]. With regard to the last topic, it is worth highlighting

spam account deteeti ich instead aims to distinguish spammers, be they human or bots, from
genuine users.

Over the years, spam detection has evolved from naive systems capable of recognizing common
spammy words [20], to more reliable algorithms that consider wide sets of interconnected features.
This led to the definition of more sophisticated attack strategies. The authors of [59], for instance,
propose a sparse evasion attack based on L; norm aiming at adding or removing specific terms
for letting a Support Vector Machine recognize spam emails as genuine. Similarly, by performing
several other manipulations such as synonym replacement, ham word injection and spam word
spacing, adversaries can fool a Bayesian model trained to detect spam emails [37]. In [76] the
impact of feature selection on evasion attacks is evaluated; in particular, it has been observed that
a drastic decrease in the number of features easily allow adversaries to fool the ML spam detectors
by altering only few words in emails.
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AdverSPAM: Adversarial SPam Account Manipulation in Online Social Networks 7

Table 1. Distance norms and threat models of relevant attacks at the state-of-the-art. Abbreviations:
(I)ntegrity/(A)vailability, (T)argeted/(U)ntargeted; (W)hite-/(G)ray-/(B)lack-box; (E)vasion/(P)oisoning.

Domain Ref. | Norm Threat Model

[33] Lo LU W E
[29] Leo IAU B P
[51] L LU WB E

Image Processing [47] L, LU w E
(1] | Lo, LyLee | LT W E
[15] Ly LU B
[71] Ly LU w
[27] Lo IT W,
[54] Ly LT

Malware Detection [44] Ly LT
[45] L w
[28] Ly w
[26] L B
(2]

Intrusion Detection [3]
(53]
(57]

Speech Recognition

Spam Email Detection

R R EClIcECEe iR Rl o Rel el ic el ol

-

~

P\i
PEEEIIT WO WIS

=

~

SRl el e

kploiting ML algorithms has also been discussed in a number of
art solutions usually exploit feature sets that are aimed to capture
different attrib adSpammer, such as its connection with the rest of the social network, or
data/metadata ase d with the content shared [18]. These characteristics can be analyzed
by means of a variety of models that typically include Neural Networks (NNs), Support Vector
Machines (SVMs), and Random Forests (RFs), where the last one proved to be the most proper
classifier when dealing with large feature sets [70]. Spam account detection in OSNs clearly has
unique traits compared to other application domains because of the many ways a user can operate
within social networks, hiding its malicious behavior, and thus achieving its disturbance objective.
However, the study of the literature has revealed that the only intersections between AML and
OSNs analysis regards fake news and social bots detection systems [21]. Thus, to the best of our
knowledge, this could be one of the first papers addressing OSNs’ account manipulation through
AML.

A summary of the related work is reported in Table 1, which highlights the characteristics of
each approach according to the properties discussed in Section 2.
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8 Concone, et al.

4 METHODOLOGY
4.1 Scenario

OSNss are protected by intelligent systems that are able to identify and block malicious accounts.
Usually, the detection algorithms exploit heterogeneous features to describe the different behaviors
that spammers may adopt [18]; these can be logically organized into four categories, according to
their aims [31]:

e Metadata-based features describe the general characteristics of the account, such as its
creation date, the geographic location, or the average tweet time. e features can be
obtained very easily and can be quite effective in recognizing cle icious behaviors.

e Content-based features are useful to evaluate the quality content shared by an
account. In order to be effective, spammers need to reach ber of users; thus,

count detection

algorithms may look for these elements in order to det nt is genuine
or not.

¢ Interaction-based features allow to model th i unt under
analysis. Neighborhood information can be v nguish influential accounts
(characterized by many followers and generally followings), listener accounts
(few followers and many followings), isolated accou even sub-networks that could be
used for orchestrated attacks.

¢ Community-based features are ab istics of account groups that

have similar interests, physical locat} relevant social aspects. The
general idea is that the behavior of a rred by observing those of the
community to which it be 3 account with a good reputation network is

ker should make the feature vector describing
bal can be achieved through trial and error

st the spammer. Altering metadata-based features, for instance,
t habits, which is very complicated to achieve. Content-based
ad hoc content in order to re-balance those feature values

e user. In either case, a large number of changes are required for
nificant change. Interaction- and community-based features can also

by exchanging followers with other users.

4.2 AML Attack Strategy and Threat Model

The proposed attack strategy (see Figure 1) follows the general structure of black-box adversarial
attacks [51] while capturing the peculiarities of the scenario just described.

The attacker (Darth) aims to perform an integrity violation of the defense mechanism of the
OSN (i.e. Spam Account Detector) so as to be mis-classified as a genuine user, although showing a
typical spammer behavior. The attack specificity is targeted since the intent is to hide the spammer
behavior to the smart detector.

Even though in a black-box scenario the target model 7~ is not known to Darth, we can make a
common assumption [29] by supposing the adversary knows the feature representation X of the
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AdverSPAM: Adversarial SPam Account Manipulation in Online Social Networks 9

Normal Operation
T Darth

fi
Feature i jShar

o @)
r A t
Ve Extraction D:«C:gigr re

balanced set of spam and genuine accounts. Si S e can build a perturbation vector
- e perturbed feature vector x is classified by
ility property, Darth may obtain that X eludes

arios [53] have proposed the generation of perturbatlons capable
elation between features; this means that a change in a given

dependencies of the elements of the feature set. More specifically,
emantically dependent if their computations require one or more

adopted notations abbreviations are listed in Table 2.

4.3 AdverSPAM Algorithm

The requirements discussed so far translate into ensuring the fulfilment of three constraints, namely
(i) allowing the computation of an adversarial sample, X, beyond the decision boundary of the
surrogate model, S, while maintaining the (ii) the statistical correlation and (iii) the semantic depen-
dency of the features. In order to better explain the meaning of these constraints, we complement
the description with figures that illustrate a simplified classification example in which only two
features are employed (see Figure 2).

Given the problem of associating an observation {xi, ..., xx} with a class from the binary set
Q = {w™, w*}, the goal of the attacker is to take an original sample, x € X, that lies in the region w*
and project it into w~ so obtaining a perturbed sample x. Since low-complexity surrogate models
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Table 2. Notations used in the paper.

| Symbol | Description

Concone, et al.

L A general learning model.
S Surrogate model.
T Target model.
6 Set of L’s adjustable parameters.
£(6,x,y) | Loss function of L.
X Set of input samples.
x Original sample.
X Set of perturbed samples.
x Adversarial sample.
] Predicted label.
S Adversarial perturbation.
Ly(%,x) | p-norm between original and pert
dbs Decision boundary for S.
a; i-th coefficient of dbg.
B Intercept of dbg.
Rji Linear regression betw
mj; Slope of Rj;.
qj,i Intercept of R ;.
z(%,x) Cost function for x.
A Controlli; for z(%, x).

@) b) (d) (e)

classification with only two features. (a) The decision boundary dbg
om genuine users (triangles). The goal of the attack is to project one
nto the site region by crossing the decision boundary. (b) The adversarial
a certain distance (dashed blue line) from the decision boundary, which
e regression line (black) provides a good approximation of the correlation
In order to preserve the nature of the input, the feasible region (yellow area)
ther constrained by a margin around the regression line. (¢) The adversarial
[ly computed by solving the optimization problem within the feasible region.

sample (green tria

have been shown to transfer attacks more effectively [29], we assume S to be any model based on
a linear decision function:

dbS:Zaixi+ﬁ=O, (8)

where o; and f are the learned coefficients and intercept, respectively. Therefore, crossing the
decision boundary dbs means performing a search in one of the two regions (see Figure 2a)
delimited by Eq. 8. To be more specific, every perturbed sample ¥ must satisfy one of the following
conditions:

Y X+ >0 if w” is above dbg,

Y X+ <0 otherwise.

©)
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AdverSPAM: Adversarial SPam Account Manipulation in Online Social Networks 11

Algorithm 1 Crossing the Decision Boundary

Input:
S: Surrogate model to attack;
X: The set of input samples for S.
Output:
db.: The decision boundary constraint;
dby: The constraint on the parallel to dbs.
dbg «— S.getDecisionBoundary()
[ai, B] <« dbg.getParameters()
x < X.getRandomSample()
7 « S.predict(x)
Y « getOffset(dbg)
if test(x, [a;, f]) = 0 then
if § € v~ then
db. «— “Zi o X +ﬂ > 0"
dby « “Yiai%i+p—-9Y <0
else
dbe — “Ya; %+ <0
dbe —“Y;aiXi+p+¢y >0
else if test(x, [a;, f]) < 0 then

R A A S ol

e el
W N = O

14: if § € w™ then

15: dbe — “Y;a; X +B+¢Y <0
16: dby «“Y;ai%;i+f+¢ >0
17: else

18: dbe — “Y;a;iXi+f -y >0
19: db(p‘_“Ziaii'i+ﬂ_1//<0”
20: return db.,dby,

It is also useful to choosed © isof its di om the decision boundary. In fact, the farther
e i g ccess on the target model. On the other hand,

points that are too far fro would exhibit characteristics too dissimilar from
x, resulting in the attack anlngless Thus, we chose to regulate the maximum allowed

distance frox undary (Figure 2b) through a parameter i/, whose sign depends on

saiXi+ -1y <0 ifw” isabove dbg,
;i X;+ f+ ¢ > 0 otherwise.

(10)

ents this last constraint is described by Algorithm 1.

The search in ton beyond the decision boundary is further driven by the need to ensure
that the statistical correlation and the semantic dependency of the features originally extracted from
x are preserved in the forged adversarial sample x. These two properties are defined as follows.

DEFINITION 1. Statistical Correlation: two features are statistically correlated if having a strong
linear relationship with each other.

DEFINITION 2. Semantic Dependency: two features are semantically dependent if their computations
require one or more common raw data.

In AdverSPAM, the statistical correlation among features is leveraged by considering the regression
line fitting the data. In particular, since the aim of the adversary is to preserve the core properties
of the spammers, only the samples of the positive class w* are considered (see Figure 2c). Formally,
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12 Concone, et al.

Algorithm 2 Maintaining Correlations and Dependencies

Input:
X: The set of input samples for S.
Output:
C: List of constraints.
1: C«[]
2: forallx € X do
3 foralli € #do
4 for all j € ¥ do
5: sd «checkSemanticDependence (i, j)
6 if i # j and sd == True then
7 ‘R‘f — getRegressionLine(X )
8 [m$ :, q%; "] — R“’ .getParameters()
9 margin;,; —sqrt(zxex(‘R“’ (%) —xj)z)
10: C.add(“x; < mj’l. Xi +qj’l. + (margin;;)”)
11: Cadd(“%; > m9; % +q¢; — (margin;;)”)
12: return C

the regression line regarding features j and i for all sam ™, is defined by:

(11)

where m?; and q%; " represent its slope and i er to maintain the statistical

Jst
correlatlon between the features, it is theref@
deviate too far from 7?;’1. . Hence, X1 i i ertain margin from this line (see Figure 2d),

that we compute as the squaz il Sum of Squares (RSS) of the regression model:
(12)

or dimensional homogeneity. When RSS is approximately 0, the
of the data, resulting in a particularly tight margin of allowable

IA

w* ;

i m} ; Xi+q; + (margin; ;)
w* ;

mj’l. Xi +q7; — (margin;;).

(13)

&
\%

Furthermore, wetadopt the notation sd(i, j) to indicate whether a semantic dependency between
the features i and j exists. As stated in Definition 2, such a relationship occurs when multiple
features capture similar traits of the account, so requiring the same information (e.g., the number of
followers, or the amount of posted URLSs) to be computed. Therefore, the maintenance of statistical
correlation is strictly related to the existence of semantic dependency:

Xj<m? xl+qjl + (marginj;) Vi, j s.t. sd(i, j) = true,

J.
Xj > mjl. Xi + qji — (margin;;) Vi, js.t.sd(i, j) = true.

(14)

Conversely, features that are not in a direct cause-effect relationship can be manipulated inde-
pendently of each other. The steps required to compute these last constraints are described in
Algorithm 2.
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o j L> ~’x)“@x
\\;7 XA ---------
S '
g
\\.LZ (55' xl/)J_)
LTHN

adversarial sample within it. This corresponds to finding
a twofold purpose. Firstly, the overall distance of the a
be limited, in order to ensure that the (malicious) na
adversarial sample has to be transferable, that is, x has
target classifiers. We modeled these two aspects as a weigh
by a factor A € [0, 1]:

enough to evade the unknown
[25] of two objectives controlled

z(%,x) : ALy

where xy, is the projection of the input sa

(15)

need of the adversary is to evad odel with the minimum effort possible, then,
setting A = 1 allows to onl on of the euclidean distance between the input
and the adversarial samp versary wants to deceive unknown black-box
models, since their d differ from the one of the local surrogate, a

reasonable amount of 4 tance imposed over the adversarial sample; this can

be achieved by setting A = € [0, 1] will constitute a trade-off between such
two opposing s, ce,"AdverSPAM calculates the final adversarial sample by solving the

=min ALy(%,x) + (1 = )Ly (X, xy, ),

X
s.t.
Zai£i+ﬂ>0 or Zai£i+ﬂ<0
i i
DaE+f-y<0 or Y aiFi+f+y>0 (16)
i i

(as reported in Eq. 14): Xj < m;": Xi + q;": + (marginj;) Vi, js.t.sd(i, j) = true
X = m;*’: Xi +q;ff; — (margin;;) Vi, js.t.sd(i, j) = true
xe[o,1]"
The entire procedure is described by Algorithm 3, which exploits the other two algorithms
discussed in this section. In our implementation, the problem was solved using COBYLA [56],
which operates iteratively by generating local linear approximations of the objective function and

constraints. The solution x is searched in [0, 1]”, which represents the range of admissible values
for the feature set of n elements that will be described in the next section.
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Algorithm 3 AdverSPAM

Input:
S: Surrogate model to attack;
X: The set of input samples for S;
Output:
X: The set of adversarial samples.
X e—]]
2: db,dby « Algorithm1(S, X)
3: forallx € X do

4: C ]

5: C.append(db,)

6: C.append(dby,)

7: C.append(Algorithm2 (X))

8: z « getCostFunction(x, x)

9: X « solveoptimizationProblem(’min’, x, z, C)

10: X .append(%)
11: return X

5 EXPERIMENTAL ANALYSIS

The effectiveness of the proposed technique? has been eval
this section describes the experimental se
the tuning of AdverSPAM internal parame
techniques are presented, discussing both t}
adversarial samples. The section continues } of a concrete case study aimed at

n different steps. The first part of
d for the assessment, as well as

ocused on five classifiers that are the most commonly chosen for
the final asseSsime a sarial attacks [7, 63], namely: Neural Network (NN), Support Vector
Machine (SVM) is egression (LR), Ridge Regression (RR), and Random Forest (RF). All the
considered model been examined as possible targets, while only SVM (with linear kernel)
and LR were chosen as surrogates since they satisfy the requirement of linear decision boundary
needed in AdverSPAM.

Moreover, since the attack transferability strongly depends on the complexity of the target
model [29], our assessment considers high-complexity (H) and low-complexity (L) variants. The
complexity of a ML model is measured by the number of hyperparameters it has. In general, a
model characterized by a large set of hyperparameters (high degree of complexity) may be able
to capture more variations in the data, but it will also be more difficult to train and may be more
prone to overfitting. Conversely, a low complexity model may be easier to train, but may not be
able to capture all the relevant information in the data.

Zhttps://github.com/agiammanco94/AdverSPAM
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Table 3. The list of features used to model the accounts.

‘ Category ‘ Acronym ‘ Description

RR Retweet Ratio
Metadata AR Automated Tweet Ratio
TSD Tweet Time Standard Deviation
TISD Tweet Time Interval Standard Deviation
UUR Unique URL Ratio
UMR Unique Mention Ratio
CHS Content and Hashtag Similarity Ratio
Content UR URL Ratio
MR Mention Ratio
HTR Hashtag Ratio
AUR Automated Tweet URL Ratio,
ATS Automated Tweet Similarj
FR Follower Ratio
MFFFR Mean Follower’s Fo gs to Follower Ratio
Interaction FBR Follower-based
R Reputation
CcC Clustering Coe
Community CBR Community-base
CBCC Community-based C
In order to properly tune the parameters ofithe class : ed a 10-fold Cross-Validation
with the objective of letting all the models a about 90%. To this aim, a public
dataset [31] consisting of 10.000ggenui siand 1:000 spammers, each described by a set of 19
features (see Table 3), was ug : nbalanced, we employed SMOTE augmentation
technique [13] so as to ob users per class. This was split with 80:20 ratio
leading to 16.000 acco r the test set. The former was further split in
two parts representing e Figure 1), each containing 4.000 genuine and
4.000 spammer accounts. ed to perform the adversarial training described

in Section 5.
A sumg and their tuned parameters is provided in Table 4.
5.2
The beh: is mainly influenced by two parameters, namely ¢ (Eq. 10) and 1
(Eq. 15). Giv of ¥/, we calculate it as the value that guarantees a desired percentage

(ratio) of samp pposite class w™ lies between the decision boundary and its shift by a
quantity . The e ratio, the greater the probability that the adversarial sample will be
located in a region with a higher density of @~ samples. On the other hand, greater distances from
the decision boundary would lead to an over-distortion of the original sample. For this reason, the
choice of the best i value was determined on the basis of a set of evaluation metrics.

In particular, being the main goal of the algorithm to create a perturbed sample capable of
deceiving the target model, a good measure of its effectiveness is the percentage of actual spammers
that are misclassified as genuines. This information is provided by the False Negative Rate (FNR),
which is defined as the ratio between false negatives and true positives. Moreover, the L; and L,
distance norms, defined in Section 2, can be exploited to evaluate the distortion introduced in the
adversarial samples.

Tests were run on four surrogate models while varying both the ratio and the value of A, i.e., the
weight of the two components of the objective function. Results are shown in Figure 4, organized
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Table 4. The surrogate and target models used in the experiments, and the corresponding tuned parameters.
For all the models, low (L) and high (H) complexity variants are evaluated. Furthermore, two different SVM
kernels are considered, namely, linear (Inr) and radial basis function (rbf).

Surrogates SVME

Inr

., SVM[ | LRF, LRH
nr

Targets RF", RF",NN* NN, svMmp, .SvM]l  SVML, .. SVME, . LR", LR", RR", LR
RFL trees = 30; max_depth = 8
RFH trees = 30; max_depth = no-limit
NNL learning_rate = 0.01; weight_decay = 0.01; neur s = [50, 50, 2]
NNH learning_rate = 0.01; weight_decay = 0; ne
SVME | C=1
nr
SVMHI | C=100
Parameters
L -
SVM,, r C=1
H -
SVM;, r C =100
LRE C=1
LRH C=10
RRL a=10

RRH

as a matrix in which
mean FNR values obta els for every pair (ratio, A); highest values are
represented with darker co e second and third rows reveal how varying the
parameters rg i the values of L, and L. As a general trend we can notice that
i es grow proportionally to ratio, but inversely to A. Indeed,

it can be noticed ¥ best FNRs values are obtained when the ratio € [0.2,1] and A € [0, 0.4].
Considering the L, and L., values measured in these ranges, a good trade-off between success rate
and perturbation degree is reached by choosing ratio = 0.2 and A = 0.4. The same assessment
can be made for the SVMle and SVMlIir models, resulting in ratio = 1 and A = 0.2. The obtained
ratio values correspond to i equals to 1.91, 5.44, 3.78, and 5.47 for SVManr, SVMlIZr, LRL, and LRY,
respectively.

Further experiments were carried out in order to evaluate the capability of AdverSPAM to preserve
the statistical correlations of the features. In literature, statistical correlation is expressed in terms
of linear correlation between pairs of features; an indicator typically used in this regard is the
Pearson’s coefficient [4, 38, 40, 69]. In order to assess what type of correlation exists between
the 19 features considered, some preliminary tests were carried out on the original dataset by
representing all the pairs of features in a two-dimensional space and fitting them with polynomials
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Fig. 4. AdverSPAM tunij pver the 12 t3

distances measured while

ets (top row), and Ly (middle) and Ly (bottom)
and A for every surrogate model (columns).

Table 5. Av

an Square Deviation (MSD) computed by different degree polynomials
fitted on atures of t 5

degree
I II i v
metric
avg(MSD) .032 | .029 | .028 | .027
var(MSD) .002 | .002 | .002 | .002

of degree from 1 to 4. For each pair, the Mean Square Deviation (MSD) of the points w.r.t. the fitting
polynomials was calculated as an indicator of approximation quality. The results shown in Table 5
indicate that polynomials of a higher degree correspond to a smaller fitting error, which is intrinsic
in the fact that the higher the degree the greater the freedom in fitting the data. Thus, we also
calculated the variance of the deviations, which should decrease if a certain curve was actually
able to better follow the distribution of the data. The results, instead, indicate that the variance
is stable as the degree of the polynomial changes; thus, we can conclude that linear dependency
fairly accurately represents the distribution of the data.
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18 Concone, et al.

Table 6. Correlation matrix. For each feature, the following 5 values (columns) are shown: Pearson correlation
coefficients (blue) measured on the samples of the spammer class before the attack is launched; variations of
these values (red) after creating the adversarial samples with SVMII;W, SVMlHnr’ LRE, and LR, respectively.

initial ion 0 | DO variations 0 T

RR AR TSD TISD UUR UMR CHS UR MR HTR AUR ATS FR  MFFFR FBR R cc CBR CBCC

the adversarial samples with SVMan o SVMlPir, LRL, an
stronger the correlation between the features, the small changes in Pearson’s coefficients
caused by the attack should be. Thus, if cg ined, light-red colored cells are
expected in correspondence with dark-blt is trend is clearly visible for
almost any feature in Table 6. Moreover, be
semantically dependent on each other are ma ‘
evident when looking at FBR (Foll epit ich belongs to the interaction category

they belong to different ca ies; : are lowly correlated with FBR as indicated by
the corresponding Pea i se features are good candidates for manipulation.

cover both classes, we decided to compare AdverSPAM with gradient-
FGSM, DF, and C&W), and decision-based black-box attacks (i.e.,
Cheng and . Whi , DF, and C&W attacks are widely adopted in the literature for the

less important. I ar, to the best of our knowledge, Peng is the only technique that addresses
the problem of statistical correlation between features, just like AdverSPAM. Thus, comparative
analysis is based on the following baselines:

o Fast Gradient Sign Method (FGSM) [33], where the adversarial perturbation is computed
considering the sign of the targeted classifier loss function’s gradient, and projecting the
adversarial sample on a sphere of radius €pgspy around the input sample.

e DeepFool (DF) [47], where the adversarial sample is shifted along the direction of the gradient
of the target model loss w.r.t. the input, until the decision boundary is crossed. The obtained
perturbation is then scaled by a factor (1 + npr), which is useful for getting adversarial
samples farther from the decision boundary.

o Carlini and Wagner L, (C&W) [11], where an optimization problem is formulated with a loss
function leveraging the representation in the logits layer (the layer prior to the final softmax
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Table 7. The chosen parameters for the adopted algorithms.

FGSM | DF C&W
Parameter
€FGSM | 1IDF | CC&w
Model
SVMf: 037 | 035 | 05
nr
svmfl 042 | 075 | 05
nr
LRE 0.45 05 | 085
LRH 045 0.2
layer, containing the probabilities that a sample belon, a measure of
attack success. The properties of such a loss functio parameter
ccgw > 0, which controls the confidence that the e opposite
class. When the attacked model is not a Neural ivalent of the logits layer is
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extension of the Cheng method where the
ersarial sample is searched by minimizing the
Mahalanobis dis eServi istical correlations between features.

jen1 phase to tune the corresponding parameters.
d in Section 5.2, we computed them by maximizing the FNRs of
ing the distance metrics. The chosen values are listed in Table 7,
e omitted because their functioning parameters are indicated

Similarly to the analysis d
the target mogd o

atrices of the six attacks launched against twelve targets (columns),
viously discussed. For each subtable, the last column and row indicate
e attacks and the average FNR against every target, respectively.

basing the attacks stic regression models, regardless of their complexity, results in a stronger
transferability capacity than SV Ms, as revealed by the values highlighted in green. This corrobo-
rates the thesis that simpler sources of adversarial samples are preferable for transferring against
unknown models [29], as they are less specialized and thus less prone to drive the perturbations
toward regions which will not translate in miss-classification against black boxes.

By analyzing Table 8 by columns, it is also possible to observe some dependency between the
measured FNRs and the complexity of the target models. In particular, high-complexity targets
seem to be less resistant to transferred adversarial samples, as pointed out by the average values
highlighted in pink. For instance, when the surrogate is SVMILn ,» the average FNRs against NN L
and NN¥ are 0.48 and 0.81, respectively. This could depend on the learned decision curve of higher
complexity targets, which is highly fitted (very close) to the input data; thus, a small perturbation
on the input sample is often sufficient to cross the decision boundary. The same consideration
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20 Concone, et al.

Table 8. Transfer matrices (FNR values) of five attack strategies compared with AdverSPAM exploiting four
different surrogate models, namely low and high complexity SVMs (a) and LRs (b). Each attack is carried out
against 12 target models (columns).

. <f x3 oF =F &
=z 5% 5553 %%% %
zZ z & & & h 5h h oS 09 & & §
AdverSPAM | 1 1|81 811 1|1 1]1 1|1 1 [97 AdverSPAM
_ || FGsm 56 1|1 1.9 1[.19 99|68 1[92 1 .86 FGSM
+F || DF 19874 741 991 1|1 1|1 1[9 o ||DF
s || caw 27 69[.03 .03|.73 73|.10 73|42 73|71 72 49 = || caw
Cheng 02 7343 43| 1 98]0 1|0 9|1 1 .63 Cheng
Peng 03 48|37 37|.63 58| 0 63| 0 .63|.25 57 .38 Peng
average 48 81 56 56 .89 88 38 89 52 89 81 88[ average
AdverSPAM | 1 1|91 911 1]98 1]1 1|1 1 98 AdverSPAM
_ || FGsm 76 1|1 1|1 1[35 1|94 1/[9 1 .92 FGSM
==25 DF 1909 91 1]9 1[1 1[1 1 .99 z DF
s || caw 19 36 (.03 .03|.29 .68|.10 34|.18 .36|.26 .66 .29 = || caw
Cheng 0 51|48 48[.88 93| 0 95| 0 55/.54 1 .53 Cheng
Peng 0 0].06 060 02/0 05/0 0|0 0 .02 Peng
average 49 64 57 57 70 77 40 72 52 65 63 78] average

ut 80% for SVManr and 90%
considering all other surrogates. These valt he mpetitors except FGSM and
DF. The reason is that RF does not use a diffe pnction, but rather relies on a set

based on the values assumed by individual
features. Thus, if a group of, cantly (i.e., exceeds the threshold value learned
by the tree), the probabi y high. This is the case of FGSM and DF, that
apply to each feature and proportional to npr, respectively. Then
the altered feature val i g priginal ones (defined in [0, 1]), so producing a

high transfer rate.

ts in higher L, values and thus greater transferability of the samples.
The low¥y both Cheng and Peng methods depend on the idea at their basis: in
order to modeta he input, they generate adversarial samples that slightly cross the
decision boundary Thi§impacts on transferability as the examples will fail to evade the target
model whenever sion boundary is different from that of the surrogate.

Actually, FNRs alone are not good predictors of the attack’s performance as excessively altered
samples could still lead to high transfer rates. To better investigate this aspect, we measured the
quality of the manipulated samples in terms of their distance from the original ones. The results
shown in Figure 5 summarize the average L, and L, values calculated for the six attacks, while
varying the underlying surrogate model.

By considering the results of Figure 5 and Table 8 together, we can see that the two methods
having FNRs comparable with AdverSPAM are characterized by L2 values that are always worse
than our attack (as in the case of FGSM), or highly variable depending on the surrogate used (DF).
On the contrary, AdverSPAM exhibits fairly controlled L, variations for every surrogate; this is due
to the intrinsic nature of our algorithm that adjusts the maximum allowed distance of the adversarial
samples through the i/ parameter, which is automatically tuned on the specific surrogate.
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As regards Lo, the values measured on DF and Cheng ar arable with AdverSPAM, and in
some cases higher (i.e., worse); conversel i by applying FGSM, Peng, and

are very similar to the values of epgsyr and np ations apply to C&W and Cheng
approaches, whereas a more s required for Peng, which exhibits the lowest
L., among all the baselinegfand ) thod explicitly accounting for feature correlation
maintenance.

In order to further egliya f parative analysis was carried out between
AdverSPAM and Peng to sure b serve the statistical correlation between features.

As indicator, we chose the

r= \/Z S fas = bigl? (17)
i

where A a : afson correlation matrices of the features in the actual spammers and in
the generated 3 i ples, respectively. Furthermore, in order to highlight the contribution
of the semantic de cy, the AdverSPAM analysis is differentiated by whether statistical corre-
lation alone, or both¥properties are considered. Table 9 summarizes the obtained results, where
higher Frobenius values correspond to stronger changes in the correlations among features of the
adversarial samples. We can observe that AdverSPAM exhibits a lower average correlation distance
w.r.t. Peng (1.45 vs 3.23); this also holds for the single chosen surrogate models. Moreover, when
the semantic dependencies are considered, the distortion is even lower (0.85).

In conclusion, AdverSPAM provides better average FNR values than the considered baselines,
which translates to higher success rates on most of the tested target models. When the performances
are equivalent to the competitors, the analysis of distance metrics suggests that AdverSPAM perturbs
the samples less drastically, which is a desired property for any AML strategy. Finally, maintaining
statistical correlation and semantic dependency helps to keep the core properties of the feature set
unchanged before and after the attack.
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Table 9. Comparing the correlation distances induced by AdverSPAM and Peng methods. The best values
are shown in bold, whereas the second best values in italics. In the header of the table, a single s stands for
statistical correlation preservation, whereas ss signals both statistical and semantic maintainment.

Attack
AdverSPAM (s) | AdverSPAM (ss) | Peng (s)

Surrogate
SVMS 1.28 0.49 3.59

nr
svmt 2.15 1.11

nr
LR 127 0.91
LRH 1.08 0.89

average 145

Table 10. Example of features describing a spammer accou iginal values (first ro variations

produced by AdverSPAM and the five baselines. Stronger dif i r colors.

Features Metedata Content Interaction Community

RR [ AR [ TSD [ TISD | UUR [ UMR | CHS [ UR [ MR MFFFR | FBR | R | CC | CBR | CBCC

Original | 0 | 0 | © 0 0 0 0 0 75 | 03| 0 | 44 | .08
AdverSPAM | .04 05| 02 | 0 .04 | .04 | .01 0 2 [02] 0 | 39 0
FGSM | 45 | 45 | 45 | o | 45 | 45 | 45 0 3100/ 0 0
OF [ o ] 0 o[ 0| o
C&W |0 0| 0 0 0 0 0 0 0] o 0
Cheng | .03 04| 01 | 0 .03 0 0| 4 0
Peng |04 22| 15| 0o .03 0 0| 39 0

he resulting feature values, and reiterating until the desired values
us consider Table 10 which reports the changes made by AdverSpam

The AdverSPAM dicates that the most perturbed features are the Mention Ratio (MR) and
the Follower-based Reputation (FBR), while the other values are quite close to the original ones. The
feature MR, which is defined as:

number_of _mentions
MR(account) = of-

number_of _posts (18)
is quite simple to alter. Since the modification suggested by AdverSPAM is to lower MR to 0.84, the
attacker could replace tweets containing a mention with others that have the same content, but
not the mention. As the number of posts do not change, the other content-based features are not
influenced by this action. However, altering the tweets may change some metadata-based features
that capture the tweet time, such as TSD and TISD; then, tweet replacement should follow the
same posting frequency that characterized the original account. Please note that the attacker could
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also use an existing account only to get X from AdverSPAM, and then create a new account that is
described by that perturbed feature vector.

A similar strategy can be adopted to alter the FBR of an account, which is defined as the average
of the reputation of its followers [31]:

2 followers reputation(follower)

FBR(account) = |followers|

(19)

Then, in order to change FBR from 0.75 to 0.2, the attacker could i) reduce the verall reputation of
its followers (numerator), or ii) increase the number of followers (deno or). The reputation
of the followers can be modified by replacing a subset of n followers others having a lower
reputation; this allows to keep the number of followers unaltered, w; sential to not impact
on the other interaction-based features. Such a modification is qui ieve by exploiting
black markets, where followers having specific characteristics 2]. Conversely,

increasing the number of followers is somewhat more cg i done while
guaranteeing that the new followers have a similar reput, o that the
numerator of Eq. 19 does not change, nor do other re

It is worth noting that attacks modifying the feature re extensive way are difficult
to manage with an opportunistic strategy, because the mo re changed the more constraints

must be met while altering the account. In these cases, auto strategies can help in finding the
optimal set of actions that lead to the desi on approach, for instance, is
to model a numerical optimization algorit ive gradient of the objective
function [55]. However, it is not possible to d gradient descent-based techniques when
the feature space is not invertible, nor differen eneral strategy consists in modeling
the inverse mapping proble stance, Monte Carlo Tree Search (MCTS) is
adopted to generate a chain ied on malware with the goal of bypassing the

, we tested its ability to accomplish the attack when a defense
of this section discusses the results obtained by considering
3 dversarial Training, Magnet, and a confidence-based defense

ecificities of AdverSPAM.

defenses against @ sarial attacks because of its effectiveness and theoretical simplicity. The
idea is to enable thearget model to identify adversarial samples by incorporating them into the
training process. The creation of AT samples is commonly based on the Projected Gradient Descent
(PGD) attack [42], which is an iterative variant of FGSM. We applied this approach to strengthen
the target models and test whether their robustness to adversarial attacks is improved.

Since the maximum perturbation amount that PGD can apply to a sample depends on a parameter
€pGD, the assessment was repeated while varying epgp in [0.005, 0.1], with step 0.005. Results are
shown in Figure 6a, where the different curves indicate the average FNRs achieved by AdverSPAM
and the five baselines (see Section 5.3 for references) when AT is performed.

In terms of the reference FNRs, i.e., those measured without using any defense, the three best
performing attacks are AdverSPAM, DF and FGSM (see the figure legend). After applying AT, FGSM
is heavily penalized since, like PGD, exploits the gradient of the loss function; thus, the samples
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Fig. 6. Average FNRs achieved by each attack when (a) Adversarial Trainj
Based defenses are used. The legend also reports the reference FNRs (i
achieved by the attacks without using any mitigation technique.

of AdverSPAM and DF do not change significantly. Thi ause the samples generated by
PGD are very different from those created by the two atta d therefore the AT-based defense
cannot exp101t them to recogmze the adversasia . s the other baselines, all trends

It is worth noting that, since PGD needs to o of the loss function of the model
being attacked, RF and RR clasgifie : or th1s type of attack In order to face this

eencoder in order to compute its reconstruction error, which
ty to the data distribution observed during the training phase. If the

in [46], and we exp d opmag € [0.05,0.5] with step 0.025.

Figure 6b shows that higher values of FNR are obtained as oy, increases; this means that if the
threshold is set too high, the defense mechanism will not be able to reject any input and therefore
its effect is null. In fact, for 0,44 > 0.3, all attacks reach the reference FNRs. On the other hand,
choosing a value of o4 too restrictive, although it guarantees to cope with the adversarial attacks,
might be impractical in a real scenario as it would result in a high number of non adversarial data
rejection.

5.5.3 Confidence-Based Defense.

As a third defense mechanism, we focused on one of the characteristics that most differentiates
AdverSPAM from other baselines, namely the fact that perturbed samples are chosen as close as
possible to the decision boundary. However, some target classifiers could implement a mechanism
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Fig. 7. Kernel Density Estimation (KDE) of the AdverSPAM samples co
spammers, computed for the first (a) second (b) and third (c) principal
space.

round genuines and
ribing the feature

to check the confidence of their prediction: the highe
the learned decision boundary, the greater the confiden
considerations, the proposed Confidence-Bgse
predictions of the target model when the &

Results shown in Figure 6¢ indicate that 2
of the attacks decreases. For AdverSPAM,
when ooy is about 0.75. Since ] ples that lie close to the targeted

of the predicted sample from
e prediction. According to these
ims to reject the “genuine” class
d threshold o;op .

ction of such adversarial samples is relatively low,
and a moderate cutoff thre is suffici ending against these attacks. Finally, as in the
case of Magnet, choosifigrhi d result in high rejection rate. Therefore, good
i 0.8,0.9], where adversarial samples may be

; d semantic dependence between features.

Besides thesere rther aspect to consider is whether the perturbation of one or more
features could imp malicious behavior of spam accounts. In order to make it easier to visualize
the properties of theffeature space, Principal Component Analysis (PCA) [68] was used to reduce
its dimensionality. Experiments were conducted by considering the three principal components
that characterize the set of feature vectors; then, the Kernel Density Estimation (KDE) of each
component was computed in order to evaluate the distributions representing both the original
samples (genuines and spammers) and those generated by AdverSPAM.

By observing Figure 7, it is possible to appreciate how the densities of the genuine samples
(green) strongly differ from the others. Conversely, the density estimation of the spammers (red)
and AdverSPAM (blue) samples are highly similar, apart from a slight shift introduced by the
adversarial perturbations. Such analysis confirms the capability of AdverSPAM in generating
adversarial samples that, while preserving the key characteristics of the spam accounts, are able to
evade unknown classifiers.

, Vol. 1, No. 1, Article . Publication date: July .



26 Concone, et al.

Although experimentally proved to be a promising adversarial attack, our approach exhibits
some intrinsic limitations. The first is related to the need for choosing a surrogate model with a
linear decision boundary. Such requirement is closely tied to the necessity of formulating the attack
by considering linear constraints, which makes AdverSPAM particularly efficient.

Adapting AdverSPAM to different scenarios, or even different feature sets, may be computation-
ally burdensome, as the number of constraints in our optimization problem increases according to
the number of features pairs standing in a semantic dependence relationship. Moreover, operating
in scenarios where there are no significant statistical correlations would tamper the effectiveness
of our approach. Furthermore, if the relationships between features are near, AdverSPAM
would require a change in its constraints and a different statistical indi€ator from the Pearson’s
Correlation coefficient. For instance, the accuracy of the best-fitting -order polynomial can
be used in the case of quadratic correlations between data.

We studied the robustness of AdverSPAM against three different’adversar enses, however,
another interesting approach a defender may follow is the g e an analysis
of the sequence of consecutive requests originated fro d. Such a
countermeasure could inhibit the attack when an offli ilt, and it is
therefore necessary to query the online target mod . s extreme case, the iterative

nature of the optimization solver would imply making
would result in a straightforward attack detection.

eries to the target model, which

7 CONCLUSIONS

In this work, we presented an AML algori eive OSNs spammer detection
systems. The strategy attack is foum lated as amoptimization problem whose constraints capture
the essence of AML, i.e., findi
the inter-relationships arg i ibe the user behavior.

e ] en investigated in the literature; to the best of

AdverSPAM as compared to five state-of-the-art attacks.

Results revealed how AdverSPAM is a solid competitor in terms of transferability, with FNR
indicators that outperformed all the baselines on 10 out of 12 considered target (black-box) models.
With regard to the forged adversarial features, AdverSPAM exhibited the lowest distortion degree
introduced in data, thanks to the formulation of constraints explicitly accounting for the main-
tenance of features dependencies. Moreover, we tested the effectiveness of AdverSPAM against
three different adversarial defenses, proving the robustness of our approach to state-of-the-art
mitigations.

As part of our future work, we plan to test AdverSPAM effectiveness on multiple public datasets,
and evaluate its ability to be more widely applicable to different scenarios characterized by similar
AML requirements, such as Network Intrusion Detection. We also plan to extend the constraint on
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the decision boundary of the surrogate classifier to include also non-linear classifiers, and test their
efficiency as sources of adversarial samples.
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