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ABSTRACT
Wireless Sensor Networks (WSNs) represent a key component in emerging distributed computing paradigms
such as IoT, Ambient Intelligence, and Smart Cities. In these contexts, the difficulty of testing, verifying,
and monitoring applications in their intended scenarios ranges from challenging to impractical. Current
simulators can only be used to investigate correctness at source code level and with limited accuracy. This
paper proposes a system and a methodology to model and verify symbolic distributed applications running
on WSNs. The approach allows to complement the distributed application code at a high level of abstraction
in order to test and reprogram it, directly, on deployed network devices. The proposed intelligent architecture
enables the execution of distributed applications and the verification of the supplied correctness conditions.
This paper shows the feasibility of the proposed approach and its effectiveness even when networks include
resource-constrained nodes with some sample applications and quantitative experiments measuring the
overhead introduced by the monitoring operations.

INDEX TERMS Distributed applications; Embedded Systems; Fault detection; Internet of Things;
Knowledge based systems; Software monitoring; Wireless sensor networks;

I. INTRODUCTION
Emerging distributed computing paradigms, such as the
Internet of Things (IoT), Ambient Intelligence, and Smart
Cities, envision complex distributed applications running on
heterogeneous networks of devices ranging from resource-
constrained to specialized high-performance ones. Wireless
Sensor Networks (WSNs), which can be easily seen as
foundational for these paradigms, are usually composed of
nodes of the former type, providing a baseline for evaluating
methodologies to develop distributed applications in the
aforementioned contexts.

Traditionally, WSNs have been successfully employed in
many applications such as smart farming, transport control,
and industrial process management [1], to name a few. The
potential of their integration in the IoT paradigm has been
shown in the context of smart home [2] and healthcare
monitoring [3] to improve quality of life and safety [4]. For
instance, applications for localization and tracking of objects

and people [5], e.g. through range-free connectivity infor-
mation, multilateration, and angulation [6] are particularly
useful for security and safety purposes. Also, Smart Cities can
benefit from pervasive data collection provided by WSNs for
vehicular traffic and congestion management through traffic
lights control [7].

Setting up a distributed application running on a large
number of devices, which store, process, and exchange data,
imposes an accurate selection among different networks,
applications, and data protocols. However, evaluating the per-
formance and comparing distributed applications in different
real scenarios is far from being easy. Physical-world dynamics,
device mobility, and resource constraints often make the
repeatability of experiments in real contexts impractical [8].

Simulated environments ensure test reproducibility in a pre-
cise way, but fail in capturing and integrating physical world
phenomena [9]. As simulation-based solutions depend on the
evaluation environment, models and simulation parameters,
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misleading results could be observed for the same application
when the simulation tool changes [10].

For accurate verification results, execution models of single
nodes also need to be taken into account, especially when
resource-constrained devices are considered. Namely, simula-
tions do not include processing delays, for example for packet
processing, while substantial differences in the execution time
between real and emulated resource-constrained nodes are
quite common [11].

Testbeds enable prototyping and verifying distributed
applications in large and realistic environments [12], [13],
[14], [15]. They are sometimes deployed in smart cities [16],
however they are usually limited to restricted and controlled
areas [17]. Nevertheless, management and scheduling func-
tionalities, which are usually implemented for testbeds, are
strictly bound both to the specific deployment and to the sensor
node operating system. This makes reusability particularly
unfeasible [18].

Simulators have been diffusely used to evaluate the per-
formance of distributed applications for WSNs [19], [20],
[21]. However, the main limit of these tools is that the
application under test must be adapted to run in the simulation
environment on hardware which is generally very different
from the targeted one. The compliance of the application to
the specifications can thus only be tested before deployment.

Letting some real nodes be integrated in simulations is the
strategy adopted in hybrid verification. However, the resulting
mixture of real and virtual nodes makes timing problems more
and more evident, especially in large networks [22].

All of these solutions put in place post processing methods
to perform evaluation at the end of the implementation work,
before the network is deployed in a real-world environment.
However, the capability of verifying applications at each stage
of design, deployment, and implementation is desirable [23].

In particular, after a network has been deployed for an ex-
tended period of time, its characteristics may be substantially
different from the testing condition during implementation and
initial evaluation. Typical variations in the network behavior
are due to nodes running out of power [24], suffering failures
in their communication modules, or otherwise malfunction-
ing [25].

Moreover, WSNs are often deployed in inaccessible areas,
or may comprise thousands of nodes. In both cases, manually
checking that each node behaves properly may simply be
unfeasible. Thus, post-deployment [26] monitoring systems
are valuable tools to diagnose malfunctions without stopping
the system and to acquire information about the WSN
operation [27].

In this work, we present a WSN monitoring platform for
the debugging of symbolic distributed applications. The main
contributions and novelties of this work are:

• the proposed system does not require any extra pre-
installed debugging code or hardware on the deployed
nodes, reducing the burden on resource-constrained de-
vices, and potentially prolonging the WSN lifespan and
leaving more resources available for ordinary operations;

• the interactive approach enabled by symbolic program-
ming allows multiple verification modes that can be
added to the system long after the network has been
deployed with greater flexibility than currently existing
solutions;

• the symbolic computation model permits verification
operations on heterogeneous devices unlike the platform-
specific tools commonly used;

• knowledge on the network and modeling of the dis-
tributed application are used to automatically verify
whether the application was executed correctly, without
the need for human intervention in monitoring network
logs.

The software platform used in this work is DC4CD [28].
This platform was proposed to enable the development of
distributed applications on resource-constrained WSN nodes
through executable high-level code exchange [28].

In this work, symbolic computation plays a key role in the
evaluation of distributed applications during their execution
on deployed devices. To this end a rule-based modeling and
verification system is introduced.

The proposed system relies on:
1) a knowledge base that includes applications and net-

work specifications and ties application operations to
the corresponding verification code;

2) an intelligent agent that uses inference rules to concate-
nate snippets of symbolic code in the knowledge base
to produce verification messages;

3) a communication module that sends application and
verification code to deployed nodes;

4) a symbolic verifier that checks that results satisfy
expectations and collects necessary metrics.

Development and verification of an application are both
performed in terms of executable symbols that are exchanged
among entities. Symbolic test programs are executed on the
deployed devices as soon as they are received.

The rest of the article is organized as follows. Section II
goes over some related works. Section III details the com-
putational paradigm, the architecture of the modeling and
verification system, and describes the system operation. Sec-
tion IV presents case studies concerning various applications.
Section V presents experimental results. Finally, Section VI
reports our conclusions and discusses future research direc-
tions.

II. RELATED WORKS
In this section we discuss related research on WSN monitoring
and debugging platforms, and the use of symbolic program-
ming to overcome some of their limitations.

A. MONITORING PLATFORMS
Some WSN monitoring platforms have been presented in the
literature. Sensor Network Managing System (SMNS) [29] is
one of the first WSN monitoring platforms. It was developed
for the TinyOS environment with the design goals of minimal
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memory footprint and reduced network traffic overhead.
Its networking architecture supports collection of health
data from the network and dissemination of management
commands and queries following a predefined schema.

The authors of [30] proposed a passive WSN monitoring
tool. A sniffer device captures packets, timestamps them,
and forwards them to an analysis software. The developed
interface shows the contents of the packets along with
metadata and the tool also monitors link quality. However,
the analysis is limited to the network characteristics, leaving
out the actual distributed application.

Hybrid Monitoring Platform (HMP) [31] is a hybrid (hard-
ware/software, active/passive) WSN monitoring platform.
Three main components make up this system: 1) monitor
nodes that record events and related metadata from each
node; 2) sniffer nodes that cover portions of the WSN and
capture transmissions; 3) a monitor server that collects the
information obtained. The monitor nodes are connected to the
WSN nodes and require special-purpose code for the node to
send data through a wired interface. This extra code increases
the memory occupation by about 1 KB. The monitor server
only displays the acquired trace ordered by timestamp.

B. REMOTE DEBUGGERS
Clairvoyant [32] is a GDB-based source-level remote debug-
ger that works through dynamic binary instrumentation. The
use of this tool entails numerous flash rewrites, which may
wear out the node storage eventually leading to shortened
network lifetime. Moreover, it occupies 32 KB of program
memory and 1 KB of data memory, making the debugging of
large programs impossible on resource-constrained nodes.

In [33] the remote source-level debugger approach is
proposed. Correct application behavior is verified by running
a simulation of a single remote node on a host PC. The
simulation is updated using sensing data packets retrieved
from the remote node and is kept in sync through “clock”
packets. Behavior of the remote node is compared with the
simulated execution of the same code on the host. This
approach generates frequent traffic throughout the distributed
application execution and can only monitor a single node.

In the Stethoscope [34] debugging system every deployed
node has a debug agent that receives, interprets, and executes
debugging commands sent by the command generator running
on the sink node. Debugging commands work by changing the
address of indirect function calls to run some preprogrammed
debugging routine before normal actions. Interrupts are hi-
jacked so that they do not interfere with debugging operations.
The proposed debugger occupies 10 KB of flash memory
compared to the 33 KB commonly occupied by GDB-based
debuggers.

The HDF Hybrid Debugging Framework [35] uses external
debugging devices (D2-Box) in a one-to-one mapping to the
nodes of the WSN. The D2-Boxes act as debug agents and
record data from the sensor nodes, and can send control signals
to the node. The debug agents have a wired connection to
their sensor node and use a separate communication channel

from that of the WSN. Debug agents can also reprogram the
connected node through JTAG. This approach can minimize
intrusion on the network, however the external debugging
device imposes an extra burden on the limited WSN node
energy and two separate communication channels are needed.

C. CURRENT LIMITATIONS AND THE SYMBOLIC
PROGRAMMING APPROACH
Overall, the monitoring platforms proposed so far present
some issues that limit their use cases:

• extra debugging hardware on the nodes increases energy
consumption and costs;

• the debugging code on the nodes occupies memory and
storage that might be needed for the correct functioning
of the distributed applications in execution on the nodes;

• the debugging operations are specified at deployment
time and cannot be changed later on without repro-
gramming the nodes, limiting the effectiveness of these
platforms when the WSN incurs in unforeseen issues;

• frequent flash write/erase cycles shorten the lifetime of
nodes;

• the data obtained from the nodes need to be analyzed and
interpreted separately.

The underlying limitation from which most of these issues
stem is that the development and deployment of WSNs usually
follows the flashing-rebooting-reloading cycle. To overcome
these issues, symbolic distributed computation has been
proposed as a promising solution that naturally supports in-
teractive programming. This approach makes reprogramming
deployed networks feasible [36] and, in turn, also permits
tests to take place both during and after development, even
on resource-constrained devices [37], [38]. The complexity of
embedded system programming is supported by a high level
of abstraction provided by existing software platforms [28].
Moreover, accurate monitoring and verification of individual
devices is also feasible at runtime [39]. Additionally, adoption
of a symbolic development platform in WSNs would augment
the scope of activities that can be performed by a mobile
agent in maintenance operations. For instance, Unmanned
Aerial Vehicle (UAV)-enabled maintenance of WSNs has
been proposed to recharge WSN nodes [40]. Besides these
activities, by exploiting symbolic distributed computation a
UAV could also act as a probing node able to query status
information and even reprogram nodes on the fly.

Symbolic programming has been already adopted to un-
dertake interactive experiments and to verify real hardware
instruments through the use of an interpreter [41] and for
complex activities such as automatic program synthesis [42].

Evaluation tools for symbolic distributed applications in
real scenarios using actual target hardware have been still
largely underexplored. As a contribution to filling this gap,
this work presents an approach supporting verification of
symbolic distributed applications during their execution on
real hardware.
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III. INTELLIGENT MONITORING SYSTEM
In the following, the proposed system for application mod-
eling and verification is described in both functional and
structural terms. Preliminary, the symbolic environment,
adopted for the network programming, is presented. Finally,
some implementation details are discussed.

A. SYMBOLIC EXECUTION PLATFORM
Deployed nodes run the DC4CD symbolic environment,
which is based on the Forth stack-oriented language. Programs
are composed of a sequence of symbols, either words or
numeric constants. A program is executed by an interpreter
which evaluates symbols in the order they are provided.
Numeric constants are pushed on top the stack, words are
used to search for executable code in a data structure called
word dictionary. The execution of a word returns values by
leaving them on top of the stack. For instance, a sensor could
have the word temperature defined in its dictionary so
that its execution would leave the measured temperature value
on top of the stack.

Words can also access the values left on the stack and
consume them. Thus, through this stack mechanism words
can pass each other parameters. For instance, when the Forth
interpreter evaluates the code

2 3 +

2 and 3 are pushed on the stack, then the symbol +, which is
a predefined standard Forth word, is executed, popping the
two operands and leaving on top of the stack the result of the
addition which can then be used for further computation. The
evaluation process follows the postfix notation.

The dictionary can be easily expanded with user-defined
words. A user-defined word consists of a chain of words
already in the dictionary, the evaluation of such a word causes
the sequential execution of the words in its definition. Colon
(:) and semicolon (;) are the Forth words to start and end the
definition of a new word in terms of a sequence of already-
defined executable words. As a simple example, let us define
the word twotimes to double the value currently on top of
the stack:

: twotimes dup + ;

Also dup is a standard Forth word. Its execution duplicates
the top stack item. The stack effects caused by the execution
of 4 twotimes are shown in Fig. 1.

. . . . . . . . . . . .
4 4

4

8

4 dup +

FIGURE 1. Effects of the stack execution of 4 twotimes. The symbol 4 is
recognized as a numeric value and placed on the stack. Then the word
twotimes is expanded into dup +. The value on top of the stack is duplicated
by dup. The word + executes the arithmetic operation and leaves the result on
top of the stack.

The dictionary can be be implemented as a linked list of
word definitions allocated one after another in memory, the
last pointing to the previously defined one. This way the word
lookup mechanism can be implemented as a simple backward
search from the last to the first definition. Special symbols,
called markers, can be used to create restore points in the
word dictionary. When a marker word is defined, it is placed
at the current end of the dictionary as any new user-defined
word would be. The execution of a marker removes from the
dictionary stack the marker itself and all the words that were
defined after, rolling back the dictionary to the state it had
right before the definition of the marker. Variables are also
stored in the dictionary, their execution leaves their memory
address on top of the stack. Values can be read from a memory
address through the fetch (@) word and written to a specified
memory location using the store (!) word.

In order to support distributed applications, and to facilitate
the exchange of symbolic code, the DC4CD platform natively
provides support to distributed computing schemes through a
special-purpose construct:

tell: <symbolic code to be sent> :tell

These two words build IEEE 802.15.4-2003-compliant mes-
sages, as required by the node radio (see Section V), contain-
ing the symbolic code enclosed between them as payload of
datalink level packets. The sequence of words to be sent are
encoded as plain ASCII characters.

When the tell: word is executed, it consumes the value
on top of the stack, and interprets it as the MAC address of
the receiver node, placing that value in the destination address
field of the packet. Upon receiving a message, the destination
node immediately executes the received instruction without
any further translation step. The same words might be defined
differently depending on the underlying hardware of a node.
Each node then executes the words received through mes-
sages using the definition in its own dictionary. Exchanging
executable symbolic code thus abstracts the characteristics and
the representation of target hardware easing interoperability
on networks composed of heterogenous devices.

Inside the tell: :tell construct, the symbol tilde (~)
is treated as a symbolic placeholder and replaced with the
value currently on the top of the stack. This mechanism
permits to include computed values in outbound messages.
For example, to tell a remote node with id 7 to measure the
temperature, send the response back (reply), and make the
requesting node print its value, the requesting node executes:

7 tell: temperature reply tell: ~ .
:tell :tell

where the word dot (.) pops the topmost value of the stack
and prints it. The effects of the stack execution of this code
are shown in Fig. 2. The code is sent as a sequence of
words, as simple text. The tell construct can send any Forth
code: nested tells, definitions of new words, markers, and
any arbitrary command. This mechanism allows nodes to
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exchange data, symbolic rules, simple commands, or complete
algorithms.

Through a similar mechanism, nodes can perform multi-hop
communication relying on the routing tables of the intermedi-
ate nodes using the forward: :forward construct.

B. MONITORING MODES
Considering the symbolic computational paradigm presented
in the previous subsection, a distributed application is defined
as sets of sequence of executable symbols in a concatenative
programming model supported by all the nodes of the network.

The aim of our work is to allow an accurate monitoring
of distributed application execution in order to discover
undesired behaviors and errors through the use of a monitoring
agent. The monitoring agent is described in the following
sections.

The system can perform verification both during and at the
end of execution. The proposed architecture implements four
monitoring modes:

• Targeted: at the end of execution a single request to
retrieve the values of the local variables is transmitted to
one of the network nodes that is known to be reliable. Ver-
ification consists in checking that the number of received
values is correct and that the values of the variables
coincide with the ones computed by the monitoring agent
with available a priori knowledge.

• Global: at the end of the execution all the nodes are
requested to send the values of some local variables.
Then, the monitoring agent waits for the responses. On
their arrival, the agent verifies that all the tuples of
retrieved values are consistent with each other and with
the prior available knowledge.

• On demand: each node is queried both during the exe-
cution of the application under test, possibly more than
once, and then at the end of the execution as in the global
monitoring mode. This strategy enables early failure
detection by monitoring the evolving state of some or all
nodes while they are executing the application.

• Stepwise: similarly to the on demand strategy, nodes are
queried during the execution. In this strategy, no message
to start the application execution is sent. Instead, nodes
receive executable code from the monitoring agent to
execute a single step of the distributed application. The
verification proceeds as in the on demand case. This
strategy overcomes the difficulties of monitoring the state
of the network while it is actively changing due to a
running application. Moreover, it enables on-demand
verification for applications where the execution order is
nondeterministic or nodes send messages too frequently
to execute queries without incurring in collisions. This
verification scheme can be used to perform record-and-
replay debugging [43].

C. SYSTEM ARCHITECTURE
We exploited logic programming in order to implement the
monitoring and verification agent.

a

b

c

d

Node 6

Node 7

Node 6

. . . . . . . . .

7 tell: temperature reply tell: ~ . :tell :tell

7

. . . . . . . . . . . .

temperature reply tell: ~ . :tell

23 23
6

. . . . . . . . .

23 .

23

Ti
m

e

Node 6 Node 7

temperature reply tell: ~ . :tell

23 .

FIGURE 2. Stack execution of the 7 tell: temperature reply tell:
~ . :tell :tell symbolic code on Node 6: a) the symbol 7 is recognized
as a numeric value and placed on the top of the stack, then the outer tell:
... :tell construct uses this value as destination node address making
Node 6 send the inner code ( temperature reply tell: ~ . :tell) to
Node 7; stack on Node 6 gets back to the initial state; b) Node 7 receives the
code and executes it; temperature leaves a temperature reading (23) on the
stack; reply pushes the address of the sender of the received message on the
top of the stack; the inner tell: ... :tell construct uses this value to send
Node 6 a message containing the reading (23), extracted by the tilde (~)
placeholder, followed by the word dot (.); c) Node 6 receives 23 . ; the
symbol 23 is again recognized as a numeric value and put on the top of the
stack, then the word dot (.) uses this value to produce an output representation
of the reading. The exchanged messages are shown in d).
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Monitoring Agent
Knowledge Base

Verification Rules

Network Structure

Monitoring ModesSymbolic
Code

Producer

Symbolic
Code

Verifier

Verification result

Communication Manager

Bridge Node

Node 1 Node 2 Node n. . . . . .
Target WSN

FIGURE 3. Functional blocks composing the verification system and its
interaction with the target WSN running the application under test.

The modular system architecture is shown in Fig. 3. An
intelligent monitoring agent represents the core element of the
system, and is in turn composed by a Knowledge Base (KB)
and several subagents.

From a structural perspective, the system includes three
main components: a Rule System implementing the monitor-
ing agent running on a host computer, a bridge node, and the
network of deployed nodes.

The KB maintains both the static knowledge on the domain
(network description) and that acquired during the application
execution (verification rules and partially inferred results). The
distributed application programmers, in the wake of Dijkstra’s
1975 ideas [44], together with the code, provide sets of pred-
icates (verification rules) that characterize the intermediate
and final states of the execution of the application on each
node. The executable application code is stored directly on
the nodes as symbolic programs, while the monitoring agent
operates on the predicates in the KB.

The monitoring agent is responsible, on the basis of the
operating mode set, to choose the appropriate verification
rules and to generate the equivalent symbolic code to be
executed on the nodes for the purpose of monitoring the
operations. The interaction between the verification system
and end devices is enabled by the Communication Manager
(CM), which acts as a bidirectional interface with already
deployed end devices. The CM interacts with the network
through a bridge node, which is physically connected to the
monitoring agent. Nodes exchange executable symbolic code
through the device wireless communication interface. The
bridge node has the same specifications of the other nodes in
the network, and communicates with the CM through a wired
serial interface. All the information exchanges between the
monitoring agent and the WSN goes through the bridge node.
Using one of the nodes in the network as a bridge is convenient
since it allows to leverage the flexibility of symbolic code
execution on this node too as well as the other facilities of the

development environment. The Symbolic Code Producer
(SCP) automatically produces symbolic verification code.
The SCP is a decision agent that takes as input the network
structure and the verification rules related to a distributed
application to appropriately concatenate snippets of symbolic
code. The verification code makes the sensor node perform
some application-specific computation and send the results
back to the monitoring agent at one or more points during
the execution of the application. Verification is thus carried
out in virtue of this declared association between symbolic
high-level code describing high-level operations and similarly
written code verifying the outcome of the former. To this
purpose, in the KB are defined rules of this type:

verific_code(Label, VerificCode)

in which Label specifies the operation to be verified, and
VerificCode indicates the verification code to be trans-
mitted by the monitoring agent to the bridge node so that its
execution on arrival retrieve the desired results.

Once the SCP has produced the verification code, the
CM starts the application execution by sending the initiating
code to the network through the bridge node. Then it sends
the verification code to the nodes accordingly to one of the
monitoring modes.

Before the application execution begins, during the ini-
tialization phase, the SCP can inject executable code in the
network targeting some or all the nodes. This is useful when
debugging a WSN to ensure reproducibility of the performed
tests by explicitly setting the configuration of the nodes, and
to ensure that some preconditions are verified before the
application execution. When the monitoring agent sends the
initialization code to the network, it may also override some
application-specific words to include debug functionalities.
Moreover, this code can also be defined differently for each
node. By sending a marker before the new definitions, at the
end of the application execution, it is possible to revert the
dictionary to its previous state.

The core element of the system is the Symbolic Code
Verifier (SCV), which examines the results of the execution
and ascertains the correctness of the application execution
using the verification rules in the KB. Metrics about the
distributed application execution and verification time as well
as exchanged data are also recorded.

The verification process is detailed in Fig. 4. For the on
demand and stepwise strategies, which are based on fine-
grained evaluation during application execution, all nodes are
queried for verification data at the end of the process.

Remote nodes execute both application and verification
code, once received. By executing the received verification
code, networked devices collect the requested information
and send back the actual results to the CM. Finally, results
can be gathered and analyzed by the SCV subagent. In all the
operating modes, the monitoring agent, through the SCV, goes
through a decision-making process that takes into account
assertions and facts in the knowledge base to automatically
determine whether the application was executed correctly.
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Initialization

Start application
execution

Final
verification?

Wait until the end of
application execution

Inject verification
messages between
application steps

Yes No

Targeted
verification?

Query all nodes for
verification data

Query trusted node
for verification data

No

Yes

Output verification result

FIGURE 4. Flowchart of the verification process.

D. THE INFERENCE MODEL
According to the used monitoring mode, several verification
rules in the knowledge base describe the relationships between
the states of all the nodes in the network. These rules are ap-
propriately selected by the monitoring agent to verify several
post-conditions in specific moments during the execution of
certain phases of the application, and eventually at its end,
to ascertain whether the predicates describing the application
state are satisfied. These predicates can be very flexible and
of varying complexity. According to the application being
tested, verification might entail ensuring that a variable in the
remote nodes has a specific, predetermined, value, or it could
need extensive reasoning that takes into consideration factors
such as the topology of the network and the relationship
between nodes. Moreover, the flexibility granted by the
adopted symbolic approach and logic programming permits
the verification of the correctness of some computation even
if said computation cannot be reproduced locally. Verification
rules can describe the relationship between values returned by
the nodes without requiring the exact knowledge of what the
computation result will be, either because of some stochastic
component in the application or because the measurement
of physical quantities is involved. Depending on the result
of this verification process, the monitoring agent can take
appropriate actions, such as stopping the verification process
to report failure or testing the validity of additional predicates.

The KB allows for defining nodes as reliable, that is nodes
whose response and behavior are assumed to be always
correct. Rules defining primitives for communication, such as
messages, and their storage and transmission among nodes,
are also defined in the KB as well as routes and transmission

timings.
The KB also models the distribution within the network

and placement of nodes using a two-dimensional Cartesian
coordinate system. The network structure is also modeled in
the KB in terms of topology and connectivity as facts for each
node in the KB.

Some of the predicates that can be used by the monitoring
agent as conditions in its decision making process are shown
in Table 1. These predicates take as input one or more node
IDs and report some information regarding their status. This
information can be used as conditions to determine the actions
to pursue during the verification process. For instance, some
nodes could be excluded from the verification process to avoid
burdening nodes with low remaining charge or to respect a
limit on the number of hops for the verification messages.
Furthermore, in networks with heterogeneous devices, the
available computational resources of each node and the
available hardware peripheral can limit or expand the scope
of the verification process.

node_distance(X,Y,Distance) Topological information on
the physical distance be-
tween nodes X and Y

nodes_connected(X,Y,S) Information on whether
nodes X and Y can com-
municate

message_delivery_ratio(X,Y,Ratio)Information on the mes-
sage delivery ration be-
tween nodes X and Y

node_active(X,S) Information on whether
node X is currently active

is_node_bridge(X,S) Information on whether
node X is the bridge node

charge_level(X,S) Information on the charge
level of the battery of node
X

is_node_reliable(X,S) Information on whether
data from node X is
deemed reliable

computational_resources(X,S) Information on the
available computational
resources on node X

available_sensors(X,
SensorList)

Information on the avail-
able sensors on node X

sensor_status(X,Sensor,S) Information on the status
of a specific sensor on node
X

TABLE 1. Examples of predicates that can be used as conditions by the
monitoring agent.

Once the queried values are retrieved from the nodes, the
KB is enriched with additional information that the monitoring
agent can use in order to make decisions during the verification
process. The predicates in Table 2 are examples of verification
actions that might be performed by the monitoring agent to
assess whether some conditions are satisfied by the values
returned by the queried nodes. Specifically, the reported
verification predicates assess if all the specified nodes replied
to the verification message, and verify the validity of some
relationships among the returned values.
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check_node_reply(X, Replies,
S)

Verifies that node X replied
to verification messages

compare_nth_value(N, Replies,
S)

Verifies that the n-th re-
turned value is the same for
every node

match_nth_value(N, Reply,
Value, S)

Verifies that the n-th value
returned by a node matches
a given value

is_in_range(N, Reply, Min,
Max, S)

Verifies that the n-th value
returned by a node falls
within a specified range of
values

verify_relationship(Reply_X,
Reply_Y, R, S)

Verifies that a specified rela-
tionship between the replies
by two nodes holds

TABLE 2. Examples of verification actions that can be performed by the
monitoring agent.

Conditions Actions
node_active sensor_status check_node_reply is_in_range

true operative ✓ ✓
true defective ✓ ×
false * × ×

TABLE 3. Examples of verification rules that the monitoring agent uses to verify
the correct application execution. If the condition node_active is false, no
action is performed irrespectively of sensor_status.

Table 3 shows a possible decision rule that can be used
by the monitoring agent to select the appropriate verification
actions according to the status of a specific node. Given a node,
if it is currently active the monitoring agent will check whether
it replied to the verification messages, but the correctness of
the returned values is only checked if a sensor on the node is
not known to be defective. Inactive nodes are not queried and
thus no verification action is performed on them, regardless
of the sensor status. Verification rules can have an arbitrary
number of combinations of conditions and actions and can
involve multiple nodes. For the sake of brevity more complex
rules are not presented.

Based on the symbolic code exchange mechanism, the CM
sends application and verification code as plain text, without
intermediate translation steps. Since words are interpreted by
nodes, verification can be performed on-board by end devices
during application execution, while the CM is responsible of
collecting final results.

The same symbol may have different implementations on
nodes to address hardware heterogeneity while still maintain-
ing the same semantic meaning.

IV. SAMPLE APPLICATIONS
In order to test and validate the verification system, in this sec-
tion, we present its adoption for developing some distributed
applications of different complexity. For the sake of brevity, in
the following we present some meaningful fragments together
with the code provided for their verification. The proposed
tool can monitor both code and network functionality. For the
second application fragment only, which concerns network

functionality, we describe in detail the logical reasoning
process implemented for verification.

a: Application 1 - Averaging

This application is a short fragment belonging to a more
complex application for the distributed aggregation of physical
quantities, in this specific case, instantiated to collect temper-
ature data. The distributed application can be decomposed in
the following steps:

1) the monitoring agent commands the bridge node to
execute the symbolic code: bcst tell: 0 0 up-
date :tell
The bcst keyword specifies that the message be
broadcast to the network, update is an application-
specific word;

2) each listening node receives the message and executes
it. As specified, the two zeros are interpreted as numeric
values and put on the stack. The update symbol is
defined to pick these two values from the stack and
store them in two of its local variables. The first variable
(num) holds the number of nodes that already carried
out the temperature measurement. The second (aggr)
holds the current aggregate temperature value, which
is the sum of the measurements communicated by
the nodes so far. The execution of the message thus
commands the nodes to perform the initialization of
the application by resetting their local values. The
complete definition of update, which includes the
wait-and-reply symbol that actually implements
the rest of the distributed procedure (step 3), is:

num ! aggr ! wait-and-reply

3) In order to synchronize the distributed execution,
each node waits for a time proportional to its inte-
ger identifier. Subsequently, the node acquires the
current temperature and updates the values of the
two variables accordingly. Furthermore, the node
updates the value of another local variable (avg)
containing the average value of the temperatures just
acquired. Then the node executes the symbolic code
bcst tell: <num> <aggr> update :tell,
that broadcasts the updated values of the variables num
and aggr. All the other nodes, when receiving this
message, execute the code updating the values of the
two corresponding local variables, as in step 1.

4) The distributed execution terminates when all the
network nodes have performed step 3. Knowing the
node identifier values, the monitoring agent can thus
estimate when the distributed application has ended by
comparing the elapsed time with the reply time of the
node with the largest identifier value.

For the above distributed application, a simple verification
consists in checking that all the network nodes converged to
the same value and no update messages were lost. To this end,
the following verification code is sent to the queried nodes:
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num @ aggr @ avg @ reply tell:
~ ~ ~ :tell

b: Application 2 - Network quality monitoring
The second sample application is a code portion of the network
monitoring activity.

For this application, the KB holds information
on the message delivery ratio for each pair of
nodes in the network (Fig. 5), available through the
message_delivery_ratio predicate shown in Table 1.
However, a WSN may be deployed for an extended period and
the connectivity characteristics may vary in time. The system
monitors the current state of the network in order to plan
more appropriate message routing. The procedure involves
the following steps:

1) the bridge node broadcasts the initialization message:
0 net-quality

2) each listening node receives the initialization message
and executes it. Again, the 0 is interpreted as a numeric
value and put on the stack. The net-quality symbol
is defined to either reset the counter of received mes-
sages or to increment it if the value on top of the stack
is either 0 or 1 respectively (reset-or-increment
symbol). The counter is held in the rcvd-msg variable.
In this step the counters of all the listening node are thus
reset. Finally, the node start executing the next step (3)
defined in the wait-and-reply-nq symbol as it
can be seen in the definition of net-quality:
reset-or-increment wait-and-reply-nq

3) The wait-and-reply-nq symbol starts a timer
letting the node idle for a time proportional to its ID.
When the timer expires, the node broadcasts the update
message:

1 net-quality

4) as described before, the definition of net-quality is
such that whenever a node receives the above message
from any another node, it increments its own counter.

Once the application execution is terminated, the monitor-
ing agent starts the verification process. In order to monitor

the connectivity of the network, verification is performed on
the number of messages received by each node. To this end,
the SCP will select the appropriate snippet of verification code
for this application. According to Table 4 the agent will use
the“rcvd-msg @” snippet to extract the required counter
value from each node.

verific_code(network-quality, "rcvd-msg @")
verific_code(averaging, "num @ aggr @ avg @")
verific_code(network-discovery, "leaf @ parent @")
verific_code(hvac-control, "temperature @ dup
classify HVAC-signal @")

TABLE 4. Predicates in the KB to associate applications and verification code
snippets.

To make each node report the number of received messages,
the SCP concatenates the appropriate communication prim-
itives. After the verification code snippet, a tell construct
is used to send back the computed values. For every node to
be verified, the SCP merges the verification code into a tell
construct addressed to the correct destination node. The code
that the CM sends to the bridge node in order to query a node
is the following:

NodeID tell: rcvd-msg @ reply tell:
~ :tell :tell

with NodeID the address of the node the verification code is
sent to.

If the nodes_connected(bridge, NodeID) con-
dition is not satisfied, meaning that in the KB there is no
information reporting a direct link between the bridge and the
target node, the SCP selects the forward construct instead
of the tell communication primitive to ensure that messages
can be correctly delivered.

Once the nodes are queried, the SCV performs verification
actions for all the nodes that satisfy the node_active
condition in Table 1 through the following predicates:

findall(X, node_active(X,true),
ActiveNodes),

verify_nodes(network-quality,
ActiveNodes, Replies)

The monitoring agent, exploiting its knowledge of the connec-
tion graph and the previous estimated message delivery rate,
can compare the received values with its estimation of the
average number of messages that each node should receive.
The monitoring agent can perform different verification
actions depending on whether all node pairs have a 100%
message reception rate.

If each link in the network is lossless, at the end of the appli-
cation execution the i-th node will receive Ni messages, with
Ni the number of nodes satisfying the nodes_connected
condition with node i. The counter of node i will then hold
said value. As an extreme case, in a network topology where
all nodes can communicate directly, all counters will show the
same value.
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When not all node pairs have a 100%, the reception of
each message by a specific node is a Bernoulli trial, with
chances of success depending on the message source. The
total amount of messages received by a node, then, is the
outcome of a series of independent Bernoulli trials with
different distributions, and it can be modeled as a Poisson
binomial distribution. Accordingly, each node has a different
probability of receiving messages from a source, hence they
can have different expected values.

In case links are lossless the monitoring agent selects the
match_nth_value verification action from Table 2 with
value N . Otherwise, verification is performed using the ex-
pected number of received messages computed for each node.
Moreover, if the stochastic model is used, the monitoring agent
can also perform the is_in_range verification action,
using the computed expected value and standard deviation
to obtain a range.

As previously stated, in this example the verification tool is
only used to monitor variations in the status of the hardware.

For the sake of brevity, only a brief overview of the
application and the verification actions are described in the
other sample applications.

c: Application 3 - Network discovery
The third sample application is based on the network discovery
protocol described in [45] and used to construct a network
topology tree. The application execution entails the following
steps:

1) the bridge node starts the application by broadcasting
the following code:

-1 network-discovery

every node within communication range of the bridge
node will receive this message;

2) each receiving node will record the source of the
message as its parent node in the topology tree and
starts a timer proportional to its ID;

3) when the timer expires, the node broadcasts the ID of
its parent node by executing the following code:

parent @ bcst tell:
~ network-discovery :tell

4) one of three cases can happen when a node receives this
message:

a) the node is the broadcast parent node: the receiv-
ing node records that it is not a leaf node in the
topology tree;

b) the node currently has no parent node: in this case
the receiving node starts executing the distributed
application from step 2;

c) in all the other circumstances the message is
ignored.

5) the distributed application terminates when all the
network nodes have performed step 3.

For this application, the test is about whether each node
computed its correct position on the network topology tree. To

this end, the following verification code is sent to the queried
nodes:

leaf @ parent @ reply tell: ~ ~ :tell

d: Application 4 - HVAC control
In this last sample application we face some issues re-
lated to non-determinism. An appropriate monitoring of
non-deterministic behaviors is a crucial issue since many
applications, for instance those of IoT systems, are often
characterized by uncertainties. IoT devices typically execute
specific actions on the basis of their sensor readings. However,
measurements can be inaccurate or actuators might malfunc-
tion. Furthermore, these applications are characterized by
the unpredictability of message exchanges. Finally, these
applications might not necessarily terminate after a definite
time as, for instance, when implementing control loops for
physical processes. All these considerations underline the dif-
ficulty of monitoring the correct behavior of IoT applications
while minimizing undue interference. For these reasons, the
stepwise monitoring mode, as described in Section III-B, can
be a valuable tool.

The following application fragment implements a tempera-
ture control in a smart environment.

1) On startup all the nodes acquire a temperature sample;
2) Each node, acquired its first sample, classifies it as: 1)

belonging to the user predefined comfort range, 2) cold,
or 3) warm, and broadcasts the classification value; this
step is encoded as such:

temperature @ classify bcst
tell: ~ temperature-update :tell

3) All the nodes periodically perform the same measure-
ments. Only when the classification of new acquired
temperature is different from the previous one, the nodes
broadcast a message with the new classification;

4) According to the classification emerging from the
majority of nodes, a collector node sends opportune
commands to the HVAC system so to guarantee that
most of the nodes obtain readings in the comfort range.

The verification of correct functioning entails querying
all nodes for the latest temperature sample together with its
classification and retrieving the signal sent to the HVAC
system in order to assess whether the temperatures are
classified correctly and the current HVAC setting is addressing
the requirements of most of the nodes.

In order to acquire the verification data, the following
symbolic code is sent to the queried nodes:

temperature @ dup classify HVAC-signal @
reply tell: ~ ~ ~ :tell

V. EXPERIMENTAL EVALUATION
We evaluated our approach by performing experiments on
three 10-node WSNs differently arranged to provide a repre-
sentative sample of real topologies. The first network setting
was a linear topology with each node able to communicate
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only with the two closest peers. The second network was
arranged in an L-shaped topology with the bridge placed in
the middle of the segment connecting the two extreme nodes.
The third network was built by deploying nodes in a home
environment (Fig. 6). In the latter, two networks the bridge
was able to exchange messages with any node in one hop. In
all the arrangements, each node was a Crossbow IRIS mote
equipped with an IEEE 802.15.4 compliant radio transceiver,
an Atmega1281 8-bit Harvard RISC 16 MHz processor, 128
KB of Flash memory, 8 KB of static RAM, and a 4 KB
EEPROM provided with sensors to read physical quantities
such as temperature, light, and ambient noise.

FIGURE 6. The home environment used for the tests. Circles represent nodes.
The node acting as a bridge to the host is indicated with a dashed circled.

For every combination of application, topology, and veri-
fication strategy, fifteen runs of verification were carried out,
measuring the number of exchanged messages, the bytes sent
through serial line to the bridge node, and the average required
time. Since for most of the tested applications the execution
time depends on the node IDs, the ability of the monitoring
agent to virtualize IDs was exploited to randomly assign MAC
values in the range 0–65535. Being the ID randomization
functionality based on a fixed pool of seeds, each combination
was evaluated on the same fifteen sets of IDs. The assigned
IDs were set on the nodes through executable code sent by the
verification system in the initialization phase. The overhead
from these operations does not contribute to verification time
measurements because an already deployed network does not
generally require these steps.

In the linear topology setting, randomizing the addresses
presented an extra challenge. Before each experiment the
routing tables in the whole network required to be set up with
the randomized addresses. Due to the flexibility of the system,
this was simply solved by having the monitoring agent send
each node executable code defining its routing table in the
initialization phase, before the start of the application. To ease

the practicality of the experiments, during the initialization
phase the nodes were gathered in close proximity to ensure
that a correct configuration was quickly achieved. With no
loss of generality regarding the evaluation of the overhead
introduced by the monitoring agent, the topology was though
linear from the point of view of the verification system.

Table 5 collects the results of all the tests:

• tp is the time elapsed from the moment the message
starting application execution is sent to the moment
the application terminates and global verification can
begin. It can be computed by the system before starting
the application and is not influenced by the verification
modality. It does not apply to the stepwise modality.

• tp + tv is the time from the moment the message starting
the application execution is sent to the verification end.

• the messages column reports the number of exchanged
messages during application execution and verification.
The messages considered are only those needed to verify
the application itself, not those exchanged by the nodes
during the normal application execution, as those are not
related to the verification tool. In multi-hop topologies
each message forwarding is counted separately.

• the bytes column reports the bytes sent through serial
line to the bridge node

The targeted strategy, interrogating only a reliable remote
node, is the most efficient. Nevertheless, besides the intrinsic
difficulty of selecting a subset of the nodes as reliable,
especially for long executions, not every application can be
verified with knowledge about the state of a single node.

The global strategy can ensure that the application produce
the correct final result but at the cost of higher verification
time and number of exchanged messages. Moreover, if the
final result is not correct, it may not be possible to determine
what caused the failure.

The on demand strategy entails even more exchanged mes-
sages and may potentially introduce timing issues. However,
this strategy provides more detailed information during the
application execution, for instance about error conditions,
which could be detected before the end of the process.

The stepwise scheme, by essentially pausing the application
execution at each step, enables the possibility of monitoring
the internal state of all the nodes; this capability can be
leveraged to obtain fine-grained information. This strategy,
however, has the highest intrusion on the WSN and alters the
normal network behavior.

From the tp + tv column, in the averaging application, it
can be seen that the stepwise verification modality reduces the
waiting time with respect to the on demand modality because
the tp component is dominated by idle waiting times. An
application with more frequent messages exchanges would be
slowed down.

The HVAC control application was only tested in the
stepwise modality because of its non-deterministic nature.
The non-deterministic update mechanism does not allow for
determining safe timings to send messages without collisions.
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TABLE 5. Experimental results

Averaging

Modality Linear L-shaped Home

tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes

global 291.09 111.00 1112.60 278.19 21.00 1004.60 272.90 21.00 1004.60

targeted 149.70 166.43 15.00 152.93 149.70 165.60 3.00 140.93 149.70 165.06 3.00 140.93

on demand 336.14 150.33 1463.60 317.72 27.53 1318.00 309.89 27.53 1318.00

stepwise - 294.28 221.00 2324.20 - 269.36 41.00 2108.20 - 271.27 41.00 2108.20

Net quality monitoring

Modality Linear L-shaped Home

tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes

global 149.83 283.13 111.00 1044.93 149.83 251.69 21.00 867.60 149.83 253.69 21.00 867.60

Net disc

Modality Linear L-shaped Home

tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes

global 1066.22 111.00 1096.60 418.11 21.00 988.60 419.39 21.00 988.60

targeted 933.98 952.10 15.00 172.93 296.17 313.03 3.00 160.93 296.17 313.62 3.00 160.93

on demand 1173.93 196.20 1978.73 447.94 27.00 1264.40 454.44 27.00 1264.40

HVAC control

Modality Linear L-shaped Home

tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes tp[s] tp + tv [s] messages bytes

stepwise - 294.51 183.00 2430.00 - 282.20 41.00 2300.93 - 281.13 41.00 2283.73

For the sake of ease of testing, temperature readings were
simulated.

The network quality monitoring application is meant to
assess the state of the whole network, for this reason the
targeted modality makes little sense. Moreover, verification is
performed on the final results of the application so we did not
perform the on demand and stepwise verifications.

The relationship between the number of queries performed
by the rule system and the other tracked metrics is reported
in Fig. 7. As expected, the chart shows a noticeable linear
correlation between the number of queries required for
verification and the time spent to perform it.

The number of messages propagated through the network,
on the other hand, shows high variability between the two 1-
hop topologies (L-shaped and Home) and the linear one: in the
latter, for each message sent from the monitoring agent several
messages are generated by the nodes contributing to the
overall message count. In the stepwise verification scheme for
the HVAC control application the non-deterministic execution
order of the nodes makes the number of exchanged messages
highly variable.

Despite the noticeable influence of topology and application

in the number of messages propagated through the network, a
noticeable linear correlation between the number of queries
performed by the monitoring agent and the tv component
of the verification time can be observed. In fact, the main
bottleneck is not the transmission of messages among nodes
but the 9600 bit/s rate of the serial connection between the
CM and the bridge node: dynamic code execution enables the
propagation of a message through the network with little extra
burden. The amount of code sent from the CM to the bridge
to be dispatched to the network for a query is similar in all the
conditions as shown in the rightmost chart.

Higher bitrates with such constrained resources, would not
be feasible. This is not a limitation of the monitoring agent.
In fact, the actual throughput would be limited by the low
computational power of the nodes and their tiny amounts of
RAM for buffers that would trigger control-flow mechanisms
anyway. All in all, the fact that our approach is feasible
even when targeting such a resource-poor platform shows
its effectiveness.

To asses the applicability of the proposed methodology
in networks with more nodes we also performed numerical
simulations for each verification scheme. The simulations
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FIGURE 7. Relationship between tv and the number of queries with varying
topologies for all applications and verification schemes. The verification time
mainly depends from the number of queries even if the generated messages
may vary substantially depending on topology and tested application.
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roughly holds even with an increased network size. The highlighted area in the
chart contains the results of the simulations with the same network size of the
tests on deployed WSNs.

were carried out with multiple network topologies:
• connected topologies where the bridge node could di-

rectly query each node;
• linear topologies with the bridge node at one end of the

line;
• ramified topologies where each node could directly

communicate with at least four other nodes.
The networks were generated in different sizes: 10, 20, 50,

and 100 nodes. Fig. 8 reports tv and performed queries for
all the performed simulations showing the linear relationship:
each query to a node had a cost of ∼ 15 s. The simulation
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FIGURE 9. Compared with the number of messages that need to travel through
the network, verification time depends almost exclusively from the number of
queries.

results for networks of size 10 closely match the tests
performed on the deployed networks.

Fig. 9 summarizes the simulation results, and shows that
the previously identified relationships hold even at increased
network size. In particular, the impact of the transmissions of
the generated messages on tv is negligible when compared
to the communication through serial line with the bridge
node. Since the rate at which queries were performed was
far lower than the maximum throughput of the network,
the verification process minimally interfered with the WSN
operations. Moreover, the number of bytes sent through the
serial interface for each query was constant, thus the burden
on the bridge node was the same regardless of the topology
and the application under test.

Results also show that verification time does not depend
on network topology but only on the number of queries per-
formed. This finding may be used to develop more advanced
verification schemes that only select a subset of nodes to
query in order to comply with constraints time available for
verification. In addition to the specific ability of the tool to
test distributed applications on deployed WSNs, its viability
is also supported by the linear scaling of verification time
with respect to the number of queries and, by extension, the
number of nodes, the capability of performing verification
operations in different topologies, and the absence of any
need of special-purpose debugging hardware or software.

VI. CONCLUSIONS
In this paper, a system supporting modeling and verification
of distributed applications running on WSN nodes was
introduced. The system is based on a symbolic programming
paradigm that enables modeling applications with a high level
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of abstraction even on resource-constrained devices.
The core feature of the proposed system is represented by

the use of logical reasoning to assess network functionality
and code correctness. The functionalities of the monitoring
agent have also been shown through four running examples
of application fragments.

The experimental results concerning several applications in
multiple deployed networks and extensive simulations support
the feasibility of the approach to test distributed applications
running on resource-constrained WSN nodes as the time
spent in application verification was comparable to application
execution time.

Future work will consider running the experiments on
virtualized nodes alongside physical ones and verification
of hybrid simulations of distributed applications: taking
advantage of the easy reconfigurability of the nodes, a node
may be automatically reconfigured during the application
execution to act as a different node in the simulated network,
enabling complex analyses on relatively small networks.
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